Advanced Partial Differential Equations Professor Doctor Kaushik Bal Department of Mathematics and Statistics Indian Institute of Technology Kanpur Lecture 22 Mean Value Property of Heat Equation

(Refer Slide Time: 00:30)

$$(x + 6)$$

$$(y + 6) = y = 0$$

$$(y + 6) = 0$$

$$(y +$$

Welcome students. In today's class and in this week specifically we are going to talk about initial and boundary value problem.

(Refer Slide Time: 09:53)

< + ٢

(Refer Slide Time: 23:35)

<	+ ~ • • • • • • • • • • • • • • • • • •	0	<	٥	P
	$\begin{bmatrix} 1 \\ (4\pi(t-5)] & n_{2} & e^{-\frac{ x-y ^{2}}{4(t-5)}} & y_{1} & r^{-n} \\ = y & r^{-n} \leq [4\pi(t-5)]^{-\frac{n}{2}} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} \leq 1) \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} \leq 1) \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} \leq 1) \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} \leq 1) \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (1+y)^{2} & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y & (-: e^{-\frac{ x-y ^{2}}{4(t-5)}} = \frac{1}{2} \\ = y &$	Vesults will be assumed. You have to check yourself. $r \cdot y \cdot s \cdot f \neq 0$ $\leq \sqrt{f + 0} (n \log v - \frac{n}{2} \log (-4 rs))$	2		

The conversion of the law sets of the Fundamental Solution of the Laplace Squ.

$$\left(\begin{array}{c} \frac{1}{2}(x\cdot y) = c = y \quad \partial B(x\cdot y) \right).$$
This suggests; the law parts of the Fundamental Solution $\frac{1}{2}(x\cdot y, t-s)$ may be used
in cone of their equation.
Origin: For fixed $x \in \mathbb{R}^n$ $0 \notin 70, v \neq y$ we define
 $E(x_i t; y) = \int (\frac{1}{2}(y_i s) \in \mathbb{R}^{n+1}] \left(\begin{array}{c} \underline{s \leq t} \\ \underline{s \leq t} \\ \underline{s \leq t} \end{array} \right) \frac{1}{2}(x_i y, \underline{t \cdot s}) \frac{1}{2}(y_i s) = \frac{1}{2}(x_i y, \underline{t \cdot s}) \frac{1}{2}($

< + +

(Refer Slide Time: 33:30)

So, now that we have some idea of what the heat ball is, I mean, in this case, in our specific case what the set is. Let us write down the heat equation, so mean value property for heat equation, mean value theorem for heat equation.

(Refer Slide Time: 42:55)

$$(+ \circ)$$

$$(+ \circ$$

🛡 🖗 🖓 🖓 🖉 🖉 🖉

< + ১

Mean Value Thranem for Heat Equation:
Let
$$u \in C_1^2(Mr)$$
 solver the field equation. Then,
 $u(x_1t) = \frac{1}{(4\gamma^n)} \int u(4\gamma s) \frac{|x - \gamma|^2}{(t - s)^2} dy ds$
for all $\varepsilon(x_1 t; \gamma) \subset J(T)$.
Proof or behine, $\varphi(t) := \frac{1}{T^n} \int U(5\tau c) \frac{|x - s|^2}{(t - c)^2} ds dc$
 $(s_1 \tau) \in \varepsilon(s_3 t; \gamma)$
 \vdots , $q(u) \ge \frac{1}{T^n} \int u(x + s_3, t + \tau) \frac{|s_1|^2}{z^2} ds dZ$
 \vdots , $q(u) \ge \frac{1}{T^n} \int \int u(x + s_3, t + \tau) \frac{|s_1|^2}{z^2} ds dZ$
 $= \int \int u(x + vs_3, t + v^2 c) \cdot \frac{|s_1|^2}{z^2} ds dZ$ (Change of Ualiable)
 $= \int \int u(x + vs_3, t + v^2 c) \cdot \frac{|s_1|^2}{z^2} ds dZ$

🛡 🖓 🖓 T 🗆 ⊗

ି < 🖸 /

$$\frac{1}{\left[\operatorname{un}(+3)\right]} \operatorname{n_{\Sigma}} e^{-\frac{|\mathbf{x} \cdot \mathbf{y}|^{2}}{\mathbf{v}(+3)}} \operatorname{p_{1}r^{n}}^{n}$$

$$= \operatorname{rn} \left\{ \operatorname{un}(+3)\right]^{-\frac{n}{2}} \left(\begin{array}{c} \cdot \cdot e^{-\frac{|\mathbf{x} \cdot \mathbf{y}|^{2}}{\mathbf{v}(+3)}} \leq 1 \right)$$

$$= \operatorname{lowe} \operatorname{vesulhs} \operatorname{arell} \operatorname{bc} \operatorname{assumul}.$$

$$\operatorname{Some} \operatorname{you} \operatorname{hare} \operatorname{to} \operatorname{chech} \operatorname{yousself}.$$

$$= \operatorname{ln} \operatorname{to} \left(\operatorname{s} \right)^{-\frac{n}{2}} \left[\operatorname{s} \right]^{-\frac{n}{2}} \left(\left(\operatorname{s} \right)^{-\frac{n}{2}} \left[\operatorname{s} \right]^{-\frac{n}{2}} \left[\operatorname{un}(+3) \right]^{\frac{n}{2}} \right]^{-\frac{n}{2}}$$

$$= \operatorname{n} \operatorname{log}(r) - \frac{n}{2} \operatorname{log} \left[\operatorname{len}(+3) \right]^{-\frac{n}{2}} \left[\operatorname{len}(+3) \right]$$

♥ 0 T 0 ⊗

< +

(Refer Slide Time: 52:29)

$$(x + s)$$

$$(y +$$

♥ ₽ ₽ ₽ ⊗

$$\begin{aligned} \text{Differentiating}_{P} &= \iint \left[\nabla u \left(x + v_{3}^{2}, t + v^{2} z \right) \cdot \overline{3} \right]_{T}^{S_{1}} + u_{4} \left(x + v_{3}^{2}, t + v^{2} z \right) \cdot \frac{15}{z}^{12} \cdot 2v \right] ds dz \quad (\text{ Chain } Rule) \\ &= \int _{rn}^{t} \int \nabla u \left(x + \overline{3}, t + z \right) \cdot \overline{3} \cdot \frac{151^{2}}{z^{2}} + \frac{2}{\sqrt{n+1}} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z} = A \star B \\ &= (\overline{3}, \overline{z}) \in E(0, \overline{0}; v) \end{aligned}$$

$$\begin{aligned} \text{Focusing on } B_{1} \\ &= \int _{rnv1}^{2} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{4}{\sqrt{n+1}} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \nabla \psi \left(\overline{3}, \overline{z} \right) \cdot \overline{3} \\ &= \int _{rnv1}^{2} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{4}{\sqrt{n+1}} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \nabla \psi \left(\overline{3}, \overline{z} \right) \cdot \overline{3} \\ &= \int _{rnv1}^{2} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{4}{\sqrt{n+1}} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \nabla \psi \left(\overline{3}, \overline{z} \right) \cdot \overline{3} \\ &= \int _{rnv1}^{2} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{4}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \nabla \psi \left(\overline{3}, \overline{z} \right) \cdot \overline{3} \\ &= \int _{rnv1}^{2} \int u_{4} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{4}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \nabla \psi \left(\overline{3}, \overline{z} \right) \cdot \overline{3} \\ &= \int _{rnv1}^{2} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{4}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \overline{3} \\ &= \int _{rnv1}^{2} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{4}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \overline{3} \\ &= \int _{rnv1}^{2} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{4}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{151^{2}}{z^{2}} = \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + z \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + \overline{3}, t + \overline{3}, t \right) \cdot \frac{1}{\sqrt{n+1}} \int u_{5} \left(x + \overline{3}, t + \overline{3}, t \right)$$

The cohere
$$\mathfrak{M}(\mathbf{x}, \mathbf{y}) = \mathbf{C} \Rightarrow \mathfrak{M}(\mathbf{x}, \mathbf{y})$$
.
($\mathfrak{F}(\mathbf{x}, \mathbf{y}) = \mathbf{C} \Rightarrow \mathfrak{M}(\mathbf{x}, \mathbf{y})$).
This suggeds; the level pets of the Fundamental Solution $\mathfrak{F}(\mathbf{x}, \mathbf{y}, \mathbf{t}, \mathbf{s})$ may be used
in case of their equation.
 $\mathfrak{Oeln} := \operatorname{For}$ fined $\mathbf{x} \in \mathbb{R}^{n}$ $\mathfrak{O} \neq 70, \mathbf{y} \circ \mathfrak{D}$ we define
 $\mathbb{E}(\mathbf{x}, \mathbf{t}; \mathbf{y}) = \mathfrak{F}(\mathbf{y}, \mathbf{s}) \in \mathbb{R}^{n+1} \left(\underbrace{\mathsf{S} \leq \mathsf{t}}_{\mathsf{and}} \operatorname{and} \mathfrak{P}(\mathbf{x}, \mathbf{y}, \underbrace{\mathsf{t}}, \mathbf{s}) \not\approx \mathsf{fr}^{n} \right)$
This set $\mathbb{E}(\mathbf{x}, \mathbf{t}; \mathbf{y}) := \mathfrak{F}(\mathbf{y}, \mathbf{s}) \in \mathbb{R}^{n+1} \left(\underbrace{\mathsf{S} \leq \mathsf{t}}_{\mathsf{and}} \operatorname{and} \mathfrak{P}(\mathbf{x}, \mathbf{y}, \underbrace{\mathsf{t}}, \mathbf{s}) \not\approx \mathsf{fr}^{n} \right)$
This set $\mathbb{E}(\mathbf{x}, \mathbf{t}; \mathbf{y})$ is called the Heat Ball and is a region in space fine, the boundary
of odivich is a level set of $\mathfrak{F}(\mathbf{x}, \mathbf{y}, \mathbf{t}, \mathbf{s}) \cdot \mathsf{e} \circ \mathsf{q}$ $\mathfrak{OE}(\mathbf{x}, \mathbf{t}; \mathbf{y}) = \{\mathfrak{F}(\mathbf{x}, \mathbf{y}, \mathbf{t}, \mathbf{s}) = c\}$
Note that $\mathfrak{P}(\mathbf{x}, \mathbf{y}, \mathbf{t}, \mathbf{s}) \not\approx \mathsf{t}^{-n}$ is equivalent to saying
 $\mathbb{E}(\mathbf{x}, \mathbf{t}; \mathbf{y}) = \mathfrak{f}(\mathbf{y}, \mathbf{s}) \in \mathbb{R}^{n} \cdot \mathbb{R} : \mathfrak{t} - \mathfrak{t}^{n}_{\mathsf{A}} \mathbf{f} \leq \mathfrak{s} \leq \mathfrak{t} \text{ and } (\mathbf{p}(\mathbf{y}, \mathbf{x}, \mathbf{s}, \mathbf{t}) \neq 0^{\circ}_{\mathsf{J}}$
 $\mathfrak{blux} \quad \mathfrak{P}(\mathbf{y}, \mathbf{s}) = n \ln n \vee + \frac{|\mathbf{y}|^{2}}{4s} - \frac{n}{2} \ln(-(4\pi \mathbf{s})); \mathbf{s} \leq \mathbf{0}$,

< + *

(Refer Slide Time: 65:06)

$$(\zeta + 5)$$

$$= -\int_{T} \left(-\frac{n}{a_{Y}} - \frac{15n^{2}}{4t^{2}} \right) \nabla u(kt s_{1}tttt) \cdot s \quad (Lnut)$$

$$(\overline{s}, c) \in E(o, 0; 1)$$
Recurranging all file expressions,

$$\varphi'(r) = -\frac{Un}{r^{n+1}} \int_{T} \Psi(\overline{s}, \tau) \, U_{E}(x + \overline{s}, t + \tau) - \frac{3n}{r^{n+1}} \int_{T} \nabla u(\underline{k} + \overline{s}, t + \tau) \cdot s \\ (Cnut) = \frac{1}{r^{n+1}} \int_{T} \Psi(\overline{s}, \tau) \cdot \nabla u(x + \overline{s}, t + \tau) - \frac{3n}{r^{n+1}} \int_{T} \nabla u(\underline{k} + \overline{s}, t + \tau) \cdot s \\ (Cnut) = \frac{1}{r^{n+1}} \int_{T} \Psi(\overline{s}, \tau) \cdot \nabla u(x + \overline{s}, t + \tau) - \frac{3n}{r^{n+1}} \int_{T} \nabla u(\underline{k} + \overline{s}, t + \tau) \cdot s \\ (Lemma \, du + \overline{s} \, Fully)$$

$$- \cdot \varphi(r) = \lim_{r \to 0} \int_{E(0, 0; 1)} U(\underline{k} + r_{S_{1}} t + r^{n}\tau) \int_{T} \frac{15n^{2}}{T} = U(\underline{k}, t) \int_{T} \frac{15n^{2}}{T^{2}} d\xi \, d\zeta = 4r^{n} \cdot u(\underline{k}, t)$$

This integral I am not calculating this integral, but I mean this goes way back to 1961 or something, there is a paper by Fulks where he has proved this property. This is not a very easy thing to prove. So, I am going to assume this. So, with this, we are going to end this lecture. So, we have proved what we wanted. Thank you very much.