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Screen recorder. Okay start. So in the last class we had started studying this new 

mathematical object that we are calling lattices, right. 

(Refer Slide Time: 00:38) 

 

So pictorially they are just points arranged in a grid multi-dimensional or higher 

dimensional grid. So in the input you are given basis elements, you are given vectors 

b 1 to b m and then the lattice generated by these vectors is integral combinations, 

right. So the important thing here is that gamma i’s that you are using they are all 

integers. Why integers? 

(Refer Slide Time: 01:12) 



 

Well because in the problem of factoring polynomials this alpha i and beta i that you 

used they were integers, right. And moreover this x to the i g k and p raised to 2 raised 

to k, these are polynomials or these which will be seen as vectors with integral 

coordinates, right. So everything here is happening over integers. And there you want 

a short vector. 

(Refer Slide Time: 01:39) 

 

So that is the SVP problem. SVP problem would be a stronger problem, stronger 

question. You want the shortest, you want a shortest vector in the lattice spanned by 

the vectors b 1 to b m. But that is hard. So instead what we will now do is we will find 

an approximate shortest vector, okay. And this algorithm, approximation algorithm is 

due to L cube, Lenstra – Lenstra – Lovasz from the 80’s. 
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So this was a breakthrough result and it is applied in many places as we will see later. 

It started with the integral polymer factoring. Okay, so the first preprocessing step 

which is a good property to study for SVP is that we can assume the generating 

vectors b1 to b m to be linearly independent over reals, okay. So that will be kind of a 

simplification. So why is that possible? So let us consider coordinates of b1 to b m. 

 

So consider their coordinates and the matrix B that they defined. I used the same b. So 

b 1 has coordinates b 11, b 12 to b 1n, n is the ambient space. Then the same thing 

you do with b 2. And finally with b m, okay. So this is the n cross m matrix of 

integers. Remember that m is right now m in this question may be less than n, equal to 

n or greater than n, okay. These were just given vectors. 

 

So m can be anything but we will simplify it. So the way we will do is you can think 

of it as a modification of column operations, okay. So we will actually take 

combinations, linear combinations of the columns. And we will try to make this 

matrix triangular matrix, okay. But remember that you are only allowed integral 

combinations. You cannot use non-integers. 

 

So the first thing that we will do is we will take the GCD of b 11 the first row. So b 

11, b 21, b m1, okay. So let consider a combination of these b i ones. So b 11 to b m1. 

Consider a combination which is equal to GCD of the first row, okay. So compute the 

GCD and a i’s can be computed by for example, you can use Euclid’s extended, 

extended Euclid GCD algorithm. So do that piece by piece, okay? 



 

So simulate every step of the Euclid GCD algorithm on the columns. So let us write 

that down. Apply the extended Euclid GCD algorithm or let us say transformations on 

the columns, on the columns of the matrix B, okay fine. So what do you get? You get 

a transform matrix. 
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So say the new columns are b 1 prime to b m prime. So for example, if b 11 is smaller 

than b 21 then what you will do is you will actually compute the quotient of b 21 

divided by b 11, right. And that quotient you will multiply with b 11 and then you will 

subtract it from b 21. So do that operation. And then you get a remainder and you get 

b 11. Then you divide b 11 by the remainder and multiply by the quotient. 

 

Take the difference. So keep on doing this. Ultimately what you will have is GCD g 

in the top left corner. So in this matrix b prime (1, 1) -th entry becomes g, okay. Let 

us ensure this. Ensure that the top left corner becomes g after all these operations and 

the remaining entries will become zero right. So let us look at this. So the remaining 

entries in first row becomes zero, right. 

 

So which means that now the matrix B looks like, so B will be transformed to B prime 

which looks like this. There is g and the remaining entries in the first row have 

vanished. In the first column you have some entries. They may be zero, they may not 

be zero, you do not know. And then you have this lower sub matrix, right. So this is n 

cross m. So you get this n cross m matrix B prime. 



 

So what kind of this combined first step has achieved is it has made the first row in 

this normal form. So it is all, it is almost the zero row except the first entry being 

GCD. So what is this transformation? The transformation is B prime is basically B or 

you did column operations, right? So it is some multiplication by a matrix on the 

right. B times u where u is what? 

 

So u follows Euclid’s GCD algorithm. U follows each step of Euclid GCD algorithm? 

So what can you say about the determinant of u? Right, that is the so that question is 

important. Because you want to claim that the lattice generated by B and the lattice 

generated by B prime they are the same, okay. If they were not the same then it will 

not be a reduction, right. 

 

Then looking at lattice B prime, we will not be able to get SVP of lattice of B. So now 

we want to show something special about u so that the lattices are the same. So the 

claim is that u is unimodular. What is unimodular? That the determinant is plus minus 

1. That is the determinant of u is plus or minus 1, which means that its inverse, so u 

inverse is integral. 

 

So once we show this you can see that the lattices of B prime and B are the same 

because the matrix you are applying its inverse is also an integral matrix, right. So any 

combination that you take off the integral combination of vectors or columns of B, 

that corresponds to something in B prime and vice versa, right. Because you can 

multiply B prime with u inverse. 

 

So this will imply that the lattice generated by B prime is the same as the lattice 

generated by B. So what is the proof idea? Well, the proof is just that the division 

step, one step of Euclid GCD is division step. So a b is going to a b – qa which is 

equal to a b times 1 0 and 1 –q, right. And if you consider the determinant, so 

determinant of 1 0, -q 1 this determinant is 1, okay. 

 

So this is the only thing which is needed to prove that u is unimodular. Because in one 

step of Euclid GCD you are doing division. You are transforming two numbers a b. 

So a vector a b to this by multiplying with a matrix, which is which has determinant 1. 



And when you repeat this you are doing you are multiplying such matrices so the 

determinant will remain 1 or -1 okay. 

 

It may become -1 because you may be permuting the columns also, okay. So when 

you permute column then you may get a sign. So it will always remain plus minus 1 

in the kind of transformations that we did, okay. So that is it, right. That finishes the 

proof of, well that finishes the first step. Now we have to focus on this blue part the 

sub matrix. 
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So repeatedly apply. So this trick is by Gauss and Euclid. So apply this trick to get a 

matrix B tilde. So what is happening? Row is becoming 0, right. Except in the first 

entry the row is 0. So you are getting a lower triangular matrix. Ultimately, you will 

stop at this. So some A. So in the end, you will have only 0 entries and the first 

columns, first few columns will be nonzero. Let us say m prime many, okay. 

 

So we have 0 in the end and the matrix A is a square matrix with which is actually 

lower triangular, where A is lower triangular and most importantly, the lattice remains 

unchanged, okay. So we have a very nice structural property here. What we have 

shown is that given any input vectors with integral entries, we can reduce, without 

changing the lattice we can reduce them to linearly independent. 

 

So A is lower triangular and invertible, okay. So the rank of this remaining part is m 

prime. So whatever was the rank of the input vectors that rank many vectors you will 



get. So first m prime columns form a basis over reals. Note that m prime is at most m 

and also since we are talking about rank now it cannot exceed n, okay and it spans 

lattice that we already said. So this finishes the proof of the preprocessing step. 

 

So from now on what we will do is so we work with R linearly independent vectors b 

1 to b m in the ambient space Z to the n and we are interested in the lattice generated 

by them and we want a short vector, okay. So now we will do some we will actually 

revise some linear algebra. So given a basis of a vector space of a real vector space 

what you know is you can find an find another basis by linear transformations. 

 

You can find another basis which will be orthogonal which means that the vectors 

they will be perpendicular to each other, okay. So the angle between the basis vectors 

in the orthogonal basis is 90 degrees. So how is that done? So let us revise the idea, 

basic idea of that. 
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So in the vector space generated by this B. So b 1 to b m okay using coefficients from 

reals there is an orthogonal basis. This is a critical, this is a very important property in 

real vector spaces and the idea can be seen pictorially. So what you do is you have 

this vector b 1 and you have some vector b 2. So you project b 2 on b 1. Okay you 

project this. Basically look at the component of b 2 parallel to b 1 and subtract that 

component. 

 



So when you subtract that component you will get this vector which is the component 

of b 2 orthogonal to b 1. Okay, so pick this. Call this b 2 star and let us call b1 b 1 

star, right. So this is the starting point of Gram - Schmidt orthogonalization algorithm, 

right. So you are given vectors, you start with the first two. You are given a basis in 

fact, start with the first two. Remove, project b 2 and b 1 and remove that component 

from b 2. 

 

So what you are left with is called b 2 star and that is orthogonal to b 1 star, right. So 

the important thing here is this 90 degrees, right. This orthogonality is what we want. 

So this two dimensional idea is the most basic idea and then we will build on this. We 

will make it higher dimensional. So let us make it symbolic first. So orthogonalize the 

vectors b 1, b 2 to b 1 star is just b 1, b 2 star is b 2. 

 

From that you remove project b 2 on b 1 in that direction right. So you have to take 

the unit vector. So it is this. So basically look at the direction b 1 and project b 2 on 

that. That is the component b 2, b 1 over norm of b 1. And then in that direction you 

do the subtraction. So you can check that b 1 star b 2 star inner product is zero, okay. 

This follows easily. And second thing is that the shorter of b 1 star, b 2 star is the 

shortest vector in the lattice generated by the two, okay. 

 

So the, why is that? So this is an important point. This is an this is basically a special 

case of lattices where the generating set or the basis is orthogonal. So in that case SVP 

problem is very simple. You just look at the shortest basis, shortest basis vector. That 

will be the that will be the SVP. That will be the shortest vector in the lattice in fact. 

The proof is just by looking at combination. 

 

So alpha 1, b 1 star plus alpha 2, b 2 star if you look at the norm, again Euclidean 

norm. So this is just sum of squares, okay. So now since so any vector in the lattice 

alpha 1, alpha 2 are integers. So alpha 1, alpha 2 are at least I mean either one of them 

is zero or at least 1 right. So if alpha 1 for example is 1 or more then this will 

contribute the length of b 1 star square. So any combinations length will be at least the 

smallest vector, okay. 

 



This is an important thing to remember, right. So this is the sum of square property 

which is happening because of orthogonality and this shows that lattices of orthogonal 

vectors shortest vector is very easy to find. When you are given an arbitrary basis of a 

lattice it may be impossible to so there may not be an orthogonal basis, right. That is 

the issue. Lattice B may not have an orthogonal basis. 

 

So that is the hard case. So what do you do? So since we are only interested in 

approximation of the shortest vector, so we will compute the Gram - Schmidt 

orthogonalization anyways and then try to use it to approximate, estimate the shortest 

vector okay. So let us look at Gram - Schmidt in general, higher dimension. 
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So we will call it GSO. So this is just an extension of the picture we saw. So the first 

vector we will call b 1, b 1 star. And then the other vectors we will subtract the 

projections. So this is just a for loop. So b i star is from b i you subtract the 

components of the previous orthogonal vectors. So b 1 to b i - 1 star, okay. So b 1 star 

to b i - 1 star is the space for which we have already computed an orthogonal basis. 

 

So you project b i on that and just remove that projection. So obviously what remains 

will be orthogonal to the first i – 1 vector space. So that gives you b i star. This 

quantity will be very important and so we will call this quantity, we will give it a 

name. This is mu i j okay. So what combination are you taking of b j star? So that is 

mu i j. Okay. So let us prove a, well so it is an easy observation, you can prove it as a 

small exercise that GSO gives an orthogonal basis, okay. 



 

This you must have seen in basic linear algebra courses over reals. Is there any 

relationship of our shortest vector to b i star. Okay, so for every nonzero vector in the 

lattice let us call it b; b is at least b i a star. This is a claim. So this relates kind of the 

length of the vectors in the lattice to what you get after GSO, okay. So if you just pick 

the minimum vector in the orthogonal basis you at least know that every nonzero 

vector in the lattice is lower bounded by this. 

 

So the shortest vector cannot be smaller than this. But we do not know how good an 

estimate this is. Okay, but let us start with this property. It is a simple proof. So 

consider this combination of b i’s. Since b i’s we are assuming linearly independent 

lambda i’s will be unique and they are integers for integral lambda i’s. For lambdas 

integral and let us say lambda m is nonzero. 

 

Okay, something has to be nonzero because b is nonzero. So let us say lambda m is 

nonzero. Let us now use the GSO basis. So let us write b as lambda 1 b 1 star. Well, 

because b 1 star is b 1. What is b 2 star. So b 2 star is or well what is b 2. So b 2 is b 2 

star plus mu 21 b 1 star. What is b 3? So this pattern will continue, right. b 3 will be b 

3 star plus this mu times b 2 star times mu plus mu times b 1 star and so on. 

 

So in the end you will just get lambda m times b m star plus m projected on m – 1, m 

projected on 1 fine, okay. And then you can look at the norm square. So now since 

you have written b as a combination of orthogonal vectors you can use the sum of 

squares, right. So you will get the coefficient of b 1 star squared the last one which is 

b m star. So what is the coefficient of b m star square? b m star square is lambda m 

square, right. 

 

So you get these sum of squares b 1 star square, b 2 star square, b m star square with 

appropriate coefficients depending on the lambdas and so this is clearly because of the 

real squaring, this is at least lambda m square b m star square. 
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Okay, so which means that we have shown the norm of b is at least lambda m times b 

m star which is at least b m star. So we have shown that the length of b is at least as 

much as this b m star which contributes as a component to b, okay which means that 

the min property is satisfied. So this is at least the min of b i star right, which is what 

we wanted to show. So this finishes the proof of the lemma. 

 

That min of b i star is a lower bound on the shortest vector of the lattice. So what will 

L cube do? So the L cube algorithm tries to make the angles in a basis of lattice close 

to 60 degrees, okay. So instead of trying to achieve 90 degrees which is what 

orthogonalization is. L cube algorithm actually tries to get to 60 degrees. So you can 

call this pseudo-orthogonalization, okay. 

 

So it tries to pseudo-orthogonalize the basis of the lattice because orthogonal basis 

may not exist, right. So you can only work with some approximation. And then in that 

basis in that basis it will pick the first one okay. So just like we saw in the previous 

lemma that the smallest b i star may be a good vector to start with or a good length to 

start with this is what L cube algorithm will do. 

 

It will actually try to orthogonalize as much as possible around 60 degrees angle and 

then in that basis once it has found the basis in that basis it will just pick the smallest 

one and output. Okay, this is roughly the idea which we will now implement, okay. 

So let us define this basis now properly. So L cube finds a reduced basis of the lattice 

b 1 to b m. So these are these are lattice elements say c 1 to c m. 



 

There will be m many because you started with m many, number cannot change and 

they will be integral. So remember that you want the same lattice. So they should all 

be in the lattice such that so the condition, first condition is a bit mysterious. But you 

will see why it is important when we analyze. Okay, so this is the first condition. This 

says that essentially so you first look at the GSO of c 1 to c m. 

 

So let us say it is c 1 star to c m star. Okay, let us just look at c 1 star and c 2 star. So 

what is this condition saying for that? So this condition is saying that this c 2 star 

should be pretty close to what it would have been if you were able to implement GSO 

in the lattice. Okay, so if you were able to implement GSO, then this RHS this c i plus 

1 star plus mu i + 1 i c i star this would have been equal to c i + 1, right. 

 

So this is actually comparing the kind of the length of c i + 1 with c 2 with c 1. And it 

basically is it is a way to in a way it is trying to ensure that c 2 is not much smaller 

than c 1, okay. The ratio is kind of three fourth. c 2 should be at least well square root 

of 3 by 2 times c 1. Okay, this is so it is a bit hard to motivate this. You will 

understand this only in the analysis. 

 

And the second condition it wants is that this after GSO and c 1 to c m this so called 

this thing which we are calling reduced basis the mu i j should be at most half where 

mu i j is defined as before in GSO, okay. So the first condition is kind of saying that c 

i + 1 is not much smaller than c i. Let us say that and the second condition is saying so 

mu i j if you think of it as cos theta right, this cos theta less than equal to half is or cos 

theta around half would mean theta is around 60 degrees. 

 

So angles around 60 degrees, okay. So this is what we define as a reduced basis. So in 

a lattice, can you find a basis where the vectors in this order their GSO is the c i + 1 

vector is not much smaller than c i. So kind of increasing in length and second is that 

the angle of c i + 1 on the previous subspace is around 60 degrees. So kind of 

orthogonal also, okay. So kind of sorted and kind of orthogonal. 

 

These are the two ideas that we are trying to approximate here. Well, we of course do 

not know whether reduced basis exists, but our algorithm will construct it. So in 



particular, it will show that this exists as well and efficiently computable. Let us see 

the implications of this. 
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So this in particular implies the condition 1 for example. Condition 1 implies that c i 

star square is less than equal to 4 by 3 c i + 1 star plus this 4 by 3 mu square, right. 

And mu by second condition is less than equal to half in magnitude. So that is one-

third thing. Okay, which implies that c i star is at most c i + 1 star right, which is 

again saying the thing that I was saying before that c i + 1 star is not much smaller 

than c i star. 

 

And equivalently c i star is not much bigger than say i + 1 star, right. So kind of order 

is being maintained by this and the impact of this is when you repeatedly do this what 

you get is that c 1 star, what is c 1 star? c 1 star is less than equal to square root two 

times c 2 star. Then square root 2 square right and so on. So it will as you increase i 

you will get this ultimately, okay. 

 

So c 1 star is smaller than square root of 2 raised to m - 1 times c i star for all i. So 

now if you use this orthogonality of c 1 star to or you use the lemma that we had 

shown before right that in the lattice generated by c 1 to c m. So by the lemma before 

we get that the shortest vector in the lattice generated by c 1 to c m will be at least 

obviously, c 1 star. c 1 is equal to c 1 star right. So this is a lattice element. 

 



So the shortest vector is at least c 1 star. Since c 1 star is equal to c 1 is in the lattice. 

So the shortest vector is at least c 1 star and c 1 star is less than equal to this thing 2 

raised to m – 1. 2 raised to m – 1 by 2 times the shortest vector, okay. This follows 

from the above inequality because, you know the orthogonal basis comparison of c 1 

star with other c i stars. 

 

So using that you can deduce that c 1 star cannot exceed 2 raised to m - 1 by 2 times 

the shortest vector because it is unable to exceed that for any c i star, right. So this 

implies together, all in all it implies that c 1 is a good c 1 is in the lattice and it 

estimates the shortest vector well by this factor. Oh, maybe I did not define lambda l. 

Let me define that also. So lambda l is shortest length in the lattice. 

 

So this means that c 1 star estimates estimate shortest length by a factor of 2 raised to 

m - 1 by 2 which is actually c 1, okay. So the first vector in the reduced basis is what 

you will output. Once you have a reduced basis you will just output this. So that is the 

key takeaway out of the definition, okay. So now we move to the final question, 

which is how will you, why does reduced basis exist and if it exist how will you find 

it? So we will answer both these questions together and very constructively. 
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So this is L cube’s reduced basis algorithm, okay. So the first step is compute GSO of 

the vectors given to you. So you will get b 1 star to b m star. This can be done 

efficiently. Next is you, okay let me first give the step. Then I will explain it. So say i 



is equal to 2. So what you will do is you will read calculate b 2. You will change b 2, 

transform it by, see the point is that okay what is the output of step 1? 

 

So this gives mu i j and b i stars. But mu i j’s are real numbers, right. They may not be 

integers. So as a first attempt what we will try is we will round off mu i j to an integer 

and just remove that component, okay. So let us do that. So mu i j let us round it off. 

So round off to the nearest integer, okay. So this is a transformed b i. So we are trying 

to get to b i star but we may not be able to do that. 

 

But we will just subtract whatever nearest integer multiple of b j we can which is this. 

So this will take care of the mu i j’s being reduced to half or less, right? Remember 

condition 2 we wanted this projection let us say constants mu to be less than equal to 

half. So this rounding off will make sure that it is less than equal to half. But the first 

condition may still not be satisfied. 

 

So let us see whether it is satisfied or not. So suppose if there exists an i says that it is 

violated, okay. So LHS should have been less than equal to this for condition 1, but 

suppose it is not, suppose it is violated. So, if it is violated what should you do? So, 

the simple hack is you swap b i and b i plus 1. So you will swap them. But remember 

that GSO is very sensitive to order of b 1 to b m in what order you are doing the 

computation. 

 

Now since you have swapped b i with b i + 1, this will change the GSO calculation, so 

you have to go back to step 1. Okay, so go back to step 1. Again, you will try to 

approximate the b i star in step 2 and after you have done, after you have covered all 

the b i’s, then you will move to step 3 where you will try to ensure condition 1. If it is 

violated you will again swap, again go to step 1, okay. 

 

So you will keep doing this and then you will output the answer. Okay, so this is the 

reduced basis algorithm. At this point it is not clear why it will work or whether it will 

ever stop. That is the first thing. If it stops, why is b 1 to b m a reduced basis? That is 

not clear. So we will do this next time. 

 


