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Okay, so last time we started this algorithm that is going to factor univariate 

polynomials over rationals. 
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So basically in the input what you are given is f with coefficients a i’s which are 

integers, you can assume them to be integers. And say these integers are given in 

binary l bits, okay. So you are given n + 1 integers, each is l bits. So we are assuming 



here that these integers are sine integers and their value is smaller than 2 raised to l – 

1. The in the output of course, we want to check whether the polynomial f is an 

irreducible polynomial. 

 

If not then you have to output n integral factor, non-trivial factor. So the degree 

should be between 1 and n – 1 of this non-trivial factor, okay. 
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So we already actually wrote this algorithm, which is called L cube algorithm. So in 

step one, it is a basic preprocessing step. The idea is that you pick a prime p and then 

you factorize f modulo p. What we want, the condition we want on the prime p is that 

it should not divide the leading coefficient a n. So a n should be nonzero mod p. And f 

mod p should be square-free. In the second step, this is simply a factorization step. 

 

So you factorize f mod p. p will be a small prime. So it is enough actually to use 

Berlekamp algorithm, okay. So this will be a deterministic way to factorize f mod p. 

So let us say the factors are g 0, h 0; g 0 is assumed to be monic, irreducible and co 

prime to h 0. It is a coprime factorization. Next is Hensel lifting. Okay, so now you 

lift g 0 to g k, okay. g 0 is this monic irreducible coprime factor. 

 

So at this point, you can apply Hensel lifting lemma constructively. And you can lift 

this factorization mod p raised to 2 raised to k. So it applied k times. k is sufficiently 

large. So we will see why this parameter is important, but it will be around log of nl n 



cube l, okay. Fourth step will be a, will be the step where we will go from g k to a 

polynomial g tilde, which is closer to a factor, actual factor. 

 

So remember that g k is a factor of f only mod p raised to 2 raised to k, right. From 

here we have to go to an actual factor integral factor of f. So this is reminiscent of 

what we did in multivariate factorization before, right when we reduced bivariate 

factorization to univariate factorization, we did a similar linear system step. So here 

we want to find g tilde and l k cases that g tilde is a multiple of g k by l k. 

 

Obviously, degree of g tilde should be between 1 and n – 1. Moreover, the 

coefficients of g tilde should not be too large. So the coefficients of g tilde should 

have bit size around the same as before which was l. So now we want it to be around l 

n, l times n, okay. This much leeway we give, but not bigger. And finally, like we did 

in bivariate factorization, you take the GCD of f and g tilde and output it, okay. 

 

So this is reminiscent of bivariate factoring. We had also started analyzing the steps. 
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So in step 1 what is the prime that will work, right? So we want to look at the case 

when f given input polynomial f is square-full. So suppose it is square-full, then what 

you can do is you can compute the GCD. Just compute the integral GCD of f and f 

prime and that will for sure factor f, right. So this is an easy case. Now it may happen 

that f is square-free but mod p it is square-full. 

 



So if it is square-full mod p then the GCD of f and f prime mod p will be non-trivial 

which implies that the resultant of f and f prime which is now a number, right when 

you take resultant with respect to x, so this is x. When you eliminate x you are left 

with an integer and that integer will be divisible by p, it is 0 mod p. So that is r. So 

what you want is you want a prime p such that p should not divide the resultant r and 

p should not divide a n the leading coefficient, okay. 

 

So we want a prime number p that does not divide a n times r. Note that a n times r is 

nonzero to begin with; a n is obviously nonzero because the degree was n of f; r is 

nonzero because f is assumed to be square-free. So the resultant will be nonzero 

integer. So just pick a prime which does not divide it, okay. So a n times r is by the 

definition of resultant it is as big as this. 

 

And you can see that the this bounds the number of primes by log of this bound. So 

definitely a prime around l times n will exist and can be found, okay. So you have 

work with that prime. That is the analysis of step 1. Okay, now let us move forward to 

step 2. Okay, so what happens in step 2? 
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So in step 2, you are just factoring f mod p. So since p is equal to O tilde l n it is 

around l times n in magnitude. Factoring f mod p by Berlekamp factoring f mod p to 

find g 0 is doable in polynomial in prime p and the degree of f, right which is overall 

polynomial in n l. So in this much time, which is truly polynomial time in the input 

size you are able to find g 0 by Berlekamp algorithm, right. 



 

So recall Berlekamp for this. So that completes step 2. Step 3 is Hensel lifting. So let 

us analyze that. Again recall the k times Hensel lifting. So that we have seen is a 

polynomial, deterministic polynomial time algorithm. It is polynomial in k and the 

degrees and the bit sizes, right. So this is by Hensel lifting lemma. This is doable 

again in polynomial in n l time, right because k is also picked to be quite small. 

 

So everything can be done in polynomial in n l time. Let us move to step 4. So in step 

4 is this linear system solving. But there is a catch now. So indeed in terms of the 

unknowns of g tilde and l k this is a linear system. But not any solution of the linear 

system will work. So you want a solution which is small in bit size, right. So you 

cannot just invoke a linear system solver. So this is actually the hard part. 

 

This is what will lead us to something new. So this requires a small root of a linear 

system. So we will see, in the next lectures we will see how to find a small root of a 

given linear system. But let us first see why a small root will exist, right? It may not 

exist. So let us first see the existence proof, then we will move on to the 

constructivity. So let us first estimate the bit size of the factors of f. So we will prove 

the following lemma. 
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This is called Mignotte’s bound. Any root alpha, any complex root alpha of a 

polynomial f x, so a i x to the, a i are the coefficients and there are n + 1 of them, 

degree is n, right and these are all integers. So any root, so you know that over 



complex polynomial f will completely split into complex roots. The question that 

Mignotte’s bound answers is how big is the magnitude of each of these roots. 

 

So it says that the magnitude is, the magnitude is at most n times the max coefficient, 

okay. So ultimately the statement is very natural. It is saying that any complex root 

you pick of a polynomial, the magnitude is bounded by the magnitude of the 

coefficients times n, which is the degree. And the proof is equally simple. So what 

you, you basically divide into two cases. 

 

So if the if you are looking at a root alpha whose magnitude is less than 1, right then 

of course, so in that case what do you do? Well, in this case the bound n times max bit 

size that is at least 1 right. So this is trivially true. Then the bound holds trivially. 

Otherwise, so otherwise the norm of alpha is greater than equal to 1. So in that case, 

let us look at the evaluation of f at alpha. 

 

Since alpha is a root, obviously it is zero. But on the other hand, you also know that 

sigma a i alpha to the i is at least. So since the norm of alpha is at least 1 this sum the 

bigger chunk of this sum comes from alpha to the n, okay. So let us isolate that. a n 

alpha to the n minus the rest, okay. So this is the this is the lower bound on this sum 

sigma a i alpha to the i. 

 

We have isolated the highest term and the from the rest looking at the difference of 

that, which is so which is greater than equal to alpha to the n because a n will be at 

least 1, right. It is an integer. So the magnitude is at least 1, it is not 0. So alpha to the 

n minus a i alpha i is at most so actually we can remove the sum, use the max instead. 

This is at most n times max magnitude over all the i’s times alpha to the n – 1, right. 

 

So here we are doing two things. One is that the norm of a i will be at least, will be at 

most max over all the a i’s. And alpha to the i will be norm  of that will be at most 

alpha to the n – 1. This is because alpha’s norm is at least 1, right. So this and then 

there is a minus sign. So the inequality is correct. And remember 0 is greater than 

equal to this, right. 

 



So which means that what you get is alpha is less than equal to n times max of a i, 

right which is what you wanted to show. So this is the so it is a simple proof. Just by 

just look at the evaluation of f at alpha and you will get this, okay. So this means that 

the roots are small. Now from this you can talk about the factors, factors will be small 

too. 
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So that is lemma 2. Any factor g of f has coefficients of magnitude at most 2 raised to 

l plus log n minus 1 times n. Okay, so what this is saying is that what did you get in 

the in Mignotte’s bound? So you got that the bit size I mean okay, the magnitude of a 

root, complex root is around the bit size of the coefficients, right. So it is kind of n 

times l. It is kind of n times 2 raised to l. 

 

For the factor you are getting something slightly larger, okay. This is 2 raised to l and 

then another power of n. It is 2 raised to l times n, okay. It is slightly more but 

remember that this is the magnitude. So the bit size is only l n, right. So in terms of 

the input size, the bit size is pretty small. So factors cannot be too large. That is the 

bottom line of this statement, okay. 

 

So the way you will show it is by looking at the complex roots of the factors and 

applying lemma 1. So factorize g x into roots. Let us say there are m roots, degree is 

m. Alpha is a complex numbers but g x is an integral factor. So these complex roots 

they multiply together and then you get integers. And for these integers we will have a 

bit size upper bound. So consider this g x. 



 

Look at the coefficient of coefficient of x to the m minus j in g is what? So this is like 

picking j of these alphas and summing up. So basically pick j of these or subset s of 

size j out of 1 to m and then multiply these alphas, okay. So this is the coefficient of x 

to the m minus j. And using lemma one you can bound this with magnitude less than 

equal to sum over all these subsets then product norm of alpha i, right. 

 

This is by lemma 1, which is smaller than number of subsets is m choose j times look 

at a product now, product alpha i. So lemma 1 says that so product alpha i you invoke 

lemma 1 and you will get n times 2 raised to l - 1 raised to j, right. So this is true for 

every j and overall each of these things they will be smaller than this. j goes from 0 to 

m. So that is the upper bound, right. This is by the binomial expansion. 

 

So m choose j times n 2 raised to  l – 1 raised to j is at most this expression which 

itself is smaller than 2 raised to l plus log n minus 1 and raised to m, m is at most n - 

1. So we can safely put n here, okay. So that is the bound for the coefficients of 

arbitrary factors of a polynomial, okay. 

 

So ultimately what we have is once you bound the bit sizes of the coefficients and the 

degree, so the input polynomial once you know its bit representation size its bit size, 

you also know an upper bound on the bit size of the factors, okay. You have a decent 

upper bound on that as well. Okay, so that finishes the analysis for step 4, right. So 

step 4 we know that if there is a factor of f, integral factor of f, it will have bit size 

smaller than n times l plus log n right. 

 

This is what we have shown and step 4 is trying to find that. Okay, so if f has a factor 

then g k will lead you to that, that factor g tilde. So existence is now clear. How do 

you construct this that is not clear. Okay, let us now move to step 5. Why is step 5, 

what is step 5 doing? 
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So let us go there. So this step also needs a detailed analysis. It is a very important 

step, but you have seen this before in bivariate factorization. So the analysis will be 

very similar, actually it will be resultant based. So if g tilde exists in the previous step 

and let us say for the sake of contradiction that it does not factorize f, okay. So step 4 

found a g tilde with appropriately small coefficients. 

 

But in step 5 the GCD of f and g tilde is 1. So what we want is actually a 

contradiction. So let us see what how the contradiction will appear. So they being 

coprime means that there exist by Euclidean GCD algorithm extended Euclid GCD. 

They exist u and v such that u f plus v g tilde is equal to, so notice that I am asking for 

u, v to be integral polynomials, right. 

 

So if they were rational polynomials then u f plus v g tilde would have been 1. But 

since they are integral it will be the resultant, which is nonzero, okay. So since f and g 

tilde you are assuming to be coprime the Bezout identity will look like this, u f plus v 

g tilde equal to this number, resultant now is a number and it is nonzero. Okay what 

do you do here? So as you can guess, you have information about how f factors and 

how g tilde factors. 

 

So use that information. So you will get u times f is g k h k and g tilde is g k l k, 

which is obviously resultant modulo p raised to 2 raised to k, okay. So modulo prime 

power you know how f and g tilde factor and this gives you this nice congruence 

where g k is outside. So you get this, okay. So RHS I have not changed. LHS we see 



that g k divides. Now this is absurd because on the RHS, you have a number and on 

the LHS you have a polynomial, which is not a number, right? 

 

It is non constant because g k is non constant. So the only way this can happen is if 

both LHS and RHS are zero, right? So can RHS be 0? Can this number be zero mod 

prime power? That is the question. So let us analyze that. When is it 0? What does it 

mean? So note that the resultant it was what is the magnitude of this resultant 

number? So degree of f is n. Degree of g tilde is n - 1. 

 

So number of coefficients are n + 1 and n. So it is 2n + 1 dimensional matrix when 

you want to compute the resultant. And how big are the entries? So for f the entries 

are smaller than 2 raised to l – 1. For g tilde the entries are by construction. It is l plus 

log n times n and then the whole thing n, right. That is what upper bounds the 

resultant number which you can see is smaller than 2 raised to how much do you get? 

 

So this comes out to be around n square times l, right and we have picked 2 raised to k 

sufficiently large. So let me say this is smaller than 2 raised to 2n cube l which is 

smaller than p raised to 2 raised to k, right. This is why we picked 2 raised to k to be 

large enough or k to be large enough. So this prime power is actually much larger 

than the resultant. So there is no scope of non-zero resultant becoming zero, right. 

 

So in equation one, RHS is nonzero. So this implies that RHS in equation 1 is a 

nonzero constant in fact, while LHS in equation 1 is a non-constant polynomial or is a 

multiple of g k, g k x. Okay so RHS is a nonzero constant. LHS is a multiple of a 

polynomial g k x. Now multiples of polynomials are again non constant polynomials 

except the zero multiple. But it is not a zero multiple. 

 

It cannot be the zero multiple because RHS is nonzero. So that is the contradiction 

between LHS and RHS. Okay, so that gives you the contradiction. And this 

contradiction means that, the contradiction implies that step 5 factors. Step 5 factors f 

if g tilde exists. Okay, so whenever step 4 succeeds, step 5 also succeeds. Okay, so 

this is an amazing property. 

 



So all we have to do is work out step 4. Once we have worked out step 4, step 5 will 

automatically succeed and factorize. Okay, so we have covered all the steps except 

obviously step 4 details we have to now work out. Okay, so step 1, step 2, step 3, 4, 

and 5 is what we have completed. So now let us focus on this missing part which is 

step 4. The algorithm hidden in step 4, right? How do you actually compute step 4. 
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With small coefficients, that is the thing. So there is a linear system. We can find a 

root of the linear system. But then how do you find a small root? That is the new thing 

you have to do. So let us set up some notation to understand this. So let g k be of 

degree n prime, obviously between 1 and n – 1. Now the unknown polynomials are g 

tilde which is let us say c i x to the i. And l k. Let us give it the coefficients alpha i. 

 

And g tilde is g k times l k, right. So g tilde has degree n - 1 at most. So l k will have 

degree n - 1 minus n prime, fine. So you have to find these with the constraint 

satisfying the constraint g tilde is congruent to g k times l k mod p raised to 2 raised to 

k. And the unknown coefficients are c i alpha i. And in this equation it is g tilde l k, 

right. So g k is completely known. You want to find the coefficients of g tilde l k. 

 

But then the coefficient of there is a condition on the c i’s that it should be small, 

okay. Let us do some more jugglery. So let us rewrite it as sigma c i x to the i. l k is 

alpha i x to the i g k. That is the RHS I am writing, right. So this is what it is, but I 

want to remove the modulus. For some reason I want to make it exact. So then I have 

to introduce multiples of prime power. So let us do that. 



 

So p raised to 2 raised to k x raised to i okay. So let us call this equation 2 okay. So 

here the unknowns are, the unknowns are c i, alpha i, and beta i. And it is clearly they 

clearly are roots of a linear system and they are also integers. That is what we are 

looking for. So find integral c bar alpha bar beta bars in equation 2 such that c is 

small. The vector c is small. So the norm of the vector c is c i square, square root 

right. 

 

That is the Euclidean norm. So I want this to be small. How small? Well, so step 4 

said it should be smaller than 2 raised to l plus log n times n. In step 4 what did we 

have? The coefficients have bit size 2 raised to n times l plus log n, okay. So now I 

am replacing it by a slightly better condition because I know that such a c bar exists, 

right. By the previous, if you look at the previous proof, in this step 5 existence proof, 

sorry not step 5, step 4. 

 

In the step 4, if you look at lemma 2, the integral factors coefficients were bit size l 

plus log n minus 1 times n right. So each of the c i is this much. And if you look at the 

norm of the c bar vector, it is definitely smaller than 2 raised to l plus log n times n. 

So this is blue bound okay. So that is the question. So we have reformulated the 

question. 

 

You are given these, you are given a linear system with the unknown variables c bar, 

alpha bar, beta bar and you want an integral solution such that the norm of c bar is 

smaller than this, 2 raised to l plus log n times n. So let us now jump into this linear 

system small root finding question directly and forget about the application that we 

saw before, okay. 

 

Let us just look at this question and we will invest the next this class and the next 

class to answer this fundamental question. We will use something that is conceptually 

new. You probably have not seen those things. 
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So the fundamental problem is you are given vectors with the, you are given m 

vectors, let us say the ambient space is n. So you are given m vectors. Each vector has 

n coordinates. The coordinates are all integral. Okay, this is what you are given. Now 

okay let me set up the correspondence. So b 1 to b m will basically correspond, in this 

equation 2 it will correspond to the basis vectors of the solution set, okay. 

 

So this equation 2 is a linear system. So you can solve it and you can find a basis of 

the roots. Those basis vectors I am now calling them b 1 to b m, okay. So that you can 

compute, you have it. But that is not what the answer that you want. So you actually 

want their combination. You want their integral combination such that the norm is 

small. 

 

Okay, so the fundamental problem to solve is that given m vectors in the n ambient 

space can you find a small vector that is spanned by them using integral coefficients, 

okay. So this gamma 1 to gamma m being integers is important okay. So basically to 

get from this equation to that fundamental problem you find a basis, integral basis of 

this and then just ask the question for that basis. 

 

The sigma gamma i b i that you will find whose norm is small will correspond to c 

bar. Okay, so you are interested in finding that c bar. So these Z, so we call sigma 

gamma i b i, we call this a Z linear combination, integral linear combination and the 

set of these combinations is called a lattice. So the Z linear combinations of b i define 

a lattice, okay. 



 

So just like q linear combinations, rational linear combinations will define a vector 

space. Z linear combinations define a lattice. And we will use the following notation. 

So this L b 1 two b m is the lattice spanned by these vectors such that gamma i’s are 

integral. Okay, so for example, how does the lattice look like pictorially, right. So a 

vector space you know for example, one dimensional vector space will just be the real 

line right and two dimensional vector space will be the real plane. 

 

So in the same spirit what are the one what is the picture for one dimensional two 

dimensional lattices? So if you consider 1 0 and 0 1 these elementary vectors right the 

x and y kind of axis. So this will be so this is 1, 2, 3, 4. Okay, so this is the let us say x 

1 axis, x 2 axis the origin. So where will the lattice points be? So of course, 1 0 is a 

point and 0 1 is a point and in their integral combination origin is also there. 

 

So that is also a point but then you can double 1 0 right. So this is a point, you can 

triple it, you can make it four times and similarly here in the x 2. Now what are the 

other lattice points other than the axis? Well, so this is also a lattice point right 1, 1 

because you can sum up and by summing up other things you will get these other 

points, right. So that is it. So this these green points these are exactly the lattice points. 

 

And they are in all the quadrants, okay. So because you can also, you can not only add 

you can also subtract. All integer combinations are allowed, so it is on all the sides. 

So you can also go here, right. So this is how a lattice looks like. As you can see the, 

as you can deduce from the picture it is a very discrete object. So you really have to 

jump from one point to the next. There is a big gap between them. 

 

And this is happening because you are taking integral combinations and not real 

combinations, okay. These are very useful objects as you will find out in the next 

lectures. Okay, what is the lattice spanned by 1 0 and 1 1? What do you think, will it 

be different? It would not be different because 1 1 is just 1 0 plus 0 1, right. So you 

can again add and subtract and you will get the previous lattice, okay. 

 

On the other hand, if you look at 2 0, 0 1 what do you think about this lattice? Do you 

think this is the same as before? No, it is not the same as before because you have 



actually doubled one basis vector and that makes this lattice coarser, okay. So in the 

set notation this is a proper this is a sub lattice, okay. So if you scale up a basis then 

you will get actually a lattice which is coarser, okay. 

 

There is for example, there is no way to get 1 0 in this, right 1 0 is absent. It does not 

contain 1 0. So that but everything that this contains the previous lattice also contains. 

So what you will get is actually a coarser lattice like this. On the x 2 side you will get 

everything, okay. So what is the question in this lattice that we are interested in? So 

the question is given a lattice find a vector in the lattice which is small, right. 

 

So for example, you can ask the idealized question find the smallest vector in the 

given lattice. So if you look at this green lattice, the smallest vector here is 1 0 or 0 1 

right. Its multiples cannot be the smallest but 1 0, 0 1 or minus of that, those have 

length 1 and anything else will have length more than 1, right. So here pictorially it 

was easy to see, but as m or n increase then it becomes a challenging question, okay. 

 

So you basically have to find the right integral combination so that the length is 

minimized. So that is called the shortest vector problem. 
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So shortest vector problem is SVP. Find a vector v in the lattice such that the norm of 

v is minimized. So let me write this properly such that the norm of v is equal to the 

minimum over all the norms. So for all the vectors available in the lattice the smallest 



norm obviously excluding 0. 0 is always there. So the positive norm, smallest positive 

norm. That is the SVP question. 

 

This is actually, it may not be immediate, but this is a very hard question and not very 

long ago Ajtai was the first one to show that this is NP-hard. And soon after 

Micciancio showed that constant approximability of SVP constant basically in 

particular he showed that if you want a vector that is at most square root 2 times the 

shortest vector, so an approximately shortest vector that is also NP-hard. 

 

Okay, so this settles the inapproximability of SVP. Not only is it NP-hard to compute 

exactly, even you cannot even approximate it, right. So then it would seem that the 

step 4 where we want to find a short vector satisfying a linear system, that question 

may be NP-hard. It may we may have reduced to a hard question. Well, fortunately 

that is not the case because we need merely a 2 raised to n approximation for step 4. 

Why is that? 

 

Well, you look at the look at the ambient space. So that ambient space was in our case 

it was how many c bars are there? Right that is only n and for that ambient space of n 

the step 4 requires a c bar to be around 2 raised to l n, right. And 2 raised to l is also it 

is an upper bound for the coefficients in the input, right. So in terms of n actually, it is 

an exponential approximation that you are looking for. 

 

So there is a, the demand on c bar is very relaxed. And that will save us. Okay, yeah, 

so we will basically see this, we will develop this approximation algorithm. Okay, and 

this was first by L cube. So Lenstra – Lenstra – Lovasz. So this is the main content of 

L cube algorithm that they give an approximation algorithm to solve the SVP 

problem. And then as an application as we have seen step 4 they can factor integral 

polynomials in deterministic polynomial time, okay. 

 

So this is what will develop in the end. We will first start with a preprocessing step. 
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So first we do a useful preprocessing. So lemma 1, the first lemma that we will show 

is without loss of generality. We assume that the given vectors right which were b 1 to 

b m. Till now we have not said anything about them except that they lie in this 

ambient space z to the n. So we can actually assume and it will not change anything. 

So we can assume without loss of generality that they are linearly independent, okay. 

 

So we can assume them to be linearly independent even over reals, the real field, 

okay. So remember that in the input b 1 to b m could have been dependent in some 

complicated way, right. You could have b 1, b 2 and then you may have 2b 1 plus 3b 

3 right or you may have 2b 1 plus 3b 3 and then you may have 10b 1 plus 100b 2 and 

so on. So it is not really clear whether using integral combinations of that you can get 

back to b 1, b 2. 

 

But in this lemma we will show that if there is a dependence amongst b 1 to b m, then 

you can actually reduce the input instance from m to m – 1. And if again there is a 

linear dependence you can reduce it to m - 2 and so on, okay. So you can work with a 

smaller instance. One important assumption here will be that these are integral. This 

will be important in the proof that we start with the integral vectors. 

  

 


