
Computational Number Theory and Algebra 

Prof. Nitin Saxena 

Department of Computer Science and Engineering 

Indian Institute of Technology - Kanpur 

 

Lecture – 09 

Polynomial Factoring Over Finite Fields – Irreducibility Testing 

 

(Refer Slide Time: 00:16) 

 

Okay, so we started factorization of polynomials, univariate polynomials over a field, right 

because that polynomial ring is a unique factorization domain.  
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W saw some simple examples manifesting that roots are very closely related to field. So, as 

you change the field, the roots and the factorization pattern changes. In fact, there may not be 



any factors if you change the field. Over complex, it is the other extreme, every polynomial 

actually factors nontrivially all the way up to degree 1, such fields are called algebraically 

closed, but now we will actually come down to something very different a place where there 

is no geometry which is finite field. 
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So, this is the example which computer science cares the most about, almost all the practical 

applications are actually based on finite fields. So, be it combinatorial constructions or error 

correcting codes and so on. So, we will see some examples of those applications once we are 

done with some basic polynomial factorization. So, yeah later we will see factorization over 

Q.  

 

So, this order we will follow because believe it or not factorization over Q or over integers 

will actually need factorization over finite fields. Okay so once you know these methods, then 

we will use these roots or these factors to actually get integral factors, so that has to be done 

in this order. So, finite fields you must have seen enough properties and prove some of them 

in this first assignment.  

 

Finite fields are, so these are discrete objects useful in combinatorics and computer science 

and the construction of this as you have seen is basically based on a prime, right. So, you start 

with a prime characteristic p. So, you are also allowed to take p = 2, so that will be a field 

with only 2 elements right, 0, 1 and you can add them and you can multiply them and 

arithmetic is more too.  

 



So in general, you have shown that Z modulo p which we will denote, actually let us not use 

this, we will denote it by quotienting. So, Z mod p ideal is a well first of all it is a ring 

arithmetic and then it is actually a field. So, how do you show that every element is invertible 

in this except 0 of course. Right, so this is based on just gcd. So, for nonzero element a, you 

take the gcd of ANP to be 1, so you have ua + vf = 1 which means that u is inverse of a.  

 

So, that is a simple proof, More interesting things happen when you want to field of size p 

square. So, this is a field of size p, what is a field of size p square that you have constructed in 

the first assignment. So, that is done by picking irreducible polynomials, so in this case of 

degree 2 be an irreducible polynomial of degree let us say n with FP coefficients, so, it is in 

the polynomial ring Fp x. So, this will be key to pick an irreducible polynomial.  

 

Then, now when you do arithmetic mod this polynomial it will be a field and it will be a 

bigger field. So, Fp x mod f, this is a field because every element here is invertible again by 

Bezout identity. Because f is irreducible, so it behaves the same as you saw in the proof of the 

above statement f is kind of a prime. So, any polynomial a will again be the gcd with f will be 

1 or a itself is 0 in this ring in this arithmetic.  

 

So, for a non-zero a, f gcd is 1, so, you get ua + vf = 1, so every element has an inverse. So, 

this is a field and this field is called we will write it as Fp to the n. It is also written as in the 

literature Galois field, so GF of size p raised to n okay, but usually we write F sub p raised to 

n, so either of these definitions. “Professor - Student conversation starts.” But if r is a ring 

then will rf smaller than f for an irreducible f possibly a field or a ring.  

 

No, you if you talk about general rings, then behavior will depend on r. I mean if you start 

with an r which has 0 divisors, then the 0 divisors will remain no matter what you do. So, it 

cannot be a field. So, you have to start with a field to have any hope of getting a field 

extension. “Professor – Student conversation ends.” So, this in fact in the assignment you 

must have shown that this is unique up to field isomorphism, right.  

 

So, this is actually the field. So, this is the field of size p raised to n. There is only one field of 

this size, okay. So, for every prime power, there is a unique field and vice versa. So, every 

finite field is of size prime power okay. So, this is a nice characterization that you have 

shown and so we will usually denote prime powers by q, and so yeah in this property, I also 



want to embed something about the bit size. 

 

So, how many bits will a single element require when you want to represent it practically? n 

log p, yeah, so or if in terms of q it is log q. So, the representation requires log q many bits, so 

that needs to be remembered okay. So, finite fields of size q one element will not need one 

bit, it will actually mean log q many bits. Also what is the structure of Fp to the n over Fp? It 

is a vector space, it is a field extension. 

 

Hence it is also a vector space and how many basis elements are there, n basis elements are 

there, right. So that is another way to represent an element in this field, you can be given n 

numbers, right. So these n numbers, each number should be thought of as an element in Fp, 

so it is a number between, yeah so hence this number will have magnitude 0 to p–1 and 

bitesize log p and there are n of those.  

 

So, it is n log p, which is also the same as log q, like so this actually is a standard 

representation. You think of an element as n numbers and when n is 1, it is only one number 

which is clear because it is an integer between 0 to p–1, when n = 2 then you are talking 

about 2 numbers, right. So, that is how we will, whenever we say a field is given or we are 

working over a field that is the representation okay.  

 

Without exception this is the underlying representation we will talk about and we will assume 

and then the time complexity will be in terms of this representation, so it is completely 

explicit discussion, this is not abstract, okay.  
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So, for example, if you look at x square + x +1 interpreted in F2 x, then is this polynomial 

irreducible or irreducible? “Professor – Student conversation starts.” Irreducible. How do 

you prove it? It could have a root, but both 0 and 1 only. Exactly, so there are only two roots 

possible and both of them will give you 1. “Professor – Student conversation ends.” So, 

this is an irreducible polynomial. So, that gives you a simple quadratic extension over F2.  

 

So, GF 4 is you can think of it as just F2 x mod, this is the field GF4 and it has very few 

elements, right. So, it has 0 and 1 from F2, what else? It has x and it has 1 + x, right. So, 

these are the only elements in this field. Any polynomial in x will map to one of these four, 

right. So, x square maps to what, x square in this ring is equal to what? It is equal to x + 1 and 

x + x square + 1 is then equal to and so on.  

 

So, similarly you can think of x cube, all the other higher degree monomials reduced to this. 

So, hence when you multiply elements, when you multiply x with 1 + x, multiplication 

actually requires one polynomial multiplication operation and then also division, right. So, all 

those things are again implicit whenever we will talk about complexity that you have to 

actually do division here.  

 

There was a question in the assignment where you must have done that as well. So, those 

things now we will just assume when we talk about complexity because you have seen 

polynomial multiplication, you have seen integer division and similarly you can also do 

polynomial division, everything you can do in O tilde linear time. So, these are the kinds of 

fields you are given in the input. 



 

And over this there is a polynomial given which you want to factor, right that is the setting 

that would be your input instance. So, maybe I give that example also. So, you are given 

maybe a polynomial FX which is say X square + little x. So, this is a polynomial GF4 with 

this formal variable X. So, you may be given this big F in the input, GF4 is in the input and 

then big X square + small x is a polynomial over the finite field, right.  

 

And then somebody asks you to factorize this which means find the root of this, which is also 

the same as talking about finding a square root of little x, right, well so whether it exists in 

the finite field or not will be a related question or prove that this is irreducible, right. So, the 

question of irreducibility testing, root finding, factorizing for big F is our goal now. How will 

you do this efficiently? Any questions? So, we will now move towards such algorithms okay, 

how is that done?  

 

So, first of all how is irreducibility testing done? Given this polynomial big F how do you 

quickly decide on a computer that it is irreducible? This is a very simple example, this you 

can actually see that it is irreducible because square root of small x is nonexistent, is it? 

“Professor – Student Conversation starts.” X square + 1 is there. Yeah it is actually there. 

So, this will factorize as what? Small x + 1. Yeah, so let us write down. It actually factorizes.  

 

So, this is actually big X square plus what is the factorization, say that again. Big X + small x 

whole square. I somehow think this is false. Small x +1. It splits. It is big X + small x + 1 

whole square. Okay, yeah that is correct. So, this is how it factorizes. “Professor – student 

conversation ends.” Yes, it is actually a good example. It seems to be irreducible, but then 

you can see that small x + 1 is a repeated root of this, right.  

 

So, now imagine this problem if your big F was arbitrary degree d, right. So, in that case 

actually this will be a real problem, just to check whether it is irreducible. Forget about 

finding root or finding factors. So, that will be our first school, maybe we will finish it today 

how do you check irreducibility okay. So, towards that let us now repeat some of the 

properties that you have seen in the homework okay, all those things will be now used.  

 

So, you have seen that this field Fq – 0, so Fq star, we call it Fq star, yeah because it is 

because it is a field this has to be multiplicative group, but there is more structure to this, it is 



a cyclic group. So, this you know is a cyclic group of size q – 1 and this means in particular, 

actually you just needed Abelian group or size q – 1 also. So, what I want to deduce is that 

any element you take from this a, a raised to q-1 is 1, right?  

 

Just because it is an Abelian group of size q – 1 any element if you multiply that many times 

will give you in the end 1 because the multiplicative order of any element first of all it is 

finite and second you can show it will divide q-1. So, if you raise a to q – 1 you will always 

get 1 that is just by the structure of Abelian groups. And if you also include 0, then you have 

to look at a raised to q, which is a, right. So, this is satisfied by all a in the finite field.  

 

So, this is a fundamental identity, it special cases have names. So, this is also called FLT 

Fermat’s little theorem. So, when q is a prime, then any number if you multiply it q many 

times you get the remainder same as a, mod p, for in this case mod q. But when q is p square, 

then this is different. This a is not really a number, it is an element in a bigger field. But this 

continues to hold. So, it is special cases called Fermat's little theorem.  

 

So, Fermat's little theorem has multiple proofs, this is one of them, this is the field based 

proof. Any questions? “Professor – Student conversation starts.” Sir, we are assuming q to 

be prime, then it is, q, yeah, no Fq is a finite field. Whenever we will say q there will be no 

assumption except there is prime power. Yeah, so for finite field you can continue calling this 

FLT. This this is also called Frobenius action actually, that is another name for this. 

“Professor – Student conversation ends.” 

 

So, if you raise any element by the field size that is one of the Frobenius actions, in this case 

it is a trivial action because a raised to q will give you the same thing back which is a, but you 

could have instead raised a to p, so that is actually called the Frobenius automorphism. There 

are multiple names for this okay.  
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So now based on that identity, we will design an irreducibility test for an input polynomial, 

discuss what property we are interested in. So, suppose you are given a polynomial, we 

continue to call it big F okay, you are given this with coefficients in Fq. So univariate 

polynomial. So, you want to test whether this polynomial is irreducible. So, what we intend 

to do is we will, suppose you want to check whether this has a root Fq root, right. 

 

So, I want to take gcd of this with something. So, by looking at the previous equation what 

should you take gcd of this with? So, if big F has a root, then it will satisfy a to the q – a, 

right. So, you should actually then take gcd with x to the q – x, right. So, this F is, okay let 

me make this as before big X. So, F is a polynomial in big X and you compute the gcd of 

these two polynomials.  

 

So, now if the gcd is 1, then it means that big F has no root right because if it had a root a, 

then x – a will divide this and x – a you know also divides the second polynomial. So, x – a 

will definitely divide the gcd. So, this being 1 actually means that big F has no root. Now, 

more interestingly, this test can be extended to cover quadratic factors. So, if big F has no 

root, it may still have a quadratic irreducible factor, right.  

 

So for that, the test you will do is X to the q square – X and then so on. Okay, this is the 

intended algorithm that you keep taking gcd of big F with these Frobenius type polynomials, 

Frobenius inspired polynomials. So, if you take gcd with x to the q – x, you are filtering out 

roots. If you take gcd with x to the q square – x, then you are filtering out quadratic, well both 

roots and quadratic irreducible.  



 

So, this sequence of gcd is we want to compute, so, that is the intention, now why should 

such a thing work is this theorem. So, big F factorizes say degrees d if and only if there is 

some i such that the gcd of big F with X to the q to the i – x and gcd with respect to the 

variable big X both of them are unique variants over the underlying finite field, so you 

compute the gcd and this should not be 1. 

 

So, if big F has a nontrivial factor, then the gcd will not be 1, and if the gcd is not 1, then 

there will be a irreducible factor, in fact just the gcd operation will give you a factor of big F, 

okay, it is a constructive proof. So, we will prove this theorem it has an elementary proof, but 

once you have the proof, how can you use this in an algorithm? How will you compute this 

gcd, in how much time?  

 

“Professor – Student conversation starts.” We will have to log q to the i. Sorry. i log q for 

m, m of i log q for every, i log q, but the degree of this is q to the i. That is if the degree of 

one. So, well take i = 1. So if you are taking gcd with X to the q – X that is a q degree 

polynomial, right. “Professor – Student conversation ends.” So, if you just use Euclid gcd 

directly, then this will give you q in the time complexity, but since your input size was log q 

or d + log q or d times log q, so let me write that down.  

 

The input size in this case is d times log q. So, you want your time complexity to be 

polynomial in d log q. If you spend time q, then it is already exponential right. So, how do 

you compute this gcd faster than q time? Well, you should reduce x to the q mod f, compute 

the remainder. So, there was a question in the assignment that this exponentiation can be 

done by log q repeated squaring.  

 

So, you compute big X square, then big X4, then big X8, 16 and so on. So, this will only take 

log q iterations. So, very quickly you can actually compute the remainder of X to the q mod f 

and then you work with the remainder instead of X to the q because it does not change the 

gcd, like gcd is invariant if you divide one argument with the other, so that is the thing. So, 

this Frobenius polynomial happens to be so nice that this gives you an immediate algorithm 

okay.  

 



So, that is a very lucky break, it may not have been this easy otherwise to compute. 

“Professor – Student conversation starts.” If we directly take i = d-1 in the first step. Yeah. 

It is sufficient. No. Let us first look at the proof of this, why is this thing true, then you should 

answer this question. Sir if you get a quadratic irreducible of F, then in the extension q square 

we will be getting a root of that. Yeah, that is the idea. Yeah.  

 

So, if big F suppose it is itself quadratic irreducible, then its root is available in Fq square in 

Galois field of size q square, so hence the GCD will come out, I mean f big F will actually 

divide the whole thing in that case, gcd cannot be one. “Professor – Student conversation 

ends.” So, yeah, that is the basic idea, so we will just build on that to finish this proof. So, let 

us do the forward direction.  

 

So, we assume big F is irreducible. So, let h dividing f be an irreducible factor of degree d 

prime between 1 and d-1, it is a nontrivial irreducible factor of f. So, now, you look at Fq X 

mod h, so what is this? This is the Galois field right of size exactly. So, this is also a finite 

field it is bigger than Fq, possibly bigger than Fq and has size q to the d prime. So, what you 

can see now is now you use the FLT or Frobenius action identity. 

 

So that will give you X to the qd prime is the same as X mod h, right, h will divide X to the 

qd prime – minus x in other words. So, h divides this polynomial and h also divides original 

f, sorry I should use capital F there, I have changed the notation. So, h divides your input 

polynomial by assumption and h also divides this by Frobenius action.  

 

So, h divides the gcd, right. So, hence gcd cannot come out to be 1 because h is not 1, h is 

degree at least 1, so that part is done. Any questions? Okay.  
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Let us prove the converse now. The converse is more interesting. So, suppose for some i you 

get the gcd, well we will actually do it the contrapositive way. So, you want to show that the 

conclusion implies the premise, right? So, instead we will show that if big F is irreducible, 

then the gcd is 1 okay, let us prove the contrapositive. So, say big F is irreducible and i be the 

least number such that the gcd of these two polynomials is not 1. 

 

So, we actually intend to add a contradiction okay. We are assuming that big F is irreducible 

and we are assuming that the gcd is not 1 for some i. So, if you get a contradiction, then we 

are done, right. So, let us see what the contradiction is. Well, so if big F is irreducible and the 

gcd exists what does that mean? It has to exactly divide, gcd has to be big F that is the only 

option, right, and so write this as Frobenius action. 

 

So, X to the q to the i is actually X, mod big F which is irreducible. So, from this what can 

you say about elements in this quotient ring? Any element a that you take in this quotient ring 

Fq X mod Fx, so first of all this ring is what, why is it a field? Yeah because we have 

assumed the big F to be irreducible, right. So, this is a field. “Professor – Student 

conversation starts.” What can you say about the elements in this which is again a finite 

field, elements a in this finite field?  

 

There are roots of h that will not give the (())(37:31) Every a will satisfy the previous 

Frobenius action, why is that? That is not trivial, how do you show this? How do you show 

that a raised to q raised to i is also a by using the previous congruence? The a is a polynomial, 



so a raised to q raised to power i will distribute. Yeah, so you use the fact that q raised to i 

distributes over sum. Binomial identity. Yeah use the binominal identity.  

 

So, since y + z raised to q is the same as y to the q + z to the q and this is actually two simply 

mod p. So, your characteristic is p and q is a power of p okay. So, no matter how many 

powers you put over y + z, they will distribute, the exponentiation operator will distribute 

over sum. So, the reason is that when you do binomial expansion, the other coefficients are q 

choose i and q choose i is zero mod p, it is divisible by p okay. 

 

This is true by binomials. So that is a nice property to remember. This is again a consequence 

of Frobenius action. So, this in particular shows that raising exponentiating by p preserves 

addition and multiplication So, it is actually first of all a homomorphism. You can see there is 

also an automorphism okay, maybe I should write that, that should also be remembered.  

 

So here meaning in the case of finite fields whenever you exponentiate by p, you actually get 

a homomorphism which happens to be an automorphism and endomorphism which is 

actually an automorphism. Okay, this is a very nontrivial facts and also very useful one. Yeah 

so coming back to the last implication what you have learnt is that every field element in Fq 

X mod F satisfies this q to the i Frobenius action which is a trivial action. 

 

“Professor – Student conversation starts.” So, which means what? Utmost q power i limits 

because any polynomial can have utmost degree by roots in f field. Yeah, but you can make 

even more precise statement. So you can actually say that q raised to d-1 will divide q raised 

to i-1. You can actually get an equality in terms of exponents. “Professor – Student 

conversation ends.” So that argument goes as follows. So let me give it a name, let me call it 

F sub q prime.  

 

So this field except 0 is actually cyclic group of size, field size minus 1, right. What is the 

field size, q prime which is q to the d. So this is cyclic group of size q to the d-1. Every 

element here satisfies this q to the i trivial Frobenius action, so it means that generator as 

well, the generator has order q to the d-1, so which means that q raised to d – 1 has to divide 

q raised to i-1, right. Which means what?  

 



Yeah in particular it means that d is less than or equal to i, but that is not possible, the i with 

which we started with was between 1 and d–1, so that is the contradiction okay. So this 

contradiction means that when you start with the irreducible input, then you get all gcd’s 1. 

So, this means that converse holds. Any questions? So, this is the fundamental property and 

its proof as you can see uses almost all the basic properties of finite fields, right.  

 

This is why you were prepared by assignment 1. So building on that you can actually show 

that an input polynomial is irreducible if and only if for some i this gcd is not 1 or 

equivalently an input polynomial is irreducible if all the gcd’s happen to be 1. “Professor – 

Student conversation starts.” I think we can also write i is less than root d+1. The i is less 

than root d. Yeah, greater than root d capital D. 

 

I do not want to say that , yeah d by 2 we can say. So if the input polynomial factors, then 

clearly there will be a factor of d by 2 degree or less. So, that optimization you can do, you 

need to only go up to d by 2. So let me just say it here. So d by 2 is a bad notation. I mean 

yeah, let me use the range, so 1 less than equal to i less than equal to d by 2 works. 

“Professor – Student conversation ends.” Any questions? Okay. 

 

Yeah so now the, the algorithms all the constituents are there, theses checks are already so, 

they are in a good form that you can just implement them in a straight forward way using the 

basic arithmetic. So using the arithmetic of integers and using the arithmetic of polynomials, 

on top of that you can implement everything and it will be really fast.  
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So, let us just for formality see the algorithm and also we want to analyze the exact time 

complexity. So in the input you are given a degree d polynomial big F and a finite field Fq. 

The finite field has to be properly given in the natural representation, otherwise you cannot 

give the coefficient of big F. So, the finite field is given and the polynomial is given. So this 

is just a for loop.  

 

“Professor – Student conversation starts.” But before that there was a question you had 

right Pranav, what was the question? Just for i = d minus. Yeah may be we address that first 

because that is good property in the proof. So this proof actually tells you more. So, in 

particular if there is an irreducible factor h of degree d prime, what are the i’s which will 

work? I mean the i’s where you will see not 1. Yeah that is not clear.  

 

So actually, the correct characterization is that i = d prime will give you a certificate, so gcd 

not 1, but then after d prime the next step or the next i will be 2d prime okay. So actually you 

will get multiples of d prime. So that is a good characterization because if you look at the 

converse, it means that what are the factors x to the q to the i minus – X? What is the degree 

of the irreducible factors of x to the q to the i – X.  

 

Yeah so they are actually irreducible polynomials of degree dividing i, okay, so it is not that x 

to the q to the i – X will be divisible by all the irreducible up to degree i, its actually only 

factors of i. So, did you understand that, h here of degree d prime will divide for i = d prime, 

then i = 2d prime, did you understand that property? So why would not it divide for things in 

the middle between d prime and 2d prime, what is the reason?  

 

So that reason actually is in this slide, so you have to go through this. See in particular if you 

look at the last condition q raised to d-1 divides q raised to i-1, what can you deduce from 

there? Right, you actually deduce something stronger than what I have written. You actually 

deduce from here that d divides i okay. So this slide is proving another interesting property 

over finite fields that this X to the q to the i – X. 

 

All its irreducible factors have a degree that divides i and they are all of them, nothing is 

missed okay. So, this X to the q to the i – X actually contains all the irreducible polynomial 

whose degree divides i. This I mean as a sanity check you can look at i =1, so X to the q – X 



contains all the irreducible polynomials of degree 1, which is just roots. When you go to the 

X to the q square – X, you will get all the roots and all the quadratic irreducible and so on. 

 

So cubic would not get ordered. Exactly. “Professor – Student conversation ends.” So in 

the case of X to the q cube – X, the quadratic factors will be missing. So there will be all 

linear factors possible and all the cubic irreducible possible okay. So actually this slide is 

quite important, the parts of the proof here tell you a lot more structure over finite fields 

okay. So, this is just a for loop.  

 

So in case the gcd is not 1, then you have a certificate of reducibility and this is written very 

abstractly, so in practice you actually have to do this by repeated squaring. So this step is 

loaded, it is not just direct application of Euclid gcd, but first you have to do this assignment 

question you should do repeated squaring to compute what is X to the q to the i mod F. F is 

low degree, so this computation is actually low-degree computation. 

 

So you can do this efficiently and then you replace this X to the q to the i by that remainder. 

Then you invoke Euclid gcd okay. So this can be done. “Professor – Student conversation 

starts.” If it would be even though other property gcd property because gcd of a, b is gcd of, 

yeah that you can do, yes. “Professor – Student conversation ends.” Okay and what do you do 

in the next step? Well not much.  

 

So if the program has not halted yet, so then it went from i =1 to i = d by 2 and always the 

gcd was 1. So it means that big F is irreducible. Okay so only when the whole four loop has 

gone through you will you declare irreducibility that is the certificate of irreducibility. Is this 

clear? So the proof of correctness of this algorithm should be clear by the theorem that is 

straightforward. It is only the time complexity that we have to, so what is that?  

 

The for loop is d many times the gcd computation before that you have to compute X to the q 

to the i mod F right ? How much is that? That is again i log q, so d log q many squaring and 

for every squaring, so that is the single multiplication operation right, yeah so modulo this 

polynomial of degree d and also the finite field calculation. So actually we can separate the 

finite field calculations, we can just say O tilde d many finite field operations, right.  

 



So now you have brought down X to the q to the i to a degree d–1 polynomial at most and 

you will run Euclid gcd. So that will be how much? That will be linear time soft-O linear that 

will be O tilde d. So these many Fq operations okay. Any questions? So, this is the time 

complexity which will ultimately we can talk about actually bit operations as well. So this is 

at most dq log q which is at most Fq operations will take how much time?  

 

Just O tilde log q. So this is the actual time okay. In the input you are given a binary string 

and in the output you will give a bit answer 0 or 1, irreducible or reducible and in the middle 

the number of bit operations which you can think of as a second is dq times log square q 

overall with hidden log factors also. So this is O tilde, so there is also some multiplication by 

log d and log log q, but that we can assume as very small, it is a cubic time irreducibility test.  

 

Any questions? “Professor – Student conversation starts.” It should be Fp right, Fp 

operations because whenever we are doing (())(58:32) normally. Yeah we are not going all 

the way to Fp, so let us just stop at Fq. Fq is the base field for us. We do not want to go all the 

way, we also do not need because Fq how you will implement in O tilde log q bit operations, 

in that detail it is hidden that you convert Fq into n Fp elements and then you do addition 

multiplication all that we do not have to go into.  

 

So that is why we abstract these things out, simplifies the calculation. Otherwise I mean, 

when you look at the full implementation there is a lot of things that go on. It will not be just 

these many lines of code, it will be hundreds of lines if not thousands. Is there any field 

operations are preferred instead of this? Where? Instead of bit operations is preferred, who 

prefers it? No, ultimately the computer will do only bit operations. So we are doing it only for 

ourselves to simplify the analysis that is all. 

 

It is just a structured way to analyze, ultimately what will happen on the computer is just bit 

operations. Somewhere it is written if this algorithm complex is in bit operations, it is 

difficult to implement over field like the (())(01:00:05) I do not understand, let us discuss 

after the class okay. “Professor – Student conversation ends.” Another thing in this 

algorithm is it is not just giving you a one bit answer, it is actually giving you more. So, when 

it says that reducible, it has worked hard, it has computed the gcd and there is actually some 

information you get.  

 



So for example if big F was irreducible, in that case you will only get one bit of information, 

but if big F is reducible then with factors having different degrees, let us suppose big F has a 

linear factor and it has a quadratic irreducible factor. So those two factors in this gcd process 

will get separated, did you see that? Because we are running i upwards from 1 to 2 to 3. So 

for i = 1 you would have filtered out the linear factors, all of them together. 

 

And for i = 2 you would have filtered out quadratic factors all of them together. So, yeah that 

will need a slight modification actually. So when you compute the gcd with i = 1 and you get 

something, then you remove that from big F and continue the for loop okay. Then you will 

get may be quadratic factors, you remove that from big F and continue the for loop. So, this 

way you would have actually gotten clusters of factors of big F okay.  

 

So slight modification of step 1 you have to do, it is not exactly this, no otherwise we are 

breaking, the program halts. As soon as it gets something it halts, so you are not changing big 

F. So to achieve what I am claiming, you actually have to continue, whatever you get you 

remove it from big F and proceed. So, you will get the linear factors or whatever, the least i 

degree factors, so i1, then degree i2, then degree i3 and so on.  

 

Yeah. so let me just write down that observation in the same time similar algorithm similar 

implementation. 

(Refer Slide Time: 01:02:47) 

 

So we factored big F as product of gi’s where each gi is obviously a polynomial over Fq, it is 

a product of equi-degree irreducibles. So this code is also called equi-degree factorization of 



big F. So, again the big F will be actually factored into clusters, each cluster will have 

equidegree irreducibles as their factors. Okay this you do by whenever you find a non-trivial 

gcd, you remove that from big F by dividing. 

 

So that is a single division and proceed with the quotient in the for loop. Is that clear? So, this 

also takes same time. So, this in the same cubic time you can get, equi-degree factorization. 

Keep updating big F as big F divided by the gcd that you have computed. So whatever gcd 

you will compute, you remove it from big F and yeah so there is this multiplicity issue, so 

because of that you continue with the same i.  

 

In this case, you should go up to d okay. So at an i when you get an gcd for the first time, you 

remove this part from big F and then repeat the same thing for i, may be you will again get a 

cluster, this may happen because of repeated factors. The same factor each may be repeating 

which means each square may divide F. So the first instance of gcd will give you h, the 

second instance will again give you h. 

 

But after a while degree i factors would be eliminated completely, then you will go to the 

next degree which is probably i+1 and you do this up to d-1 okay. So if you carefully analyze 

it, it is the same time complexity, there is no change. “Professor – Student conversation 

starts.” If the same quantity, we can also get the full factorization, the same and check we get 

the cluster, again do it and get the same we get the whole factorization the same quantity.  

 

What do you mean by whole factorization, you can find an irreducible factor? Means all the 

irreducible. I have finding clusters of. Clusters, yeah, you can find the clusters, but those 

clusters are reducible. But if it is rather same I want the clusters again, then we get the full 

factorization. No so. The same cluster again. What do you mean by full, I do not. Prime 

factors.  

 

You have to, irreducible, no, you cannot, this is not giving you irreducible factorization, we 

are not there yet. So that will take multiple classes. Professor -Student conversation ends.” 

So in the first lecture all you have achieved is what is called equi-degree irreducible 

factorization or cluster factorization. We have gotten clusters where the clusters may further 

factorize, but if they do, all the factors are of equal degree.  

 



But those equal degree factors how `to get to them, each of them that we do not know. So, at 

this point, this algorithm is oblivious to that because X to the q – X for example collects all 

possible roots. There is no way to distinguish between root 1 and root 2. So how will you 

distinguish them that we will see gradually. So next time we will achieve something and after 

that we will achieve the full factorization. Okay. 


