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Matrix Multiplication Tensor 

 

Okay, so last time we introduced the problem of matrix multiplication. 

(Refer Slide Time: 00:18) 

 

And in fact, we also gave these 7 products of Strassen. So p 1, p 2 to p 7. So these are 

products not of just two variables, but actually 2 linear forms. Left is an x matrix and 

right is in y matrix. So there are 4 x’s and for y’s. And when you compute these 

products, you have to take care of the order. Because remember that x 11 may itself 

be a matrix and y 1 1 may itself be a matrix. 

 

So that product is actually non commutative. So p 1 is exactly that. It is not the 

reverse. You cannot do y 11 plus y 22 times x 11 plus x 22. It is exactly in this order. 

(Refer Slide Time: 01:11) 



 

And with that, you can actually check that x dot y will be this without using 

commutativity of x ij and y ij. So today we will finish this formally the proof of 

Strassen that matrix multiplication takes n to the log 7 operations where the ring R is 

the is where the entries of the matrix come from of the n cross n matrix. Any 

questions? Okay, so x and y are n cross n matrices over R. We are assuming n to be a 

power of 2. 

 

So proof will be an induction on l, okay. So we will compute how many 

multiplications and how many additions in the base ring R are required. So we will 

show by induction on l that we can do matrix multiplication in 
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So 7 raised to l R multiplications and that many R additions. So actually both 

multiplications and additions are not too many. This is n to the log 7. That is the 

order. So base case is l equal to 1, right. So these are 2 by 2 matrices which we have 

already done. So for l equal to 1 you got 7 multiplications and 18 additions, right. 

That you have that is the base case already. 

 

That was actually the starting point of all this. The induction step is l – 1 to l where l 

is at least 2. So how do you go from, how do you take this one step? So this will be 

the block structure application. So you look at x 11, x 12, where these x ij’s, y ij’s, z 

ij’s they are 2 raised to l – 1 cross 2 raised to l – 1. And the full matrix is 2 raised to l 

cross 2 raised to l, right. So for n cross n matrix, you are looking at the block structure 

n by 2 cross n by 2. 

 

And so this n by 2 multiplication of matrices, multiplication of n by 2 by n by 2 

matrices this you do inductively or in the algorithm recursively. These are 2 raised to l 

- 1 cross 2 raised to l - 1 matrices. So there are two things. One is you when you have 

to multiply x ij with the or x ik with y kj that multiplication you will do recursively 

and assuming that yeah, so that is the recursive part. 

 

And this also will require then this 2 cross 2 matrix multiplication. For that you use 

Strassen equation. So well I think look at this look into two steps. So first is use 

Strassen equation here. And the entries of these matrices are in which ring? So that is 

n by 2 cross n by 2. So n by 2 cross n by 2 matrices over the ring are obviously also 

form a ring. So you do this 2 cross 2 matrix multiplication over this ring using 

Strassen’s equations. 

 

But that in the end will require you to multiply 2 such matrices, right like this x 11 

plus x 22 times y 11 plus y 22 was p 1. So that multiplication you will do recursively. 

So do that in those two steps. And now so the algorithm is it clear? Right, so it is a 

recursive algorithm using Strassen’s equation. So now you solve you analyze the time 

complexity. 
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So that will finish your induction step. So what is the number of R multiplications? So 

R multiplications that you are doing? So that is 7 to the l – 1 many multiplications, 

right. That is for n by 2 times n by 2 matrices and how many such multiplications you 

are doing in the induction step that is given by Strassen’s number which is 7. So that 7 

to the l, which is the correct value in the to go to l. 

 

And look at number of R additions. So that number was 6 7 l – 1 4 l – 1 by the 

induction step. And how many such additions are needed? So let me write the 

expression first. So I am giving it in two parts. First look at 18 times 2 raised to l – 1 

square, right. What is this? So these are the 18 additions which you do in Strassen 

itself, right? That is the number 18. And all those are n by 2 by n by 2 matrices. 

 

So that many ring R additions. What is the first part? The first part is for the recursive 

calls. You are making 7 recursive calls and in each recursive call that many additions. 

And this is in Strassen’s equation, okay. So that is the overall additions you need in 

the base ring R, which you can see is as required in the induction step, okay. So the 

second part is 4 to the l – 1 times 18. So that you will subtract 42 from that. 

 

The first term is main term is 6 times 7 to the l. Is that clear? So overall, we have 

shown 7 to the l ring operations, which is n to the log 7 to base 2. Okay, that is 

Strassen’s matrix multiplication theorem. But you have precise expressions for 

multiplications and additions in the very base ring. Any questions? So yeah, one could 



already be happy with this. This will give you some advantage if you take bigger and 

bigger matrices, bigger and bigger n. 

 

So it is a surprising algorithm improves over n cube. So this is now n to the 2.8 right, 

but the question is, why did this algorithm exist? Right, so by definition, it should 

have been n cube. Why did it reduce to n to the 2.8? So that study is still ongoing. So 

after decades of work, the current best for matrix multiplication is n to the 2.3728639. 

Okay, I give you 7 digits, because each of these digits people have worked very hard 

to improve. 

 

So there are at least seven papers and there are at most 50 papers on matrix 

multiplication. They all trying to improve each and every digit here. Okay, so slowly 

three has been reduced to something like 2.37. So this is from 2014 from Le Gall. So 

that survey paper if you want you can read and currently there are no good techniques 

to improve this. Whatever techniques have brought it down to this are more or less 

stuck. 

 

Nevertheless, the conjecture is that sorry, exactly. So the conjecture since the time of 

Strassen has been that matrix multiplication has complexity n to the 2 plus epsilon for 

whatever epsilon you want for any positive epsilon, right. But this is still there is a 

gap in the current understanding. So there is still a gap of 0.37. Note that you cannot 

do better than this because your input size is 2n square, right. 

 

So you can never improve on n square and your output is also n square. So you can 

never improve on n square. So that is really asking for too much. Yeah, after this log 

7, things become quite complicated. So that will take several lectures if you want to 

improve over log 7 to anything. Okay, so instead of attempting that, we can just see 

the concepts, which go into improving log 7. 

 

Because that concept is also helpful in other places. It is a fundamental concept in 

algebra. 
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So you want to understand the exponent of matrix multiplication. So let us denote the 

exponent by omega, not to be confused with omega, which we were using before, the 

root of unity. So this omega is just a number expected to be something somewhere 

between 0 to 2.37. So it is known that omega is between 2 and 2.3728639. Actually, 

we are talking about the limit. So we can also call it 2. 

 

This 2 just means that you can go arbitrary close to 2 but never reach it. So that limit 

is what we are calling omega. So all the known upper bounds on omega, use 

something called tensor rank. Okay, that is the algebra concept, which you want to 

now introduce. So have you heard about tensor rank? It is also used in artificial 

intelligence and ML applications with tensor decomposition, what is that? 

 

What is the simplest example of tensor rank? Yeah, matrix rank is the simplest 

example of tensor rank. Matrix rank is just order 2 tensor rank. So matrix is actually 

an order 2 tensor. And then you can keep on growing the order. So when you go to 

order 3 tensor it is a matrix in 3D, very explicitly. That explicit representation actually 

has no use, but if you want to just look at the extension of a 2 dimensional matrix, 

then it is a 3 dimensional matrix. 

 

So our notion of rank for that is complicated. So for matrix rank is kind of a unique 

definition which is very useful everywhere. But for order 3 tensors that is not true. So 

there, there are multiple definitions and neither of them are very helpful. I mean, 



questions they are all open questions. So order 3 and beyond it becomes complex. So 

the, so this omega is also related to some tensor rank. 

 

So let us first define an order 3 tensor whose rank omega is. So let us directly go to 

the definition. So let us define a tensor. In fact, tensor motivated by matrix 

multiplication. So that is called the matrix multiplication tensor. Okay, so this tensor 

you can think of as a 3D matrix, if you want to see it explicitly. So but I want to see it 

as a polynomial. So MM tensor is a polynomial in many variables. 

 

So I will call them big X ij, Y ij, Z ij, ij 1 to n. So the polynomial itself is looks like 

this. So we will call it T n, R. So if you have seen the definition of this, what is that? 

The tensor is the tensor polynomial for matrix multiplication is, so it is directly 

inspired from the definition of matrix multiplication. So it will look like X ik, Y kj, Z 

ij okay. So definition of I mean this the tensor lives in a completely different place 

from matrices. 

 

It is the roughly there are roughly n square many variables X ij, Y ij, Z ij. And in this 

roughly 3n square many variables you have this cubic polynomial okay, this cubic 

polynomial T n, R. In this if you look at the coefficient of Z ij then you will see an 

expression which is similar to the expression for small z ij that you saw in matrix 

multiplication okay. So that is the connection. 

 

Or that is the relationship between this definition and matrix multiplication definition. 

But, we are doing very different things here. So we have defined this cubic 

polynomial. So its degree is 3. And it has many variables. 
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So for example, if you look at the matrix multiplication tensor for 2 by 2 matrices, so 

it is Z 11 plus then Z 21 plus the last is Z 22. Okay, so there are exactly three times 2 

square many variables. Yes. Is it? We do not want it to be ordered. “Professor - 

student conversation starts” And also we will need an extra condition for k to be in 

between i and j. “Professor - student conversation ends”. 

 

No, that is not the case in matrix multiplication. K varies from 1 to n. Yeah cubic 

polynomial and 3n square variate. That is true. Any questions? And so then for 2 by 2 

matrices you can see that there are 12 variables three times 2 square. And you have 

these cubic monomials in X, Y, Z. And you have 8 of these monomials. “Professor - 

student conversation starts” Sir, what is the connection of these two matrix 

multiplication? “Professor - student conversation ends”.  

  

Yeah, I know you want to hurry. We are going there. So once this definition is there, 

let us look at the rank of this tensor. So rank of a tensor in general and this tensor in 

particular, the most common rank defined is you want to decompose this tensor into 

sum of simple tensors. By a simple tensor, we would mean one where you are just 

multiplying linear forms. 

 

So linear form in X times a linear form in Y times a linear form in Z, okay. For 

example, X 11 times, Y 11 times, Z 11. This is a simple tensor. This tensor is called 

rank 1. So you want to decompose your tensor into a sum of simple tensors. The 

minimum number of these simple tensors is called the rank, okay? So I will give you 



the formal definition afterwards. But with that in mind, what is an upper bound on the 

rank of tensor T to r? How big can that rank be? 

 

Can it be 9? Yeah already, just by brute force, you can see by definition, T to r is a 

sum of 8 monomials. Right, so its rank cannot exceed 8, 8 is the maximum. But you 

are not sure whether it is actually 8. It can also be 7. And it was Strassen’s 

imagination that he actually gave a decomposition where it is 7, okay. And there is a 

proof that it is not 6. So the rank of this tensor is exactly 7, okay. That is the reason 

for log 7. 

 

So rank of Tensor T is the least number r such that there exist linear forms. So L i 

which is purely in terms of x variables. Then M i which are purely in terms of y 

variables. And N i purely in terms of z variables. So these are linear forms; i will 

range from 1 to r. And all this data has to satisfy the following equation. The tensor is 

decomposes as, it decomposes as L i times M i times N i, okay. 

 

So rank of a tensor, so this now you can see that it is a pretty general definition. It 

does not have anything to do with matrix multiplication tensor. There is no need to 

restrict to matrix multiplication tensor. You can look at any polynomial in clearly 

demarcated variables. So family x, family y, family z. And you can ask the question 

whether that polynomial your polynomial can be written as sigma L i, M i, N i. 

 

So this is the rank of an order 3 tensor. And if you have order 4 then you will have 4 

variables in the partition. So you will have let us say v bar, x bar, y bar, z bar. And 

then you have to decompose it into product of 4 linear forms, okay. So maybe K i, L i, 

M i, N i. So this is the general concept of tensors, tensor decomposition and rank. So 

this is a simple or rank 1 tensor. 

 

So you want to decompose your tensor into few simple tensors. If you cannot 

decompose into few simple tensors then your tensor is hard. Okay, that is the 

understanding. But it is also true that in life it is hard. It is hard to find hard tensors, 

okay. So this is not an easy problem to come up with a polynomial and show that its 

tensor rank is high. So these are classic lower bound questions and mostly they are 

open questions. 



 

Yeah, actually examples are not there. An explicit polynomial with high tensor rank 

that is an open question. No, before we jump to permanent this class may not know it, 

something even simpler is so what is the meaning of order 2 tensor rank, right? That 

is an instantiation of this or specialization of this. So order 2 tensor let us say you 

have some tensor T in two families of variables x bar, y bar. 

 

And you want to write it as sigma L i times M i. So this is a polynomial in x bar y bar. 

So for a polynomial T x bar, y bar and the tensor rank to be defined this way, smallest 

r, can you see that this is just matrix rank? What is the matrix here? For this order 2 

tensor T how will you define the matrix? Or for a matrix how will you define T 

equivalently? 

 

So you are given a matrix, how do you see it as a tensor, order 2 tensor polynomial? 

So this, so I claim that these two theories are the same at order 2. Tensor, tensor 

decomposition, tensor rank is the same as matrix, matrix rank, okay. But what is 

matrix decomposition that we are talking about? So that equivalence I leave as an 

exercise. So what is the relationship with matrix rank? 

 

So it would be a specialization of this much more general theory. But we are not 

there. So we are actually now at order 3 tensors. And we are looking exactly at matrix 

multiplication tensor. So let us move forward with that. 
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So the rank of matrix multiplication tensor for n cross n matrices over r ring R this is 

at most how much, n cube right? That is by definition. And it is at least how much? 

Yeah the at least part we have not given a proof yet, but you can show that it is n 

square. So how we actually how will you show that? So less than equal to n cube is 

simply by definition of rank. 

 

Greater than equal to n square you can show by so you can express, if you can express 

T as a sum of only n square many, or let us say n square minus 1 many L i, M i, N i. 

Then show that you can essentially make all these products zero by fixing the 

variables while the tensor will not be zero. The reason for that is that in your the 

variables each of the variables x, y, z family have has n square many variables. 

 

So intuitively if you set n square minus 1 variables to zero still something remains. 

Not the whole tensor vanishes. So it is by fixing variables. Fixing variables in T n, R 

gives a contradiction. Yeah, I would not go into the detail of this. You can do it as an 

exercise. It is not very important. More important is the connection between rank and 

matrix multiplication. 

 

Let me make the following claim that matrix multiplication for n by n matrices can be 

done in the rank of this tensor many multiplications. And that is a very useful thing to 

know because, if you decompose your tensor into few products, simple tensors then 

you also get an algorithm for matrix multiplication. Specifically for n cross n matrix 

multiplication, you get a faster algorithm. 

 

And then using the block structure you can generalize it. In fact, that is what you did 

for n equal to 2. So what is the proof of this? z equal to 1? Yes, so you look at the 

definition of the tensor and these L i, M i, N i. So say you have a representation of T 

into few products. So in this in particular, look at N i z bar. So these are the variables 

z 11 dot dot z n n. So extract the coefficient of z 11 from here. 

 

So if you extract the coefficient of z 11, you will see that on the LHS you would have 

that matrix multiplication entry of Z 11, matrix of the matrix Z you will have Z 11 

entry. On the RHS, what will you have? You will have a sum of few L i, M i 

products, right. So you have kind of Strassen’s equations that you multiply r many L i, 



M i. And from those products a linear combination gives you the first entry of matrix 

multiplication, matrix product. 

 

Now you try to extract Z 12. So compare the coefficient of Z 12 on both sides of this 

equation. And again you will see that same products r products their linear 

combination gives you the second entry of matrix product and so on. So it just follows 

from this equation, it is already tailor made. The products L i times M i, r of these are 

enough, okay. So for 2 cross 2 matrix, this is what Strassen did, essentially that he 

first wrote T as sum of 7 products instead of 8. 

 

So that was a, that was saving one product. And then by extracting these coefficients, 

Z 11, Z 12; Z 21, Z 22 you get all these 4 expressions in terms of 7 products. And the 

same thing in general will work. You will only have to do r multiplications. Little r 

multiplications in the base ring. Is that clear? Okay, and this proof? So what is the 

converse of this? 

 

That if you can do matrix multiplication in let us say, r prime many products, what 

can you say about the tensor rank of the MM tensor? Is the same proof. You get, then 

a decomposition with r prime simple tensors. Right? So this equation actually is a 

tight connection between how many multiplications. How many multiplications are 

required for matrix multiplication and tensor rank?  
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Okay, so the tensor rank of T 2 is 7. Okay, this is another way to read the Strassen’s 

complicate equations.It is just showing that instead of 8, it is 7. So it is conceivable 

that you compute tensor rank of now T 3, R and then T 4 and T 5 and so on. And at 

some point you get something better than log 7, right? So that would be a simple 

minded way to improve matrix multiplication. 

 

Yeah, but you can show that it is greater than 6. That is a separate proof. So we can 

maybe write less than equal to here. But it is known that it is 7. It is not less than this. 

Yeah. So when we say multiplications yeah so technical term for that is we want to 

count the bilinear complexity. So bilinear complexity means that given this matrix X 

and matrix Y we are only allowed to multiply linear forms. 

 

So nothing fancier than that is you are allowed to do. That is actually a reasonable 

assumption because ultimately, you have to compute Z matrix whose expressions are 

only bilinear expressions in x and y. So maybe you are confusing or you are thinking 

about circuit complexity. But this is not that advanced. This is only looking at 

products which are quadratic in x and y. Yeah, so you can try to do that. 

 

But believe it or not, this becomes very hard even for T 3. So compute the to compute 

tensor rank of T 3, the problem is that you have this tensor polynomial is how many 

variables. 27, right. So it is 27 variate cubic polynomial and so when you will try to 

discover L i, M i, N i these are all linear functions in 27 variables. So there is a huge 

number of unknowns for the coefficients of L i, M i, N i. 

 

And if you try to do this by hand which means you program and you use 

supercomputers and all that, you still cannot make it work. Even with the current 

computation, it is a very hard problem to actually find L i, M i, N i and hence R. So 

this is still an open question. Even for T 3 this is unknown. So obviously, you know 

that rank of T 3 is at most 27. But we do not know its exact value. 

 

After lot of work, what is known is that this is between 19 and 23, okay. So it is at 

least 19 and it is at most 23, which is an improvement over 27 but still 19, 20, 21, 22 

to 23 among these five values there is still a confusion, okay. With all the 

computational power this is open. So that is in practice. Theoretically there is a good 



explanation for this. So Hastad showed that tensor rank computation for even for 

order 3 tensor. 

 

So tensor rank decomposition or actually I should say computation is NP hard. So if 

you are looking at a general order 3 tensor which means it has n variables. Then as n 

grows this is an NP hard problem, okay. So in general you can never solve it in a 

reasonable amount of time. What can you say about order 2 tensor rank computation? 

How hard is that? So that we claimed is just a matrix rank, right. 

 

And matrix rank you can compute very efficiently. So order 2 tensor rank 

computation is very simple, but order 3 when you go to order 3 it becomes NP hard 

immediately, okay. And forget about higher orders. That is just harder. Those are the 

important points. What is the exact connection between matrix multiplication 

exponent and the rank? So that you can deduce. 

 

So if the tensor rank for n 0 is r 0 then what can you say about omega, the matrix 

multiplication exponential, right. So that will be log of r 0 base n 0. That is the exact 

relationship. So for T 2 you have shown 7. So it gave you log 7 to base 2. If for some 

bigger n 0 so you go to 10 by 10 matrices or hundred by hundred matrices and you 

come up with a magical algorithm or magical tensor decomposition with a very small 

r 0, right. 

 

So then you may improve omega. This log of r 0 base n 0 may be less than the best 

known, okay. Yeah, that is about matrix multiplication. Any question? Okay. In other 

than Strassen’s algorithm or the improvements on Strassen’s algorithm have come not 

by directly working with this T and r but tensors related to this, okay. So T and r is 

still not understood. But there are some other tensors which are related to T and r. 

 

And the tensor rank for those are bounded. And those bounds improve omega, okay. 

So there is a whole list of such complicated tensors but they are still, there are ways to 

study them in contrast to T and r. So that is what these matrix multiplication papers 

do. Yeah, but we will not study that. Okay, then we can move on to the new topic. 

 



So I hope you have now enough experience in multiplying things, right be it numbers, 

polynomials, matrices. So now is the time to factorize, the opposite of multiplication. 
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And that is a real task. Okay, so we will start with the factorizing polynomials, 

because this is the simplest. Integer factorization is so hard that all your security is 

based on that currently. So we will start with first with polynomial factorization. So 

do you know any algorithms for polynomial factorization? Have you seen any ways to 

factorize polynomials? Or which special cases finding roots? 

 

So what are the algorithms for finding roots? Yeah, so you must have seen only one 

algorithm which is Newton iteration or variants of it, right. But that gives you 

approximate roots. So what if you want to find exact roots? So we will actually not 

discuss for now. We will not discuss Newton iteration, we will discuss very different 

methods. Because we actually want exact roots, specially when you are over a finite 

field. 

 

So if you are over a finite field, then Newton iteration actually, I mean, it is a 

symbolic computation algorithm. So you can implement it, but it loses its geometric 

meaning. Right? Because in a finite field, you cannot really you cannot really draw a 

genuine picture. It is a discrete domain, not a continuous domain. So we will start 

with the finite fields, we want exact algorithms, not approximation. 

 



Yeah, it is Newton iteration, it works in many cases. I will not say it does not work. 

With moderated assumptions, it will work but the geometric pictures will all be false. 

So it will be the classic case of drawing wrong pictures, but getting correct 

algorithms. That also we will do in this course, but for now we will start with exact 

algorithms. So the exact problem is you are given a let us start with univariate 

polynomial over some field. 

 

Field is F big F. This little f polynomial is of degree d. So you want to compute 

another polynomial gx in the same field of degree 1 to d – 1. Okay, so its degree 

should be less than that of F and it should at least be a linear polynomial. It should not 

be a constant such that g divides f. Okay, this is the question. So in simple terms, f is 

given and you want to find a non-trivial factor g. 

 

A non-trivial means that it should not be a constant it should be at least linear. So 

degree one and it should not be the full thing so it should be degree d – 1. And we 

want to do this in we want practical algorithms for this. So which means that it should 

your algorithm should be in poly D many F operations. Okay, so the in terms of base 

field F operations, this your algorithm should be very fast. 

 

So this is the exact factor finding. Why do we pick field? We only want to look at 

polynomial over a field because there you know that there is unique factorization, 

right. So unique factorization would in particular mean that the number of factors is 

that the number of irreducible factors is at most is at most d right. So d is in the input 

so you can basically output all the factors. 

 

So you do not just have to find one factor, but once you have an algorithm to find one 

factor you can find all factors, right. So all these things are efficient then. So Fx is a 

unique factorization domain. So that is each Fx product of f i e i uniquely where f i’s 

are irreducible. And e i's are just numbers. They are non-negative numbers and f i’s 

are irreducible polynomials. 

 

So this UFD means that F will always have this list of f i’s will be unique and the list 

of e i’s will also be unique. And if you compare the degree both sides then this means 

that f i’s can at most be d many in fact sigma e i is at most d. So f i where f i is 



irreducible and they are coprime. So they are mutually coprime. That is also 

important. Okay, any question? Yeah that is a fact. 

 

Now you can actually prove it because you have seen GCD etc. Sorry. Oh everyone 

here may not no P id. Yeah, but by first principles, you can prove this which is use 

GCD algorithm. And so if there is a different factorization product g i e i prime then 

you can argue that g i has to be some f j. If it is not, if it is coprime to all the f i’s then 

you can take GCD and so on. 

 

So I will not go into the proof, but it can be proved by first principles. This is a pretty 

standard result. Division algorithm. What is an ED? Yeah, so it is ultimately Euclid 

GCD. Euclid GCD also used only division. So these are, all these things are related. 

So you can use any method, whatever you find comfortable in. Sorry. No, they may 

be proportional. One maybe f the other maybe 2f. Some unfortunate things. 
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So factorization pattern, of course, depends on the field. And so do factorization 

algorithms. They heavily depend on the field. So do its algorithms. Right? So which is 

why we will actually have several sub topics in this main topic of polynomial 

factorization. Each subtopic will look at the specifics of the field. Okay, so we will at 

least have 3, 4 parts of polynomial factorization. 

 

So it is a long topic in this course. But the byproduct of all these sub topics will be 

huge. So the byproduct will have applications has applications in diverse areas in 



computer science and in math. So example is that if you look at the polynomial x 

square plus 2 right, so over q it is reducible or irreducible? So why is it irreducible? 

Yeah, which is square root of –2. 

 

So you have to show that square root of -2 is not in q, right? That is again a small 

proof. So do that proof. Why square root of 2 irrational. So by that proof, you know 

that x square plus 2 is irreducible. Over q it is irreducible, but if you go to other some 

other field like go to a finite field, say mod 3, then it will be? So over F 3, I will call 

it. It will factorize because there + 2 is – 1 and then it factorizes. 

 

So x square plus 2 is the same as x - 1 times x + 1. In fact, it has two distinct roots. 

And mod 2 it is worse, because mod 2 it is just x square, so it has a repeated root, 

okay. So the multiplicity of the roots, where the roots are, how the factorization is, 

everything is dependent on the field. So do you know a field where every polynomial 

factorizes, right. So this is another fundamental theorem in, is it in algebra or 

analysis? 

 

One of these two proven by Gauss. That over complex every polynomial factors. Do 

you know the proof of this? When I say polynomial, I mean univariate polynomial, 

right. We are only looking at univariate. So every polynomial factors, which means to 

what extent it will factor? It will factor all the way to degree 1, right. So in other 

words, every polynomial has a root and completely splits. That is called complete 

splitting. 

 

And so C is called algebraically closed, okay. So this is the definition of algebraically 

closed field that any polynomial completely splits or degree d polynomial has d roots 

in the same field. Yeah, okay, so we will continue next time. Any questions? Have 

you seen the proof of this? Yes, but complex analysis is very heavy. So how short is 

the proof or how long is the proof? 

 

The proof is actually very short. This is, the proof only requires this modulus 

operator. A complex number and you want to compute its norm basically. The proof 

is just uses norms, uses the norm and the relationship between coefficients of your 

polynomial and the roots, okay. So it is a very, it is actually a very simple proof, but 



obviously is tricky and fundamental. So that also I leave as an exercise. So next time 

we will start factorization algorithms over finite fields. 

 

 


