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Okay, so last time we started Chinese Remaindering. The theorem said that if you 

take two integers that are coprime, then arithmetic modulo a and modulo b is the same 

as arithmetic modulo ab. And in terms of rings it meant that the factor ring Z mod a 

cross the factor ring Z mod b. This as a ring is isomorphic to the factor ring mod ab. 

And the coprimality we saw was necessary condition. 

 

So that was the mathematical part. There is actually an algorithm also which can 

achieve this. So this isomorphism map is very efficient. It can be computed in log of 

the bit size of a times the bit size of b, right. So in the terms of input size bit size it is 

quadratic. Any questions? 
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So it was efficient because we actually gave a very explicit map. This map phi was it 

just required computation of b inverse mod a and a inverse mod b. 
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So in the same spirit you can show Chinese remaindering theorem for polynomials. 

So if f, g over a field F in one variable x are, so these are univariate polynomials and 

they are coprime. Then like before, you have to look at the factor ring, right which 

will be the polynomial ring modulo f the ideal. So this is the first factor ring. The 

second factor ring is F x mod g. 

 

So mod f arithmetic and mod g arithmetic this product is isomorphic to mod fg. Is that 

clear? So like numbers, polynomials have the same Chinese similar Chinese 

remaindering theorem, which is that as long as they are coprime mod fg arithmetic 



can be broken into simpler arithmetic mod f and mod g. The proof will be identical. 

You use the same map with f inverse mod g and g inverse mod f. 

 

And the time complexity will be to compute that the isomorphism is computable in 

how many f operations? Right. So you have to recall how much time f inverse mod g 

computation requires. So you will get this in terms of degrees. So these many f 

operations which we are not going inside. So the ring operations in the f the field 

operations f we are counting as unit time. 

 

On top of that it is degree f times degree g many such operations. And here also the 

coprimality is important. Okay if they are not coprime then again this statement is this 

isomorphism equation this will be false. That you can easily see. So if you take for 

example f to be x and g to be x then mod x arithmetic versus mod x square arithmetic, 

right. Those things are very different and unrelated. 

 

Any questions? Right, so now whenever we invoke Chinese Remaindering Theorem, 

we will just invoke one of these two and the time complexity etc., will be implicit. 

Okay we have shown that these things are efficient. So the first major algorithm that 

we will see in this course is how to multiply polynomials. 
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So fast polynomial multiplication. Oh I wanted to make another remark before, why is 

Chinese Remaindering Theorem important in our study. So one thing is that always 



the motivating case will be when you take f and g to be irreducible okay. So you want 

to do arithmetic modulo f times g, which is clearly a reducible modulus. 

 

And you may not be able to study much mod f g, but when you go mod f then since f 

is irreducible, this factor ring is a field. Okay so you reduce the question of rings to 

two fields. So the understanding over fields or in fields is far more than the 

understanding in rings. So this is why, in fact, that is the very reason CRT exists. That 

it gives you, it reduces rings to fields. 

 

So this it does both in proofs and also in algorithm. So ideally you want to work over 

fields because there are more theorems over fields and over rings. More things are 

true over fields. Rings are harder to study. So this is one way to do that transfer okay. 

So back to this. Right so the problem here is clear. You are given two polynomials f 

and g in some polynomial ring. 

 

So they are polynomials in one variable x. R is some base ring. And their degrees are 

let us say less than equal to l. So we are given f and g in the input and you want to 

compute f times g as fast as possible. Already, you know how to compute an l square 

operations. But now you want to do something closer to l. So before solving this 

problem, we should have studied actually how to multiply integers first, right. 

 

 That is a more basic question than multiplying polynomials. But the only reason why 

we are not doing that is because integer multiplication algorithms use polynomial 

multiplication. So somehow the machinery is better for polynomial multiplication. So 

we will first do this, then we will do the more basic thing which is integer 

multiplication. So actually integers are first written as polynomials. 

 

And then they are multiplied in the fast algorithms. So for that strange reason, we start 

with polynomial multiplication first. So we want to beat the naive l square time 

algorithm. So we want to beat this algorithm order l square algorithm. So ideally you 

want to make it order l, right. That may be impossible. But at this point, we do not 

know whether it is impossible or possible, because the input size is order l to l. 

 



So all we know is that we will need time at least l, but we do not know how much 

more. So the correct complexity is between order and order l square. So this fast 

algorithm will achieve something between and much closer to l than l square. So I 

think some of you already know the idea how this is done. So how do you do this? 

FFT? Yeah, but what is why do you go to FFT? 

 

Yes, so we change the representation of the polynomial and hence the algorithm also. 

So this basic algorithm is looking at the polynomials as sum of monomials and then it 

is multiplying one monomial with one more monomial one from f one from g. So that 

gives you l square. Instead, you can look at a different representation, which is in 

terms of the values of f. 

 

So you compute f at some points, so you get some evaluations and same with g and 

then you multiply these evaluations. So use the property that evaluation is a 

homomorphism. So when you multiply f alpha with g alpha, that is also the value of f 

g at alpha, right. So you use that property. That evaluation is a homomorphism. So 

you can actually as well work with evaluations as far as multiplication is concerned. 

 

So that is the trick that use evaluations and the thing with evaluation is that yeah, so 

now you can recall interpolation. So interpolation tells you that for a degree l 

polynomial, how many evaluations do you need to uniquely specify f? Sorry l + 1. 

And if you assume f to be monic then only l, right. So polynomial is uniquely 

specified either by l coefficients or by l evaluations, okay. 

 

So this is the second representation we use l evaluations. Then you can multiply them 

corresponding evaluations of f and g. And, but remember that in the output you have 

to output polynomial in the monomial representation, right. So you have to then do 

interpolation again, you have to basically reverse the interpolation to get the 

monomial representation. 

 

So that is the sequence of steps, change the representation, multiply, and then again 

change the representation back. So in the middle of this Gauss’ trick is used which 

will give the efficiency. So we will see these things. Yeah, so what do these keywords 



mean? Let us now describe in more detail. So since somebody mentioned FFT, so this 

means that you will not take any arbitrary evaluation but some special evaluation. 

 

So what are the points at which you evaluate? Sorry. Yeah, so you will use complex 

roots of unity. Yes. So let us move to that. 
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So first we make a major assumption that the base ring has those. That the base ring R 

already has complex roots of unity. So suppose R has a primitive l-th root of unity 

omega, okay. So this may not be true because for example, if ring was ring of integers 

then it will have the second root of unity which is -1. But it does not have the third 

root of unity. So symbolically you are looking at this 1 raised to 1 over l or l-th root of 

unity. 

 

So in general these are available in complex field but may not be available anywhere 

below complex field. So we are assuming that R has whatever we need, okay. So that 

is a major assumption. Usually this assumption is not worked out in other courses. But 

true to the name algebra in this course, we will work it out. So what do you do when 

R does not have l-th root of unity which is actually all the time. 

 

In all practical applications, l-th root of unity will not be there in R, right. So there is a 

major construction that you have to do to get rid of this assumption. But let us first see 

the basic idea assuming this. So the idea is after this assumption so evaluate f and g at 



these points. So points being omega to the zero which is 1, omega, omega square and 

it goes up to l – 1, right. So these are the l points. 

 

So you get 2 l values in R. Then you multiply them. So omega i with omega i, f and g 

respectively. This multiplication will happen in the ring R. This is happening for all 

i’s. So these are l multiplications you will do. These are l R- operations. So we do not 

have to specify how this is done because this is in the base ring. So that we do not 

specify and then you have to do interpolation to get the product h, right. 

 

So those are the three steps. So what is the complexity of this? If you just implement 

this, what is the complexity? Already in step one, right, because so it seems that we 

have not made any progress. We have just added a lot of keywords but no progress 

whatsoever, because just to evaluate f at omega to the i, in step one, it takes l steps 

because there are l monomials to be computed, and then added. 

 

So l many R- operations and then you have to do this 2l many times because f at l 

points g at l points, so this is l square, right. So there is no progress it seems because 

the coefficients of f are arbitrary. So those arbitrary multiplications you have to do. 

“Professor - student conversation starts” Sir for interpolating h wouldn’t we need 

2l coefficients? “Professor - student conversation ends”.   

 

That is true, yeah. Yeah, those things are there, but say you assume that l is big 

enough. So we started with the assumption that f and g have degree at most l. So in 

practice you use l by 2. So f and g are degree l by 2 each. So each is of degree l and 

then we keep working with the same omega. That just a readjustment. So the bigger 

problem is that this is not improving on l square, right. 

 

So this is why just changing the representation is not enough, you have to use 

something called the trick of Gauss, which is a clever halving step in a recursion, 

okay. So we will actually do a recursion. So it should be compared with the merge 

sort. So merge sort sorting algorithm requires for l elements l square, I mean without 

clever recursion, it is l square. 

 



But with merge sort you halve it and then you get a recurrence formula, which gives 

you l log l. So same thing we will do here, same effect. But the reason will be 

different. So yeah, let us basically we want to do step 1 and step 3 in a faster way in a 

recursive way. So those are the problems. 2 is trivial. 2 is not the problem the problem 

is 1 and 3. How to improve over l square? 

 

So say the polynomial is I said degree l but say this is l - 1. So there are l coefficients 

a 0 to a l – 1. The a i’s are in the ring R. So let us take this as the definition of a i’s. So 

this evaluation step in the literature it is called Discrete Fourier Transform, okay. So 

the Discrete Fourier Transform is just a longer name for evaluation at roots of unity. 

So we will call it DFT omega. 

 

So DFT omega is an operator, which has already taken an argument omega. And then 

it will take these coefficients as an argument a 0 to a l – 1 and output the values of f at 

omega to the i. So a 0 dot, dot, a l – 1. It will map it to f omega 0, f omega l – 1. Okay 

so it takes this l coordinates and defines the polynomial f based on this and then f it 

evaluates at powers of omega, which is also a parameter to the operator. 

 

So this operator is classically called Discrete Fourier Transform. This is what we 

wanted to do in step 1 once for f once for g. Now we want to compute this in a very 

fast way, not in the trivial way, but faster way. So for that we need some assumptions. 

So we will assume that l is a power of 2. Why cannot we do that? Why can we assume 

l to be a power of 2? 

 

Yes. So whatever is the degree upper bound for f and g how far do you think is a 

power of 2 from that degree bound? Sorry, twice yes. You just have to maximum you 

have to double that upper bound. So you double it and you use that power of 2 as the 

new upper bound. So that is why it is trivial. You can assume that l is a power of 2, 2 

raised to n, okay. And then for this we will give a fast method to compute the 

operator. 
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So well I think first I prove a nice property of the operator before moving to the 

algorithm. So let us first observe our relationship between so DFT omega is the 

operator you want to study. Actually in the algorithm idea already you would be 

interested in also finding the inverse of this operator, right because in step 2 you 

multiply the values. And then from the values you want to go back to the polynomial 

h. 

 

So that is nothing but inverse of DFT omega. So what is the inverse of DFT omega? 

DFT, yeah nearly DFT omega inverse. So that is what we will show in this lemma 

that if you compose this with DFT omega inverse. So you apply the first operator 

DFT omega on a vector and then you apply DFT omega inverse. Omega inverse is 

simply 1 over omega. It is just this next primitive l-th root of unity. 

 

Then the composition is actually just a scaling operator. So it is l times identity, okay. 

So this is just the identity transformation, linear transformation. So remember that 

DFT is a linear transformation. It is acting on a vector space. Is that clear from this? It 

should be clear from the definition in blue that this map that we have defined this is a 

linear operator. 

 

So if you take this vector a bar, another vector a bar prime, right how is the action on 

a bar plus a bar prime? So a bar defines the polynomial f, a bar prime defines a 

polynomial f prime. When you take the sum you actually get f plus f prime, right. So 



the image also can be decomposed as sum. So this is our linear operator with respect 

to what field. So that will depend on whether R is a field or not. 

 

So but if R is a field then this is a linear operator over R, okay? Yeah, so identity is 

simply the, it sends a bar to a bar. And l times identity is that it is scaling a bar to l 

times a bar. Okay, that is the formula we want to show. This is a extremely fortunate 

formula because it tells you that inverse of DFT is again DFT. So it also has a simple 

similar form. So if you show that step 1 is fast, then step 3 is also fast. 

 

Yeah, that is a good point. Why would l not be invertible, l is 2 raised to n. So what is 

the reason? The characteristic of R is 2. So just rule that out. Say that the 

characteristic of R is either 0 or odd. And what to do with characteristic 2? That will 

be a simple exercise. We will use a slightly different, we will use as a simple trick to 

handle characteristic 2. Yeah, but then we are digressing. 

 

So those things are not important. Let us first prove this and go to the efficiency point. 

So DFT I write as a matrix product. So DFT is matrix action is you have first row is 

all 1. Then you have 1, omega, omega to the l – 1 and so on times a 0 to a l – 1 okay. 

So once written this way, it is easy to see f 1 is just some of the a i’s. And f omega is 

basically a 0 to a l -1 are the coefficients defining f right. 

 

So when you look at the left hand side, you are actually evaluating f at 1, omega dot 

dot omega l - 1. So that is the matrix action. So what is the matrix action now of DFT 

omega inverse on this? So you will multiply, on the left hand side you will multiply 

by the matrix where you replace omega by omega inverse. So this is the following 

product. So this is now omega inverse. 

 

So this matrix times the above matrix, right. And now you will with some practice, 

you will be able to see that the first row, all 1 row when you multiply it by the first 

column of the second matrix, right that will give you clearly l. But the inner product 

of the first row with the second column is the sum of 1, omega, omega square, omega 

to the l - 1. And what is that? Why is that 0? Yeah, good. So then we have to prove it. 

So let us prove that first. 
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So x to the l – 1 this polynomial has factors or roots, right. This is the factorization 

over complex of x to the l – 1. What is the coefficient of x to the l – 1 in the above? 

So in the left hand side it is 0 and in the RHS it is just with sign 1 plus omega dot dot 

okay. So this means that the sum of omega to the i vanishes. That is the first thing. 

 

But in the matrix product you are also getting when you multiply first row with the 

third column, they take the inner product. Then you will be looking at sum of 1, 

omega square, omega 4, dot, dot, omega to the 2 l – 1. So what is that? So let us 

shorten this. So what is this equal to, omega to the 2i? What is omega square? Is it a 

root of unity? But it is then l by 2-th, right. 

 

So you can replace it by omega prime or maybe we can use we can parameterize this. 

So this was omega l. This is now, this can be written as l by 2, okay. This is the l by 

2th because l is 2 raised to n. So this is 2 raised to n -1. Omega square is 2 raised to n 

-1 th primitive root of unity in complex. So when you look at this sum this will give 

you all these l by 2th roots of unity possibly with I mean with repetition, you get 2 

basically. 

 

Each of these are doubled. So just like you did argument before, you can do now, you 

can look at x to the l by 2 -1 and this also will be 0 okay. Then next will be 3 i. So 

what is that? What is omega l cube? What is the order of this? Yes omega l cube is 

just like omega l. So omega l powers will give you all the l-th roots of unity. And 

omega l cube also has the same property. 



 

So just the first equation can be used. So you can think of it as it is omega l some 

other omega l prime, some other l-th root of unity and then you are raising it to i, 

which by the above argument, top argument is 0. So it is just this argument 

appropriately changed for the power okay. So for odd the argument is the top 

argument. For even, like for 2 it was you bring it down to l by 2. For 4 it will be bring 

it down to l by 4 and so on. 

 

Okay, so this you can complete. Okay, so once you complete that at least the first row 

has been handled. Right. So first row you saw is l followed by zeros. What about the 

second row? Second row is 1, omega inverse, omega, inverse l -1. Sum it up. So that 

sum will be and - 1 you can think of it as l - 1, right because it is on top of omega. 

Omega is order l. So -1 and l - 1 are the same. 

 

So an l - 1 is odd. So by the green calculation, this will still be 0. So this will be 0. In 

fact, with all the columns you will get 0 except the second column. Second column 

will cancel - 1 with 1. So there you will get l. And this pattern then continues and 

gives you the identity matrix. Is that clear? So DFT omega, omega inverse when you 

compose them, then you get scaling effect. Scaling is exactly by l, okay. 

 

So one note is assume l to be not a 0 divisor of R that is characteristic of R is not 2, 

okay. So 2 raised to n will be 0 divisor if and only if it is actually 0. In all other cases 

2 raised to n will be invertible. So for now you can assume characteristic of R to be 

not 2. When it is 2 we will see a different argument. It is a simple correction. So the 

reason why you need l to be invertible so characteristic of R not equal to 2 implies 

that l inverse exists. 

 

So you want l inverse to exist, so that this formula lemma 1 you can say that DFT 

omega inverse divided by l is the inverse. You wanted that to make sense. So we want 

to look at l inverse times DFT omega inverse. Yes, what was the question? 

“Professor - student conversation starts” Sir, characteristic of Z 6 so that is only 6 

but 2 is still a zero divisor, so it will not be even. “Professor - student conversation 

ends”. 

 



 Oh I guess what I mean here is that it is a field. Yeah, but there are now too many 

implicit assumptions. Okay, let me change this. So 2 raised to n is not a zero divisor if 

and only if the characteristic is odd. And when the characteristic is odd then l inverse 

will exist. Let us live with this. Yes 2 does not divide or characteristic is 0. Right. So 

now we can see the see Gauss’ trick how do you compute DFT faster than l square. 
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But Gauss had a better idea. So that idea is by as I said recursion, but how do you 

recurse? Surely you have seen it. But generally you do not understand it. Do you 

remember it? So this f x monomials you divide into kind of even monomials odd 

monomials better than faster than l square, okay. So you will be able to reduce 

actually both the roots of unity and the degree of the polynomial. 

 

So that is how that is what is meant by recursion. And the algorithm you have seen. 

So what you get after that is this statement that DFT omega can be computed in order 

l times log l R- operations, okay. So instead of l square you will get a l log l. So let us 

just implement what we discussed now. So you will write f x as even monomials. So 1 

x square, x 4, x 6 monomials that part and the remaining part that is the odd part. 

 

So even part is a function of x square and odd part is a function of yeah if you remove 

x, then it is also a function of x square. So it is this. So uniquely f x will give you f 0 

and f 1. And then you use the divide and conquer trick paradigm. So remember that 

you wanted to evaluate f at omega to the i. Instead you will evaluate f 0 at omega to 



the 2 i or equivalently you can think of as evaluating f 0 at think of omega square as l 

by 2th primitive root of unity, right. 

 

So the points have been halved and what is the degree of f 0? That is also l by 2. So 

the degree of f 0 has been halved and the points have been halved. So truly the DFT 

omega has been halved, okay. The problem has been halved. So this is the first half 

and f 1 is the second half. And then you can combine it by just taking a linear 

combination of f 0, f 1. So that divide and conquer is now straightforward. 

 

So first you compute DFT omega square on f 0. So let us say this gives you, by f 0 I 

mean look at the coefficients of f 0 that vector. So on that vector you compute apply 

DFT omega square. And suppose you get e 0 prime to e l by 2 - 1. So you get now l 

by 2 ring elements. And the same with the f 1. So e 0 prime, prime okay. And now in 

step 2, you want to combine these two. 

 

That will give you DFT omega on f. So this was an important thing, which you should 

note that this is DFT omega square, okay. So the primitive root of unity order has 

been halved here. And also the dimension on the vector space has been halved to this. 

So here you just merge, merge the two solutions. So how will you merge? So you 

want to say e i prime plus is this all for all i? 

 

Yeah, so this is actually only for half the i’s. So up to i less than l by 2 this is okay. 

And for the other i’s so the ones that come after l by 2 and beyond. So these ones will 

give you minus sign, okay. Any questions? So you get all from all the l coordinates. 

That is e 0 to e l – 1. So you have this divide step. Now you have the merge step and 

that is it. So you will just output this. 
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So the correctness of this should be fine, right. The way this is written, it is already a 

proof that we just have to analyze the time complexity, right how many R-operations 

does this take? So let it take T l time, T l R- operations for DFT omega. Then we have 

the following recurrence. So the recurrences T l is less than equal to what is the 

relationship with T l by 2? 

 

Yeah, so it is twice because there were two instances f 0, f 1. Those many R- 

operations. And the merge was around l. So that many R- operations. So which if you 

solve like the merge sort you will get exactly a log l okay. So the time complexity is l 

log l, many R- operations. This is for our idea number 1, where you do the you 

wanted to evaluate f and g. So all the evaluations are basically computing that is the 

same as applying DFT twice. 

 

So that can be implemented in l log l, right. And then you had idea number 2 and 3. 

So in 2 you wanted to multiply the values and then in 3 you wanted to interpolate 

back. So let us see what happens there. So actually at this point, it should already be 

clear that all those steps will take similar time. So ultimately you would have 

multiplied polynomials f times g is computable in l log l R- operations. 

 

So the proof is just thus the sequence. So you take f and you do DFT. You do DFT so 

you will get f 1, omega l – 1. And on g you will get so this one is DFT omega. So this 

step can be done in l log l by the previous lemma. Once you have these 2 l values, you 



will just multiply them coordinate wise. So that takes R- operations. So multiplication 

gives you the values of h. So you get h at 1, omega dot, dot h at omega to the l – 1. 

 

So that is the multiplication in the ring. So that time will be how much in this step? 

This is only order l right. This is the cheap step. And now you want to get back h in 

monomial representation which is inverse DFT which is again a DFT right. So on this 

you apply DFT omega inverse and that will give you h polynomial h x. So you apply 

DFT omega inverse and then you scale down by l, that is a trivial step. 

 

So overall this will take l log l right all the steps together. So all the components now 

are in terms of this single operator called DFT right. So this is the fundamental 

operator. Any questions? Okay, so now we have to unravel the big assumptions we 

made, right? Because they are nearly always false. 

 

In practice, if you take R to be complex then you have omega present, but then saying 

that your algorithm takes l log l complex operations is not of much help because 

computers cannot do complex arithmetic, right. Complex numbers themselves have to 

be represented by approximated by integers, ratio of integers. And then integer 

arithmetic has to be done. So ultimately everything has to be in bits. 

 

So saying that you have a fast algorithm in terms of complex operations is actually 

practically useless. So you have to get an algorithm, given algorithm that is l log l or 

similar complexity in bit operations or at least in Z operations. So this is still far from 

that. So we have to actually create omega when it is not there, right. It needs some 

creation. 
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So what if R does not have omega. So what we will do here is that we will create 

omega out of thin air. So what is the meaning of this? How do you create something 

in algebra out of thin air that does not exist? Yeah, so you take a ring extension. So 

this l-th root of unity is not there in R. So you take an extension such that this gives 

you a virtual omega, not a complex omega, but just a virtual representation of similar 

properties. 

 

So consider an extension E of R. It is a ring extension. So R y modulo. So what 

should you quotient out? So we have gone to the polynomial ring of R y. You have to 

quotient out by something so that this omega gets created. So first choice could have 

been y to the l – 1. Is that correct? It is not the correct choice because it does not I 

mean so all these things here are vague. 

 

But in a way, modulo y to the l – 1, y is not does not have order it does not behave in 

a primitive way. So for it to be primitive, you want to say that y to the l by 2 should 

be -1 okay. So you will mod out by that. y to the l by 2 + 1 okay. So if you look at the 

order of y, multiplicative order of y element y in this ring extension E, y to the l by 2 

is -1; l is a power of 2. So hence the order of y is actually l. 

 

I think you will also be fine with y to the l - 1. But at this point I want to avoid that. 

Let us continue with this. But you could take this or you could take y to the l - 1. So 

that will provide you with this virtualized version of omega and you can talk about 



now y to the 0, y, y square dot, dot y to the l - 1. So you can think of that set as the set 

of points. And you try to do everything like you did before. 

 

Just syntactically replace omega by y, okay. But then you have to, the only issue will 

be in the time complexity. So you because the time complexity you want to say how 

many operations in R. So you have to carefully analyze because you are now working 

with the polynomials over R. So you have to do polynomial arithmetic there above R 

just to do computations in E. 

 

Okay, so we have to be careful with the time complexity analysis. So we consider E to 

be this and we take omega to be now this y okay. That is the solution to work with 

omega when omega is not there. Oh I remember. So this one property of this 

polynomial so is y to the l - 1 irreducible? It is not. Is this polynomial irreducible over 

Q? Yeah, so this is irreducible, that is one good thing. 

 

So I want to work with this because it is it has this irreducibility property over 

rationals. Generally R will be Q or Z. So in that setting this will be an irreducible 

polynomial. This also I leave as an exercise. So we will build on this in the next class. 

Yeah, but R is our ring. So there we have to, probably that also you can show as long 

as characteristic of R is not I mean is odd. It should be true. 

 

Yeah, those are side observations, you can prove them as exercise. So it is very 

important in what we are going to do in the next class. 

 


