
Computational Number Theory and Algebra

Prof. Nitin Saxena

Department of Computer Science and Engineering

Indian Institute of Technology - Kanpur

Lecture – 09

Polynomial Factoring Over Finite Fields – Irreducibility Testing

(Refer Slide Time: 00:16)

Okay, so we started factorization of polynomials, univariate polynomials over a field, right

because that polynomial ring is a unique factorization domain.

(Refer Slide Time: 00:28)

W saw some simple examples manifesting that roots are very closely related to field. So, as

you change the field, the roots and the factorization pattern changes. In fact, there may not be

any factors if you change the field. Over complex, it is the other extreme, every polynomial

actually factors nontrivially all the way up to degree 1, such fields are called algebraically

closed, but now we will actually come down to something very different a place where there

is no geometry which is finite field.

(Refer Slide Time: 01:13)

So, this is the example which computer science cares the most about, almost all the practical

applications are actually based on finite fields. So, be it combinatorial constructions or error

correcting codes and so on. So, we will see some examples of those applications once we are

done with some basic polynomial factorization. So, yeah later we will see factorization over

Q.

So, this order we will follow because believe it or not factorization over Q or over integers

will actually need factorization over finite fields. Okay so once you know these methods, then

we will use these roots or these factors to actually get integral factors, so that has to be done

in this order. So, finite fields you must have seen enough properties and prove some of them

in this first assignment.

Finite fields are, so these are discrete objects useful in combinatorics and computer science

and the construction of this as you have seen is basically based on a prime, right. So, you start

with a prime characteristic p. So, you are also allowed to take p = 2, so that will be a field

with only 2 elements right, 0, 1 and you can add them and you can multiply them and

arithmetic is more too.

So in general, you have shown that Z modulo p which we will denote, actually let us not use

this, we will denote it by quotienting. So, Z mod p ideal is a well first of all it is a ring

arithmetic and then it is actually a field. So, how do you show that every element is invertible

in this except 0 of course. Right, so this is based on just gcd. So, for nonzero element a, you

take the gcd of ANP to be 1, so you have ua + vf = 1 which means that u is inverse of a.

So, that is a simple proof, More interesting things happen when you want to field of size p

square. So, this is a field of size p, what is a field of size p square that you have constructed in

the first assignment. So, that is done by picking irreducible polynomials, so in this case of

degree 2 be an irreducible polynomial of degree let us say n with FP coefficients, so, it is in

the polynomial ring Fp x. So, this will be key to pick an irreducible polynomial.

Then, now when you do arithmetic mod this polynomial it will be a field and it will be a

bigger field. So, Fp x mod f, this is a field because every element here is invertible again by

Bezout identity. Because f is irreducible, so it behaves the same as you saw in the proof of the

above statement f is kind of a prime. So, any polynomial a will again be the gcd with f will be

1 or a itself is 0 in this ring in this arithmetic.

So, for a non-zero a, f gcd is 1, so, you get ua + vf = 1, so every element has an inverse. So,

this is a field and this field is called we will write it as Fp to the n. It is also written as in the

literature Galois field, so GF of size p raised to n okay, but usually we write F sub p raised to

n, so either of these definitions. “Professor - Student conversation starts.” But if r is a ring

then will rf smaller than f for an irreducible f possibly a field or a ring.

No, you if you talk about general rings, then behavior will depend on r. I mean if you start

with an r which has 0 divisors, then the 0 divisors will remain no matter what you do. So, it

cannot be a field. So, you have to start with a field to have any hope of getting a field

extension. “Professor – Student conversation ends.” So, this in fact in the assignment you

must have shown that this is unique up to field isomorphism, right.

So, this is actually the field. So, this is the field of size p raised to n. There is only one field of

this size, okay. So, for every prime power, there is a unique field and vice versa. So, every

finite field is of size prime power okay. So, this is a nice characterization that you have

shown and so we will usually denote prime powers by q, and so yeah in this property, I also

want to embed something about the bit size.

So, how many bits will a single element require when you want to represent it practically? n

log p, yeah, so or if in terms of q it is log q. So, the representation requires log q many bits, so

that needs to be remembered okay. So, finite fields of size q one element will not need one

bit, it will actually mean log q many bits. Also what is the structure of Fp to the n over Fp? It

is a vector space, it is a field extension.

Hence it is also a vector space and how many basis elements are there, n basis elements are

there, right. So that is another way to represent an element in this field, you can be given n

numbers, right. So these n numbers, each number should be thought of as an element in Fp,

so it is a number between, yeah so hence this number will have magnitude 0 to p–1 and

bitesize log p and there are n of those.

So, it is n log p, which is also the same as log q, like so this actually is a standard

representation. You think of an element as n numbers and when n is 1, it is only one number

which is clear because it is an integer between 0 to p–1, when n = 2 then you are talking

about 2 numbers, right. So, that is how we will, whenever we say a field is given or we are

working over a field that is the representation okay.

Without exception this is the underlying representation we will talk about and we will assume

and then the time complexity will be in terms of this representation, so it is completely

explicit discussion, this is not abstract, okay.

(Refer Slide Time: 11:26)

So, for example, if you look at x square + x +1 interpreted in F2 x, then is this polynomial

irreducible or irreducible? “Professor – Student conversation starts.” Irreducible. How do

you prove it? It could have a root, but both 0 and 1 only. Exactly, so there are only two roots

possible and both of them will give you 1. “Professor – Student conversation ends.” So,

this is an irreducible polynomial. So, that gives you a simple quadratic extension over F2.

So, GF 4 is you can think of it as just F2 x mod, this is the field GF4 and it has very few

elements, right. So, it has 0 and 1 from F2, what else? It has x and it has 1 + x, right. So,

these are the only elements in this field. Any polynomial in x will map to one of these four,

right. So, x square maps to what, x square in this ring is equal to what? It is equal to x + 1 and

x + x square + 1 is then equal to and so on.

So, similarly you can think of x cube, all the other higher degree monomials reduced to this.

So, hence when you multiply elements, when you multiply x with 1 + x, multiplication

actually requires one polynomial multiplication operation and then also division, right. So, all

those things are again implicit whenever we will talk about complexity that you have to

actually do division here.

There was a question in the assignment where you must have done that as well. So, those

things now we will just assume when we talk about complexity because you have seen

polynomial multiplication, you have seen integer division and similarly you can also do

polynomial division, everything you can do in O tilde linear time. So, these are the kinds of

fields you are given in the input.

And over this there is a polynomial given which you want to factor, right that is the setting

that would be your input instance. So, maybe I give that example also. So, you are given

maybe a polynomial FX which is say X square + little x. So, this is a polynomial GF4 with

this formal variable X. So, you may be given this big F in the input, GF4 is in the input and

then big X square + small x is a polynomial over the finite field, right.

And then somebody asks you to factorize this which means find the root of this, which is also

the same as talking about finding a square root of little x, right, well so whether it exists in

the finite field or not will be a related question or prove that this is irreducible, right. So, the

question of irreducibility testing, root finding, factorizing for big F is our goal now. How will

you do this efficiently? Any questions? So, we will now move towards such algorithms okay,

how is that done?

So, first of all how is irreducibility testing done? Given this polynomial big F how do you

quickly decide on a computer that it is irreducible? This is a very simple example, this you

can actually see that it is irreducible because square root of small x is nonexistent, is it?

“Professor – Student Conversation starts.” X square + 1 is there. Yeah it is actually there.

So, this will factorize as what? Small x + 1. Yeah, so let us write down. It actually factorizes.

So, this is actually big X square plus what is the factorization, say that again. Big X + small x

whole square. I somehow think this is false. Small x +1. It splits. It is big X + small x + 1

whole square. Okay, yeah that is correct. So, this is how it factorizes. “Professor – student

conversation ends.” Yes, it is actually a good example. It seems to be irreducible, but then

you can see that small x + 1 is a repeated root of this, right.

So, now imagine this problem if your big F was arbitrary degree d, right. So, in that case

actually this will be a real problem, just to check whether it is irreducible. Forget about

finding root or finding factors. So, that will be our first school, maybe we will finish it today

how do you check irreducibility okay. So, towards that let us now repeat some of the

properties that you have seen in the homework okay, all those things will be now used.

So, you have seen that this field Fq – 0, so Fq star, we call it Fq star, yeah because it is

because it is a field this has to be multiplicative group, but there is more structure to this, it is

a cyclic group. So, this you know is a cyclic group of size q – 1 and this means in particular,

actually you just needed Abelian group or size q – 1 also. So, what I want to deduce is that

any element you take from this a, a raised to q-1 is 1, right?

Just because it is an Abelian group of size q – 1 any element if you multiply that many times

will give you in the end 1 because the multiplicative order of any element first of all it is

finite and second you can show it will divide q-1. So, if you raise a to q – 1 you will always

get 1 that is just by the structure of Abelian groups. And if you also include 0, then you have

to look at a raised to q, which is a, right. So, this is satisfied by all a in the finite field.

So, this is a fundamental identity, it special cases have names. So, this is also called FLT

Fermat’s little theorem. So, when q is a prime, then any number if you multiply it q many

times you get the remainder same as a, mod p, for in this case mod q. But when q is p square,

then this is different. This a is not really a number, it is an element in a bigger field. But this

continues to hold. So, it is special cases called Fermat's little theorem.

So, Fermat's little theorem has multiple proofs, this is one of them, this is the field based

proof. Any questions? “Professor – Student conversation starts.” Sir, we are assuming q to

be prime, then it is, q, yeah, no Fq is a finite field. Whenever we will say q there will be no

assumption except there is prime power. Yeah, so for finite field you can continue calling this

FLT. This this is also called Frobenius action actually, that is another name for this.

“Professor – Student conversation ends.”

So, if you raise any element by the field size that is one of the Frobenius actions, in this case

it is a trivial action because a raised to q will give you the same thing back which is a, but you

could have instead raised a to p, so that is actually called the Frobenius automorphism. There

are multiple names for this okay.

(Refer Slide Time: 22:35)

So now based on that identity, we will design an irreducibility test for an input polynomial,

discuss what property we are interested in. So, suppose you are given a polynomial, we

continue to call it big F okay, you are given this with coefficients in Fq. So univariate

polynomial. So, you want to test whether this polynomial is irreducible. So, what we intend

to do is we will, suppose you want to check whether this has a root Fq root, right.

So, I want to take gcd of this with something. So, by looking at the previous equation what

should you take gcd of this with? So, if big F has a root, then it will satisfy a to the q – a,

right. So, you should actually then take gcd with x to the q – x, right. So, this F is, okay let

me make this as before big X. So, F is a polynomial in big X and you compute the gcd of

these two polynomials.

So, now if the gcd is 1, then it means that big F has no root right because if it had a root a,

then x – a will divide this and x – a you know also divides the second polynomial. So, x – a

will definitely divide the gcd. So, this being 1 actually means that big F has no root. Now,

more interestingly, this test can be extended to cover quadratic factors. So, if big F has no

root, it may still have a quadratic irreducible factor, right.

So for that, the test you will do is X to the q square – X and then so on. Okay, this is the

intended algorithm that you keep taking gcd of big F with these Frobenius type polynomials,

Frobenius inspired polynomials. So, if you take gcd with x to the q – x, you are filtering out

roots. If you take gcd with x to the q square – x, then you are filtering out quadratic, well both

roots and quadratic irreducible.

So, this sequence of gcd is we want to compute, so, that is the intention, now why should

such a thing work is this theorem. So, big F factorizes say degrees d if and only if there is

some i such that the gcd of big F with X to the q to the i – x and gcd with respect to the

variable big X both of them are unique variants over the underlying finite field, so you

compute the gcd and this should not be 1.

So, if big F has a nontrivial factor, then the gcd will not be 1, and if the gcd is not 1, then

there will be a irreducible factor, in fact just the gcd operation will give you a factor of big F,

okay, it is a constructive proof. So, we will prove this theorem it has an elementary proof, but

once you have the proof, how can you use this in an algorithm? How will you compute this

gcd, in how much time?

“Professor – Student conversation starts.” We will have to log q to the i. Sorry. i log q for

m, m of i log q for every, i log q, but the degree of this is q to the i. That is if the degree of

one. So, well take i = 1. So if you are taking gcd with X to the q – X that is a q degree

polynomial, right. “Professor – Student conversation ends.” So, if you just use Euclid gcd

directly, then this will give you q in the time complexity, but since your input size was log q

or d + log q or d times log q, so let me write that down.

The input size in this case is d times log q. So, you want your time complexity to be

polynomial in d log q. If you spend time q, then it is already exponential right. So, how do

you compute this gcd faster than q time? Well, you should reduce x to the q mod f, compute

the remainder. So, there was a question in the assignment that this exponentiation can be

done by log q repeated squaring.

So, you compute big X square, then big X4, then big X8, 16 and so on. So, this will only take

log q iterations. So, very quickly you can actually compute the remainder of X to the q mod f

and then you work with the remainder instead of X to the q because it does not change the

gcd, like gcd is invariant if you divide one argument with the other, so that is the thing. So,

this Frobenius polynomial happens to be so nice that this gives you an immediate algorithm

okay.

So, that is a very lucky break, it may not have been this easy otherwise to compute.

“Professor – Student conversation starts.” If we directly take i = d-1 in the first step. Yeah.

It is sufficient. No. Let us first look at the proof of this, why is this thing true, then you should

answer this question. Sir if you get a quadratic irreducible of F, then in the extension q square

we will be getting a root of that. Yeah, that is the idea. Yeah.

So, if big F suppose it is itself quadratic irreducible, then its root is available in Fq square in

Galois field of size q square, so hence the GCD will come out, I mean f big F will actually

divide the whole thing in that case, gcd cannot be one. “Professor – Student conversation

ends.” So, yeah, that is the basic idea, so we will just build on that to finish this proof. So, let

us do the forward direction.

So, we assume big F is irreducible. So, let h dividing f be an irreducible factor of degree d

prime between 1 and d-1, it is a nontrivial irreducible factor of f. So, now, you look at Fq X

mod h, so what is this? This is the Galois field right of size exactly. So, this is also a finite

field it is bigger than Fq, possibly bigger than Fq and has size q to the d prime. So, what you

can see now is now you use the FLT or Frobenius action identity.

So that will give you X to the qd prime is the same as X mod h, right, h will divide X to the

qd prime – minus x in other words. So, h divides this polynomial and h also divides original

f, sorry I should use capital F there, I have changed the notation. So, h divides your input

polynomial by assumption and h also divides this by Frobenius action.

So, h divides the gcd, right. So, hence gcd cannot come out to be 1 because h is not 1, h is

degree at least 1, so that part is done. Any questions? Okay.

(Refer Slide Time: 34:22)

Let us prove the converse now. The converse is more interesting. So, suppose for some i you

get the gcd, well we will actually do it the contrapositive way. So, you want to show that the

conclusion implies the premise, right? So, instead we will show that if big F is irreducible,

then the gcd is 1 okay, let us prove the contrapositive. So, say big F is irreducible and i be the

least number such that the gcd of these two polynomials is not 1.

So, we actually intend to add a contradiction okay. We are assuming that big F is irreducible

and we are assuming that the gcd is not 1 for some i. So, if you get a contradiction, then we

are done, right. So, let us see what the contradiction is. Well, so if big F is irreducible and the

gcd exists what does that mean? It has to exactly divide, gcd has to be big F that is the only

option, right, and so write this as Frobenius action.

So, X to the q to the i is actually X, mod big F which is irreducible. So, from this what can

you say about elements in this quotient ring? Any element a that you take in this quotient ring

Fq X mod Fx, so first of all this ring is what, why is it a field? Yeah because we have

assumed the big F to be irreducible, right. So, this is a field. “Professor – Student

conversation starts.” What can you say about the elements in this which is again a finite

field, elements a in this finite field?

There are roots of h that will not give the (())(37:31) Every a will satisfy the previous

Frobenius action, why is that? That is not trivial, how do you show this? How do you show

that a raised to q raised to i is also a by using the previous congruence? The a is a polynomial,

so a raised to q raised to power i will distribute. Yeah, so you use the fact that q raised to i

distributes over sum. Binomial identity. Yeah use the binominal identity.

So, since y + z raised to q is the same as y to the q + z to the q and this is actually two simply

mod p. So, your characteristic is p and q is a power of p okay. So, no matter how many

powers you put over y + z, they will distribute, the exponentiation operator will distribute

over sum. So, the reason is that when you do binomial expansion, the other coefficients are q

choose i and q choose i is zero mod p, it is divisible by p okay.

This is true by binomials. So that is a nice property to remember. This is again a consequence

of Frobenius action. So, this in particular shows that raising exponentiating by p preserves

addition and multiplication So, it is actually first of all a homomorphism. You can see there is

also an automorphism okay, maybe I should write that, that should also be remembered.

So here meaning in the case of finite fields whenever you exponentiate by p, you actually get

a homomorphism which happens to be an automorphism and endomorphism which is

actually an automorphism. Okay, this is a very nontrivial facts and also very useful one. Yeah

so coming back to the last implication what you have learnt is that every field element in Fq

X mod F satisfies this q to the i Frobenius action which is a trivial action.

“Professor – Student conversation starts.” So, which means what? Utmost q power i limits

because any polynomial can have utmost degree by roots in f field. Yeah, but you can make

even more precise statement. So you can actually say that q raised to d-1 will divide q raised

to i-1. You can actually get an equality in terms of exponents. “Professor – Student

conversation ends.” So that argument goes as follows. So let me give it a name, let me call it

F sub q prime.

So this field except 0 is actually cyclic group of size, field size minus 1, right. What is the

field size, q prime which is q to the d. So this is cyclic group of size q to the d-1. Every

element here satisfies this q to the i trivial Frobenius action, so it means that generator as

well, the generator has order q to the d-1, so which means that q raised to d – 1 has to divide

q raised to i-1, right. Which means what?

Yeah in particular it means that d is less than or equal to i, but that is not possible, the i with

which we started with was between 1 and d–1, so that is the contradiction okay. So this

contradiction means that when you start with the irreducible input, then you get all gcd’s 1.

So, this means that converse holds. Any questions? So, this is the fundamental property and

its proof as you can see uses almost all the basic properties of finite fields, right.

This is why you were prepared by assignment 1. So building on that you can actually show

that an input polynomial is irreducible if and only if for some i this gcd is not 1 or

equivalently an input polynomial is irreducible if all the gcd’s happen to be 1. “Professor –

Student conversation starts.” I think we can also write i is less than root d+1. The i is less

than root d. Yeah, greater than root d capital D.

I do not want to say that , yeah d by 2 we can say. So if the input polynomial factors, then

clearly there will be a factor of d by 2 degree or less. So, that optimization you can do, you

need to only go up to d by 2. So let me just say it here. So d by 2 is a bad notation. I mean

yeah, let me use the range, so 1 less than equal to i less than equal to d by 2 works.

“Professor – Student conversation ends.” Any questions? Okay.

Yeah so now the, the algorithms all the constituents are there, theses checks are already so,

they are in a good form that you can just implement them in a straight forward way using the

basic arithmetic. So using the arithmetic of integers and using the arithmetic of polynomials,

on top of that you can implement everything and it will be really fast.

(Refer Slide Time: 46:09)

So, let us just for formality see the algorithm and also we want to analyze the exact time

complexity. So in the input you are given a degree d polynomial big F and a finite field Fq.

The finite field has to be properly given in the natural representation, otherwise you cannot

give the coefficient of big F. So, the finite field is given and the polynomial is given. So this

is just a for loop.

“Professor – Student conversation starts.” But before that there was a question you had

right Pranav, what was the question? Just for i = d minus. Yeah may be we address that first

because that is good property in the proof. So this proof actually tells you more. So, in

particular if there is an irreducible factor h of degree d prime, what are the i’s which will

work? I mean the i’s where you will see not 1. Yeah that is not clear.

So actually, the correct characterization is that i = d prime will give you a certificate, so gcd

not 1, but then after d prime the next step or the next i will be 2d prime okay. So actually you

will get multiples of d prime. So that is a good characterization because if you look at the

converse, it means that what are the factors x to the q to the i minus – X? What is the degree

of the irreducible factors of x to the q to the i – X.

Yeah so they are actually irreducible polynomials of degree dividing i, okay, so it is not that x

to the q to the i – X will be divisible by all the irreducible up to degree i, its actually only

factors of i. So, did you understand that, h here of degree d prime will divide for i = d prime,

then i = 2d prime, did you understand that property? So why would not it divide for things in

the middle between d prime and 2d prime, what is the reason?

So that reason actually is in this slide, so you have to go through this. See in particular if you

look at the last condition q raised to d-1 divides q raised to i-1, what can you deduce from

there? Right, you actually deduce something stronger than what I have written. You actually

deduce from here that d divides i okay. So this slide is proving another interesting property

over finite fields that this X to the q to the i – X.

All its irreducible factors have a degree that divides i and they are all of them, nothing is

missed okay. So, this X to the q to the i – X actually contains all the irreducible polynomial

whose degree divides i. This I mean as a sanity check you can look at i =1, so X to the q – X

contains all the irreducible polynomials of degree 1, which is just roots. When you go to the

X to the q square – X, you will get all the roots and all the quadratic irreducible and so on.

So cubic would not get ordered. Exactly. “Professor – Student conversation ends.” So in

the case of X to the q cube – X, the quadratic factors will be missing. So there will be all

linear factors possible and all the cubic irreducible possible okay. So actually this slide is

quite important, the parts of the proof here tell you a lot more structure over finite fields

okay. So, this is just a for loop.

So in case the gcd is not 1, then you have a certificate of reducibility and this is written very

abstractly, so in practice you actually have to do this by repeated squaring. So this step is

loaded, it is not just direct application of Euclid gcd, but first you have to do this assignment

question you should do repeated squaring to compute what is X to the q to the i mod F. F is

low degree, so this computation is actually low-degree computation.

So you can do this efficiently and then you replace this X to the q to the i by that remainder.

Then you invoke Euclid gcd okay. So this can be done. “Professor – Student conversation

starts.” If it would be even though other property gcd property because gcd of a, b is gcd of,

yeah that you can do, yes. “Professor – Student conversation ends.” Okay and what do you do

in the next step? Well not much.

So if the program has not halted yet, so then it went from i =1 to i = d by 2 and always the

gcd was 1. So it means that big F is irreducible. Okay so only when the whole four loop has

gone through you will you declare irreducibility that is the certificate of irreducibility. Is this

clear? So the proof of correctness of this algorithm should be clear by the theorem that is

straightforward. It is only the time complexity that we have to, so what is that?

The for loop is d many times the gcd computation before that you have to compute X to the q

to the i mod F right ? How much is that? That is again i log q, so d log q many squaring and

for every squaring, so that is the single multiplication operation right, yeah so modulo this

polynomial of degree d and also the finite field calculation. So actually we can separate the

finite field calculations, we can just say O tilde d many finite field operations, right.

So now you have brought down X to the q to the i to a degree d–1 polynomial at most and

you will run Euclid gcd. So that will be how much? That will be linear time soft-O linear that

will be O tilde d. So these many Fq operations okay. Any questions? So, this is the time

complexity which will ultimately we can talk about actually bit operations as well. So this is

at most dq log q which is at most Fq operations will take how much time?

Just O tilde log q. So this is the actual time okay. In the input you are given a binary string

and in the output you will give a bit answer 0 or 1, irreducible or reducible and in the middle

the number of bit operations which you can think of as a second is dq times log square q

overall with hidden log factors also. So this is O tilde, so there is also some multiplication by

log d and log log q, but that we can assume as very small, it is a cubic time irreducibility test.

Any questions? “Professor – Student conversation starts.” It should be Fp right, Fp

operations because whenever we are doing (())(58:32) normally. Yeah we are not going all

the way to Fp, so let us just stop at Fq. Fq is the base field for us. We do not want to go all the

way, we also do not need because Fq how you will implement in O tilde log q bit operations,

in that detail it is hidden that you convert Fq into n Fp elements and then you do addition

multiplication all that we do not have to go into.

So that is why we abstract these things out, simplifies the calculation. Otherwise I mean,

when you look at the full implementation there is a lot of things that go on. It will not be just

these many lines of code, it will be hundreds of lines if not thousands. Is there any field

operations are preferred instead of this? Where? Instead of bit operations is preferred, who

prefers it? No, ultimately the computer will do only bit operations. So we are doing it only for

ourselves to simplify the analysis that is all.

It is just a structured way to analyze, ultimately what will happen on the computer is just bit

operations. Somewhere it is written if this algorithm complex is in bit operations, it is

difficult to implement over field like the (())(01:00:05) I do not understand, let us discuss

after the class okay. “Professor – Student conversation ends.” Another thing in this

algorithm is it is not just giving you a one bit answer, it is actually giving you more. So, when

it says that reducible, it has worked hard, it has computed the gcd and there is actually some

information you get.

So for example if big F was irreducible, in that case you will only get one bit of information,

but if big F is reducible then with factors having different degrees, let us suppose big F has a

linear factor and it has a quadratic irreducible factor. So those two factors in this gcd process

will get separated, did you see that? Because we are running i upwards from 1 to 2 to 3. So

for i = 1 you would have filtered out the linear factors, all of them together.

And for i = 2 you would have filtered out quadratic factors all of them together. So, yeah that

will need a slight modification actually. So when you compute the gcd with i = 1 and you get

something, then you remove that from big F and continue the for loop okay. Then you will

get may be quadratic factors, you remove that from big F and continue the for loop. So, this

way you would have actually gotten clusters of factors of big F okay.

So slight modification of step 1 you have to do, it is not exactly this, no otherwise we are

breaking, the program halts. As soon as it gets something it halts, so you are not changing big

F. So to achieve what I am claiming, you actually have to continue, whatever you get you

remove it from big F and proceed. So, you will get the linear factors or whatever, the least i

degree factors, so i1, then degree i2, then degree i3 and so on.

Yeah. so let me just write down that observation in the same time similar algorithm similar

implementation.

(Refer Slide Time: 01:02:47)

So we factored big F as product of gi’s where each gi is obviously a polynomial over Fq, it is

a product of equi-degree irreducibles. So this code is also called equi-degree factorization of

big F. So, again the big F will be actually factored into clusters, each cluster will have

equidegree irreducibles as their factors. Okay this you do by whenever you find a non-trivial

gcd, you remove that from big F by dividing.

So that is a single division and proceed with the quotient in the for loop. Is that clear? So, this

also takes same time. So, this in the same cubic time you can get, equi-degree factorization.

Keep updating big F as big F divided by the gcd that you have computed. So whatever gcd

you will compute, you remove it from big F and yeah so there is this multiplicity issue, so

because of that you continue with the same i.

In this case, you should go up to d okay. So at an i when you get an gcd for the first time, you

remove this part from big F and then repeat the same thing for i, may be you will again get a

cluster, this may happen because of repeated factors. The same factor each may be repeating

which means each square may divide F. So the first instance of gcd will give you h, the

second instance will again give you h.

But after a while degree i factors would be eliminated completely, then you will go to the

next degree which is probably i+1 and you do this up to d-1 okay. So if you carefully analyze

it, it is the same time complexity, there is no change. “Professor – Student conversation

starts.” If the same quantity, we can also get the full factorization, the same and check we get

the cluster, again do it and get the same we get the whole factorization the same quantity.

What do you mean by whole factorization, you can find an irreducible factor? Means all the

irreducible. I have finding clusters of. Clusters, yeah, you can find the clusters, but those

clusters are reducible. But if it is rather same I want the clusters again, then we get the full

factorization. No so. The same cluster again. What do you mean by full, I do not. Prime

factors.

You have to, irreducible, no, you cannot, this is not giving you irreducible factorization, we

are not there yet. So that will take multiple classes. Professor -Student conversation ends.”

So in the first lecture all you have achieved is what is called equi-degree irreducible

factorization or cluster factorization. We have gotten clusters where the clusters may further

factorize, but if they do, all the factors are of equal degree.

But those equal degree factors how `to get to them, each of them that we do not know. So, at

this point, this algorithm is oblivious to that because X to the q – X for example collects all

possible roots. There is no way to distinguish between root 1 and root 2. So how will you

distinguish them that we will see gradually. So next time we will achieve something and after

that we will achieve the full factorization. Okay.

