Advanced Partial Differential Equations Professor Doctor Kaushik Bal Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture 20 Heat Equation: Homogeneous Problem

(Refer Slide Time: 00:13)

\leftarrow	0	0	0	0	0	0	0																																																																										
0	0	0	0	0	0	0																																																																											
0	0	0	0	0	0	0	0																																																																										
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

(Refer Slide Time: 08:53)

$$
8 + 5
$$
\n
$$
8 + 5
$$
\n
$$
1000f': U[1] = (5010 - 4)U = 20
$$
\n
$$
1000f': U[1] = (5010 - 4)U = 20
$$
\n
$$
1000f': U[1] = (5010 - 4)U = 20
$$
\n
$$
1000f': U[1] = (5010 - 4)U = 20
$$
\n
$$
1000f': U[1] = 200f(2)U
$$

(Refer Slide Time: 17:18)

$$
u = 9 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times (0, \infty)
$$
\n
$$
u = 8 \text{ or } R^{n} \times
$$

(Refer Slide Time: 23:17)

$$
\begin{array}{lll}\n\left(x + 5\right) & 0 & 0 & \pi & 0 & 0 & \pi \\
\left(x + 5\right) & \left(2\pi i\right) & 5\pi i & 0 & 0 & \pi \\
\left(x + 1\right) & \left(2\pi i\right) & 5\pi i & 0 & 0 & \pi \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 5\pi i & 0 & 0 & 0\n\end{array}
$$
\n
$$
\begin{array}{lll}\n\left(x + 1\right) & \left(2\pi i\right) & 5\pi i & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\end{array}
$$
\n
$$
\begin{array}{lll}\n\left(x + 1\right) & \left(2\pi i\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\left(x + 1\right) & \left(2\pi i\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\end{array}
$$
\n
$$
\begin{array}{lll}\n\left(x + 1\right) & \left(2\pi i\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\left(x + 1\right) & \left(2\pi i\right) & 0 & 0 & 0 \\
\vdots & \left(x + 1\right) & \left
$$

(Refer Slide Time: 31:32)

$$
R(x,t) = \frac{1}{t^{n}h} e^{-\frac{x^{2}}{4t}} \text{ is } C^{\infty}(\mathbb{R}^{n} \times [S_{1}^{\infty}) \text{ for each } S>0
$$
\n
$$
= \frac{1}{t^{n}h} \left(\frac{1}{2} \pi h \right) e^{-\frac{x^{2}}{4t}} \text{ is } C^{\infty}(\mathbb{R}^{n} \times [S_{1}^{\infty}) \text{ for each } S>0
$$
\n
$$
= \frac{1}{t^{n}h} \left(\frac{1}{2} \pi h \right) e^{-\frac{x^{2}}{4t}} \text{ is } C^{\infty}(\mathbb{R}^{n} \times [S_{1}^{\infty}) \text{ for each } S>0
$$
\n
$$
= \frac{1}{t^{n}h} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \frac{x^{2}}{4t}} \frac{1}{2} \left(\frac{1}{2} \pi h \right) d\mu \text{ is } C^{\infty}(\mathbb{R}^{n} \times [S_{1}^{\infty}) \text{ for each } S>0
$$
\n
$$
= \frac{1}{t^{n}h} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \frac{x^{2}}{4t}} \frac{1}{2} \left(\frac{1}{2} \pi h \right) d\mu \text{ is } C^{\infty}(\mathbb{R}^{n} \times [S_{1}^{\infty}) \text{ for each } S>0
$$
\n
$$
= \frac{1}{t^{n}h} \int_{\mathbb{R}^{n}} \left(\frac{1}{2} \pi h \right) d\mu \text{ is } C^{\infty}(\mathbb{R}^{n} \times [S_{1}^{\infty}) \text{ for each } S>0
$$
\n
$$
= \frac{1}{t^{n}h} \int_{\mathbb{R}^{n}} \left(\frac{1}{2} \pi h \right) d\mu \text{ is } C^{\infty}(\mathbb{R}^{n} \times [S_{1}^{\infty}) \text{ for each } S>0
$$
\n
$$
= 0 \cdot \left(\frac{x \in \mathbb{R}^{n} \times [S_{1}^{\infty} \times [S_{1}^{\infty} \times [S_{1}^{\infty} \times [S_{1}^{\infty}
$$

(Refer Slide Time: 40:21)

$$
\frac{1}{\alpha\beta} \lim_{(x,\mu)\in\{x_{1},\mu\}} u(x,\mu) = g_{\alpha}(x_{0}) \quad \text{for } x_{0} \in \mathbb{R}^{n}
$$
\n
$$
\text{Hence } \frac{1}{\beta} \left[x \cdot x_{0} \in \mathbb{R}^{n} \text{ and } (x_{0},\mu) \in \mathbb{R}^{n} \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right] \leq \frac{1}{\beta} \left[\frac{1}{\beta} \left(x \cdot y \cdot \mu \right) \right]
$$

(Refer Slide Time: 45:17)

(Refer Slide Time: 50:11)

$$
c + 5
$$
\n
$$
= \frac{C}{t^{up}p} \int e^{-\frac{[\mathbf{x} \cdot y_{\mathbf{e}}]^2}{4\mathbf{r} \cdot \mathbf{x}}} dy = \frac{C}{t^{up}p} \int e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} d\mathbf{y} = \frac{C}{t^{up}p} \int e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} \int e^{-\frac{[\mathbf{r} \cdot y_{\mathbf{e}}]^2}{2\mathbf{r} \cdot \mathbf{x}}} d\mathbf{x} = \frac{C}{t^{up}p} \int e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} d\mathbf{x} + \frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}} \int e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} d\mathbf{x} + \frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}} \int e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} d\mathbf{x} = e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} \int e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} d\mathbf{x} = e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} \int e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} d\mathbf{x} = e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} \int e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf{x}}} d\mathbf{x} = e^{-\frac{\mathbf{r}^2}{1\mathbf{r} \cdot \mathbf
$$

Q Q Q T Q Q $\begin{array}{ccccccc}\n\circ & & & \circ & & \circ & & \circ\n\end{array}$ 16 $\left\{ x-x_{0}\right\} \leq\delta_{12}\left\{ x\right\} \leq\left\{ y-x_{0}\right\} \geq\delta$ then $[y-x_0] \leq [y-x] + [x-x_0]$ (continuity of q is
required to estimate I) = $|y-x| + \delta /2$ = $|y-x|$ + $\frac{b}{2}$
 $\le |y-x|$ + $\frac{1}{2} |y-x_0|$ (Bdd of q is required

to estimate J) \therefore $|y-x| \geq \frac{1}{2} |y-x_{0}|$ $|y-x| \ge \frac{1}{2} |y-x|$
 $J = \int \frac{\Phi(x-y, \epsilon) |q(y) - q(x\epsilon)| dy}{\Phi(x, \epsilon)}$ = $2 ||g||_{\mu}(x, \epsilon)$ = $\frac{\Phi(x,y, \epsilon)}{\Phi(x, \epsilon)}$ $D^{M}1B|0,6)$ \leq $\frac{c}{\epsilon^{m}h}$ $\int_{\mathbb{R}^{n}} \frac{e^{-\frac{(x-y)^{2}}{4t}}}{14} dy$
 \leq $\frac{c}{\epsilon^{n}h}$ $\int_{\mathbb{R}^{n}} \frac{e^{-\frac{(x-y)^{2}}{4t}}}{14} dy$

$\begin{array}{ccccccccccccccccc} \mathbb{Q}^1 & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{T} & \mathbb{Q} & \mathbf{0} \end{array}$

$$
\sigma \prec \sigma \not \sim
$$

$$
\begin{array}{lll}\n\mathcal{L}_{(kn+1)(k_{0},0)} & u(x,t) = \mathcal{L}_{(k_{0})} & f_{\text{IV}} \times_{\text{e}} \in \mathbb{R}^{n} \\
\text{First, } k_{0} \in \mathbb{R}^{n} \text{ for } k \in \mathbb{Z}^{0} \\
& \text{if } k_{0} \in \mathbb{R}^{n} \text{ for } k \in \mathbb{Z}^{0} \\
& \text{if } k_{0} \in \mathbb{R}^{n} \text{ for } k \in \mathbb{Z}^{0}.\n\end{array}
$$
\n
$$
\begin{array}{lll}\n\text{Hence } \left\{ f_{k} \times \mathbb{R} \right\} < \mathcal{L}_{k} \\
\text{If } |u(x,t) - \theta(x_{0})| = \int_{\mathbb{R}^{n}} \Phi(x-y,t) \, | \, q(y) - q(x_{0}) | \, dy \, | \\
& \text{if } |u(x,t) - \theta(x_{0})| < \int_{\mathbb{R}^{n}} \Phi(x-y,t) \, | \, q(y) - q(x_{0}) | \, dy \, | \\
& \text{if } |x - \theta(x_{0})| < \int_{\mathbb{R}^{n}} \Phi(x,y,t) \, | \, q(y) - q(x_{0}) | \, dy \, | \\
& \text{if } |x - \theta(x_{0})| < \int_{\mathbb{R}^{n}} \Phi(x,y,t) \, | \, q(y) - q(x_{0}) | \, dy \, | \\
& \text{if } |x - \theta(x_{0})| < \int_{\mathbb{R}^{n}} \Phi(x,y,t) \, | \, q(y) - q(x_{0}) | \, dy \, | \\
& \text{if } |x - \theta(x_{0})| < \int_{\mathbb{R}^{n}} \Phi(x,y,t) \, | \, q(y) - q(x_{0}) | \, dy \, | \\
& \text{if } |x - \theta(x_{0})| < \int_{\mathbb{R}^{n}} \Phi(x,y,t) \, | \, q(y) - q(x_{0}) | \, dy \, | \\
& \text{if } |x - \theta(x_{0})| < \int_{\mathbb{R}^{n}} \Phi(x,y,t) \, | \, q(y) - q(x_{0}) | \, dy \, | \\
& \text{if } |x - \theta(x_{0})| < \int_{\mathbb
$$

(Refer Slide Time: 57:47)

 $Q^* Q Q T Q Q Q$ We interpret this by saying
It the heat equation forces infinite propagation speed for disturbances"
e.g If the Initial temperature is non-negative it is positive somewhere. Then
Ite temperature at any later lime is positi

 0 0 0 1 0 \otimes

 $\begin{array}{ccccccc}\n\circ & & & \circ & & \circ & & \circ\n\end{array}$

$$
=\frac{C}{f^{m}h}\int_{\theta(x,s)}e^{-\frac{|x-y_{o}|^2}{4rx}} dy = \frac{C}{f^{m}h}\int_{\theta(x,s)}e^{-\frac{r^{2}}{h}h}tr^{\eta-1}dv \quad (intgrabim \phi) radio(fundim)
$$
\n
$$
\Rightarrow 0 \text{ as } t \to 0^{+} \quad \text{(Int grablin \phi) } \int_{\theta(x,s)}e^{-\frac{r^{2}}{h}h}tr^{\eta-1}dv
$$
\n
$$
\therefore [\frac{1}{h} [x-x_{0}] < \frac{1}{2} \quad \text{and} \quad \frac{1}{2} \quad \text{and
$$

So, please remember that heat equation, this is called the speed of propagation. How does the disturbances spread over time? Disturbances means, initially there is a disturbance. We want to see how this disturbance distributes itself and that is actually the truth. If it is non-negative, then the temperature is positive everywhere, so basically infinite speed of propagation. This is what we call it as a infinite speed of propagation.

What does that mean? It means that it does not die out. Is it fine? It does not die out. So, once it is positive at one point initially it will remain positive everywhere for all later time. So, it does not die. So, that is what infinite speed of propagation does. So, with this we are going to end this lecture.