Advanced Partial Differential Equations Professor Doctor Kaushik Bal Department of Mathematics and Statistics, Indian Institute of Technology Kanpur Lecture 21 Heat Equation: Inhomogeneous Problem

(Refer Slide Time: 00:13)

<		∽	ଚ	<	٥	P
	u Aim	homogeneous problem for hut Equation: $\begin{array}{c} -\Delta u = f \text{ in } \mathbb{R}^{n} x(0 \underline{n}), \\ u = 0 \text{on } \mathbb{R}^{n} x(\underline{r} \pm 0), \\ 1 = 0 \text{on } \mathbb{R}^{n} x(\underline{r} \pm 0), 1 = 0 \text{on } \mathbb{R}^{n} x(\underline{r} \pm 0), 1 = 0 o$	r n is unlen	pour v		[

So, in today's video, what we are going to do is look at nonhomogeneous problems for heat equation.

(Refer Slide Time: 10:16)

C + 1
Duhama's Principle says,

$$u(x,t) = \int_{0}^{t} u(x_{1},t;s) ds' (x \in \mathbb{R}^{n}, t \neq 0)$$

Show d^{0}
Rewriteng, $u(x_{1},t) = \int_{0}^{t} \int_{0}^{t} \Phi(x,y_{1},t,s) f(x_{1},t) dy ds.$
 $= \int_{0}^{t} [\frac{1}{(4\pi(t+2))^{2}} \int_{\mathbb{R}^{n}}^{t} e^{-\frac{t \times 2t}{2}} f(x,t) dy ds.$
for $x \in \mathbb{R}^{n} \propto t \neq 0$
Atu:: Confirm that (9) actually cdues (0).
Assumption:: $4 \in C_{1}^{2}(\mathbb{R}^{n} \times t_{0}, \infty)$ with compact pupport.
 $e_{5} = \int_{0}^{t} f(x_{1}, t_{0}, t_{0})$ is compact

V V V T 🗆 😣

0 < 0 0

Non homogeneous problem for heat Equation:

$$u_t - \Delta u_s = f_i \text{ in } \mathbb{R}^n x(0,0), \quad i = 0$$
 (since f_i is undersource
 $u = 0$ (on $\mathbb{R}^n x \{t:=0\}$) - ()
 $u = 0$ ($x + t_i = 0$) $(x - y_i, t_i - 3)$ is a solution $u_{u=0}$ for $y \in \mathbb{R}^n \propto 0$ ($x + t_i = 0$) is a solution of the $u = 0$ for $y \in \mathbb{R}^n \propto 0$ ($x + t_i = 0$) is the Fundamental solution of heat operator.
 $u_{t_i} = F_{or} = f_{i_k} ed c_i$ $u = u(x_i, t_i, s_i) = \int \frac{1}{2} f(x \cdot y_i, t_i, s_i) f(y_i, s_i) dy$
Solver $u_{t_i}(\cdot, s_i) - \Delta u(\cdot, i_i) = 0$ in $\mathbb{R}^n x(s, d_i)$
 $u(\cdot, s_i) = f(\cdot, s_i)$ on $\mathbb{R}^n x(s, d_i)$

< + *

(Refer Slide Time: 16:34)

$$(t + t) \qquad (t + t) \qquad (t + t) = 0 \qquad (t + t) \qquad (t + t) = 0 \qquad (t + t) \qquad (t + t) = 0 \qquad (t + t) \qquad (t + t) = 0 \qquad (t + t$$

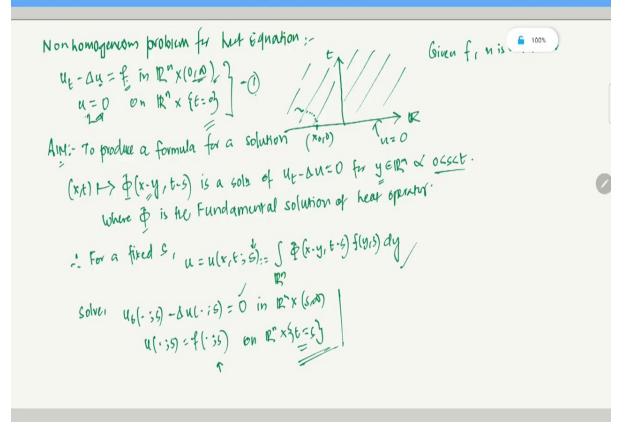
< + ٢

🌻 🗣 🖓 T 🗔 ⊗

0 < 0 v

Duhamu's Principle says, $u(x_{1},t) = \int U(x_{1}t;s) ds' (x \in \mathbb{R}^{n}, t \neq 0)$ $\int dy ds' = \int U(x_{1}t;s) ds' (x \in \mathbb{R}^{n}, t \neq 0)$ $\int dy ds' = \int dy f(x,y_{1}t;s) f(y_{1}s) dy ds' = \int dy f(x,y_{1}t;s) f(y_{1}s) dy ds' = \int dy f(y_{1}t) dy ds' =$ < + ٢

• • • T O 😣



So, let me write down the theorem first, so the theorem. So, this is the existence theorem.

(Refer Slide Time: 26:29)

(i) Let
$$u$$
 be given by (i). Then
(i) $u \in C_1^2([\mathbb{R}^n \times (o_1 \otimes i)))$
(i) $u \in C_1^2([\mathbb{R}^n \times (o_1 \otimes i)))$
(ii) $u \in (x_1(t) - \Delta u(x_1(t)) = \Psi(x_1(t)))$
(iii) $u(x_1(t)) = O$
($x_1(t) + O(x_0)$)
 $x \in \mathbb{R}^n, 670$
 $y \in \mathbb{C}_1^2$ with cept sph: and $\frac{1}{2}$ is smooth near $s = b = 70$,
 $u \in (x_1(t)) = \int_0^t \int_{\mathbb{R}^n} \frac{1}{2}(u_1(s)) \oint_L(x-u_1(t-s)) dy ds + \int_0^t \Phi(u_1(t)) \int_U(x-u_1(0)) dy$.
 $u_L(x_1(t)) = \int_0^t \int_{\mathbb{R}^n} \frac{1}{2}(u_1(s)) \oint_L(x-u_1(t-s)) dy ds + \int_0^\infty \Phi(u_1(x-u_1(0))) dy$.
(Diff under the sign of integration)
(Diff under the sign of integration)

(Refer Slide Time: 37:40)

$$(\zeta + 1) = \left[\int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \left[-\frac{\vartheta}{3s} \cdot \Delta y\right] f(x \cdot y, t \cdot y) \cdot \Phi(y, s) dy ds \cdot \right]$$

$$= \left[\left\|I_{t}\|_{0}^{\varepsilon} + \|\mathcal{D}^{t}\|_{0}^{\varepsilon}\right] \left[\int_{0}^{\varepsilon} \Phi(y, t) dy ds \cdot \right]$$

$$= \left[\left\|I_{t}\|_{0}^{\varepsilon} + \|\mathcal{D}^{t}\|_{0}^{\varepsilon}\right] \left[\int_{0}^{\varepsilon} \Phi(y, t) dy ds \cdot \right]$$

$$= \left[\int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \left[\frac{\vartheta}{2s} \cdot \Delta y\right] \Phi(y, s) \int_{0}^{\varepsilon} f(x \cdot y, t \cdot s) dy ds \cdot \right]$$

$$= \left[\int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \left[\int_{0}^{\varepsilon} \left[-\frac{\vartheta}{3s} \cdot \Delta y\right] \Phi(y, s) \int_{0}^{\varepsilon} f(x \cdot y, t \cdot s) dy ds \cdot \right]$$

$$= \left[\int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \left[\int_{0}^{\varepsilon} \left[-\frac{\vartheta}{3s} \cdot \Delta y\right] \Phi(y, s) \int_{0}^{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \Phi(y, s) f(x \cdot y, t \cdot s) dy ds - \int_{0}^{\varepsilon} \frac{\Psi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds - \int_{0}^{\varepsilon} \frac{\Psi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f(x \cdot y, t \cdot s) dy ds + \int_{0}^{\varepsilon} \frac{\Phi(y, t)}{\varepsilon} f($$

🛡 🖓 🖓 T 🖂 ⊗

ି < 🖸 🗸

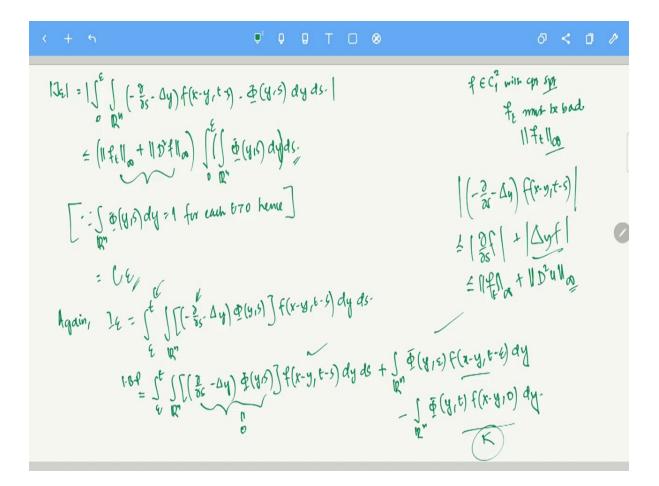
$$\begin{aligned} & \text{Also}, \quad \frac{\partial^{V} u}{\partial x_{c} \partial y_{j}} (x_{c}t) = \int_{0}^{t} \int_{\mathbb{R}^{d}} \frac{\Phi}{\Psi}(\Psi_{c}s) \quad \frac{\partial^{V} f}{\partial x_{c} \partial y_{j}} (x_{c}y_{c}t-s) \, dy \, ds \quad (i_{j}) = 4_{12, \dots, p}) \quad (P|c_{ML} \quad v_{M}ify \quad H_{MN}) \\ & \vdots \quad U_{H} \quad U_{X(X)} \quad \text{are continuous}, \quad i_{L} \quad \mathbb{R}^{3} \times (0, \infty) \\ & \vdots \quad U_{L} \quad U_{L} \quad U_{L} \\ & U_{L} \quad U_{L} \\ & U_{L} (x_{c}t) - \Delta_{X} \quad U(x_{c}t) = \int_{0}^{t} \int_{\mathbb{R}^{d}} \Phi(\Psi_{c}s) \left[\left(\frac{\partial}{\partial t} - \Delta_{X} \right) f(x_{c} \cdot \Psi_{c} t-s) \right] \, dy \, ds \right] + \int_{\mathbb{R}^{d}} \Phi(\Psi_{c}t) f(x_{c} \cdot \Psi_{c} t) \int_{0}^{t} \Phi(\Psi_{c}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{Y} \right) f(x_{c} \cdot \Psi_{c} t-s) \right] \, dy \, ds \quad (P|c_{ML} \quad U_{M}it) \\ & \text{is understood} \\ & \text{is understood} \\ & \text{is once (autual observed)} \\ & \text{is once (autual observed)} \\ & \text{dre intensional} \\ & \text{dre intensional} \\ & \text{dre intensional} \\ & \text{is } \quad 1_{L} + J_{L} + K. \end{aligned}$$

< + *

(Refer Slide Time: 48:37)

$$(x + 5)$$

$$(y +$$



🛡 🖓 🖓 T 🗔 ⊗

$$\begin{aligned} a_{150}, \frac{\partial^{5}u}{\partial x_{0}\partial x_{0}}(x,t) &= \int_{0}^{t} \int_{\mathbb{R}^{N}} \frac{\Phi}{\Psi}(\Psi_{1}s) \frac{\partial^{5}f}{\partial x_{0}\partial x_{0}}(x-\psi_{1},t-s) d\psi ds \quad (i_{0}) = 4/2, \dots, n) \quad (P) \text{ cove vovify } 4h\infty) \\ &\therefore u_{1}^{c} u_{x(x)} \quad \text{are continuous} \quad i_{1} \quad \mathbb{R}^{2} \times (0,\infty) \\ & \vdots \quad \psi \in C_{1}^{2}(\mathbb{R}^{n} \times (0,n)) \\ &(i_{1}) \quad u_{1}(x,t) = -\Delta_{x} u(x,t) = \int_{0}^{t} \int_{\mathbb{R}^{n}} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(\frac{\partial}{\partial t} - \Delta_{x} \right) \frac{P(x-\psi_{1},t-s)}{\Phi(x-\psi_{1},t-s)} d\psi ds \right] + \int_{\mathbb{R}^{n}} \frac{\Phi}{\Psi}(\Psi_{1}s) \frac{P(x-\psi_{1},t-s)}{\Phi(y,s)} d\psi ds \quad (P) \text{ cove there this} \\ &= \int_{0}^{t} \int_{\mathbb{R}^{n}} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \quad (P) \text{ cove there this} \\ &= \int_{0}^{t} \int_{\mathbb{R}^{n}} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &= \int_{0}^{t} \int_{\mathbb{R}^{n}} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(x-\psi_{1},t-s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(X_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(X_{1}s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(X_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(X_{1}s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(\Psi_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(X_{1}s) \right] d\psi ds \\ &+ \int_{0}^{t} \frac{\Phi}{\Psi}(X_{1}s) \left[\left(-\frac{\partial}{\partial s} - \Delta_{y} \right) \frac{1}{\Psi}(X_{1}s) \left[\left(-\frac{\partial$$

< + 5

(Refer Slide Time: 58:23)

So, this is how you solve the inhomogeneous heat equation. So, in next lecture, next week, what we are going to do is we are going to end up heat equation part with looking at the maximal principle, regularity of solution and of course how do you prove maximal principle and regularity this is proved using a mean value theorem, just as Laplacian. But the thing is this, for the heat thing or mean value theorem, maximal principle and regularity are quite complicated as opposed to that Laplacian. So, we will do that in next week video. Thank you.