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Lecture – 18 

Multivariate Factoring - Hilbert's Irreducibility Theorem 

 

So last time we started Hilbert’s irreducibility theorem. 

(Refer Slide Time: 00:23) 

 

Which states that if f is irreducible, then when you randomly project it to two 

variables, any irreducible n-variate polynomial, if you project to two variables in a 

random way then it will remain irreducible with high probability. So today we will 

prove this theorem. 
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Recall that the first lemma which we will need is this polynomial identity lemma, 

which says that, if you have an n-variate polynomial which is nonzero, then on 

random evaluations, it the probability of it becoming zero is very low, okay? To be 

precise, it is the degree divided by the sample space. We skipped the proof. The proof 

is easy to give using induction on the number of variables. 
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Second thing we needed is we will assume that our multivariate polynomial has a key 

variable x. And n other variables, we will call them y 1 to y n. And we will assume 

that this is an almost monic polynomial, which means that if you look at it with 

respect to x, then the leading x monomial, its coefficient will be now a polynomial in 

y bar in the variables y 1 to y n. 

 

And if you set them to zero the coefficient will not vanish. So the leading coefficient 

mod y 0 is nonzero. In other words, the degree of the polynomial f does not change 

when you set y 1 to y n to zero. This almost monic property can be ensured quite 

easily given any polynomial. So what you can do is if your polynomial is not almost 

monic then you can just shift the variables y 1 to y n by a random point and you can 

show by using this polynomial identity lemma that it will become almost monic. 

 

Also we noted that factors of almost monic polynomials are themselves almost monic. 

So now gradually we will move towards the proof of Hilbert’s irreducibility theorem. 

So in that direction, the next lemma that we will do is as follows. 
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So if the derivative of f is nonzero and f is irreducible then if you randomly evaluate f 

the probability that it is square-full, this probability is small. This is less than 2d 

square divided by the size of the sample space, okay. So assuming a non-vanishing 

derivative and irreducibility we can show that random fixing of y bar keeps the 

polynomial square-free. So the way we will show this is recall that square freeness or 

square fullness relates to the discriminant of f. 

 

So what is the discriminant? Discriminant is defined as the resultant of f with the 

derivative with respect to x, okay. So when you do that, then x gets eliminated and 

you get a polynomial in y 1 to y n. That is called discriminant. So recall that by the 

properties of resultant recall that f with y bar fixed to b bar is square-full if and only if 

b bar is the root of the discriminant, okay. 

 

So what this is saying is that the way to interpret it is that when you are fixing the 

variables y 1 to y n and if suppose your polynomial become square-full then this 

means that b bar that you have picked is a root of the discriminant r and now you can 

invoke the polynomial identity lemma which says that this is a very rare event, okay. 

So first note that the resultant is nonzero. Why is it nonzero? 

 

It is nonzero because you have assumed that the derivative was nonzero, okay. So and 

f obviously is nonzero. So, then the resultant is nonzero. Both of them, f depends on x 

actually, and it is almost monic. So the discriminant is nonzero because of almost 



monic and derivative nonzero, okay. So because of these two properties, you can 

check that r will be nonzero. 

 

So r is a nonzero polynomial, r is nonzero and its degree is less than 2d square, right. 

That is again property of the resultant. It says below 2d square actually. So then by the 

polynomial identity lemma what you can deduce is probability, if you pick b bar from 

x to the n space, then r b bar being zero or b bar being a root of r, this is a low 

probability event. It is 2d square by s, okay. 

 

But, so this is in particular also implies that this is the same as saying that the 

probability over b bar in s to the n space, f being square-full. This is low probability, 

2d square by s, right? That is what you wanted to show. Note that we could have 

actually instead just assumed that f is square-free. You do not need, yes you do not 

need irreducibility. Actually square freeness is enough. 

 

So where did we need? So r is nonzero, degree is less than 2d square. Okay, let me 

keep it. So in fact, we should have said that there is something stronger that we are 

using. Let me correct it. So the reason why this was nonzero is because the GCD of f 

and the derivative is 1 with respect to x, okay. This is true if you assume f to be 

square-free. So if f is a square-free with nonzero derivative, these two properties will 

give you the discriminant to be nonzero. 

 

That is what we used here. So if you start with these two properties then at random 

fixing of y bar you will get with high probability. You will preserve the square 

freeness. Okay. 
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So thus from now on we will make the assumption that a random projection f x, a bar 

times one variable new variable t plus b bar is square-free with high probability, okay. 

This is because, you can if you even if you just look at t = 0 case x, b bar f x, b bar is 

square-free with high probability and so with the variability it will continue to be 

square-free. 

 

So we can, since we are using random projections we can assume from now on that 

this f at x, a bar t plus b bar is indeed square-free. So let us then look at the version of 

irreducibility theorem that we will prove or that we need to prove. So it suffices to 

prove the following. So let f be almost monic and irreducible. 

 

So in that case, when you randomly project, so a bar, b bar from the space s to the n, 

then f x, a bar t plus b bar, the chance that it is reducible, okay, chance that it is 

reducible and square-free, okay. So since you started with an irreducible polynomial 

you would expect that this probability will be low, okay. Probability is lower than 

something like this 7d 6 divided by the sample space size. 

 

So if you take the sample space slightly bigger, let us say d to the 7, okay a 7 times d 

to the 7, then this probability is quite low. So when you randomly project to this 

univariate a bar t plus b bar your irreducible polynomial remains irreducible. In 

addition, actually this x, b bar remains square-free. Okay, you have both the 

properties. So let us try to show this now. It will immediately imply the Hilbert’s 

irreducibility theorem that was stated in the last class. 



 

So this is a slightly technical proof in terms of notation. But, the idea will be that we 

will try to factorize f, projected f using Hensel lifting in two different ways, okay. So 

one way will be you look at this mod t. So mod t it is a univariate, there is a 

factorization and then you lift it to mod t square, t 4 and so on. The other way to start 

Hensel lifting will be that you replace a bar by f by the formal variables. 

 

Okay y 1, instead of a bar you use y bar. And that you look at first mod y bar. Then 

the ideal mod y bar square and so on. Okay, so there will be two branches of Hensel 

lifting or two different ways of doing Hensel lifting. One is mod t powers and other is 

mod y bar powers. So this will be clear when we work, when we implement this idea. 

 

So the idea is, so the idea is that this you have some information about this projection 

a bar t plus b bar that if say for example, assuming assume that f reduces. So from this 

information, how will you go to formal y bar, okay? So that jump from fixed a bar to 

formal y bar, that jump will happen through Hensel lifting in two different ways. So 

we will do that next. Okay. So also for simplicity, we will assume b bar to be 0. 

 

We can assume without loss of generality that b prime is 0 just to make the notation a 

bit simpler that is all. Okay, so let us do this. 
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So assume that start with the assumption that f x, a bar t is reducible and square-free. 

Okay, so that is the basically the event which you want to claim, which we are 



claiming in the theorem statement to be rare, low probability event. So let us assume 

that event happens. So then we do Hensel lifting mod t powers. So do Hensel lifting. 

So when you do this, what is the first step? 

 

First step is x, a bar t  mod t factorizes into univariates in x. Let us say g 0 x, h 0 x 

mod t. Since we have assumed x, b bar which is x, 0 bar to be square-free that is a 

very important property because now you know that g 0 and h 0 are coprime, okay. So 

this is a coprime factorization and we can assume g 0 to be irreducible. So let us 

remember that. So degree of f is degree of f x, 0 bar. And g 0 bar is an irreducible 

proper factor coprime to h 0, right. 

 

That is the starting point of the Hensel lifting, Hensel lifting number 1. So this will 

then imply that f x, a bar t after k times will give you g k x times h k x mod t to the 2 

to the k. Okay, let us call this equation 1. So this is what you get starting from g 0 and 

then repeating this Hensel lifting k times. That is one way. Now let us do something 

different. So Hensel lift mod y bar powers, okay. 

 

So what will that root give you? So f x, y bar t. What is it mod y bar? So the amazing 

thing here is that mod t, mod y bar is the same starting point. Okay, so mod t, you 

were looking at f x, 0 bar. And here in the new setting, also mod y bar you are looking 

at f x, 0 bar. So it is the same starting point. So you can use g 0 as before. And then 

when you do Hensel lifting what you will get is you will get let us say g k prime, 

which is a polynomial in everything, right? 

 

So it is a polynomial in x in t and in y bar. And you will get h k prime polynomial in 

x, t, y bar modulo what? So this is modulo y bar to a large power 2 raised to k, right? 

That is your endpoint of the second type of Hensel lifting. Now we ask the question, 

what is the relationship between 1 and 2, right? So intuitively, second Hensel lifting 

should be the functional version of the first Hensel lifting, right? 

 

So in the second Hensel lifting you have this y bar hanging around. If you fix it to a 

bar, then intuitively it should give you equation number 1, factoring number the 

factorization number 1. But we do not know for sure, right. So we have to if this is 



true, we have to actually prove it, okay. So let us write one more equation, which is f 

x, y bar t factorizes as g k prime h k prime mod also t raised to 2 raised to k. 

 

This also follows from the above factorization because note that y 1 to y n we are 

multiplying each of these variables with t, right. So if you set t raised to 2 raised to k 

to 0 that will be like setting this y bar to, monomials in y bar of degree 2 raised to k to 

0. It is actually equivalent. Okay, so we actually have, now we have factorization 1 

and factorization 2 in the same modulus, right. 

 

We have mod t raised to 2 raised to k in both the moduli. In one we have g k h k. In 

one we have g k in the other we have g k prime. And in one we have a bar, in other 

we have y bar. Okay, that is the, that is how we read this. So what is the connection 

between g k and g k prime? So note that here we can invoke the uniqueness of Hensel 

lifting mod t raised to 2 raised to k, okay. 

 

g k and g k prime both of them are almost monic and for almost monic factors there is 

a there is this strong uniqueness property of Hensel lifting factorization. So we can 

actually invoke that. So what will that give you? 
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So by factorizations 1 and 2 of f x, a bar t and the uniqueness of Hensel lifting since f 

is almost monic we conclude. So what do we conclude? We conclude that, so let me 

change the notation slightly to include a bar here. So we will conclude that this g k a 



bar and g k prime, okay they are the same if you fix y bar. That is what we conclude. 

So g k a bar at x, t is equal to g k prime at a bar mod t raised to 2 raised to k. 

 

Okay, that is the relationship. So this is the crux of the proof. This is what you should 

understand and remember that we factorized one in with a bar fixed mod t raised to 2 

raised to k and other was with a bar with instead of a bar using the functional version 

which is y bar mod t raised to 2 raised to k. 

 

We got this fixed and the functional type of factorization and then by uniqueness of 

Hensel lifting factorization for monic factors we deduce that they are equal for y bar 

equal to a bar, okay. So but still we are not really done right because this factorization 

or this g k prime is happening only mod t raised to 2 raised to k, right. What does it 

tell us about f? 

 

So remember that in the original theorem statement we have to say something about f 

whether f projected being reducible implies that the original f is reducible, right. So 

we have to now move to original f. So for that let us just recall that g k prime x, t, y 

bar is a potential factor of f x, y bar t, right. But we do not know whether it actually 

divides f x, y bar t exactly. 

 

So in these situations or in this situation we will do what we did before. So recall the 

case of bivariate factoring. So in bivariate factoring, we were in a similar situation. 

We had a potential factor mod ideal power and we wanted to deduce an actual factor. 

So what did we do? We solved a linear system. So consider a linear system as done in 

the case of bivariate factoring, okay. So let us move to that now. 

 

So claim is that with high probability there exist polynomials g and l k in all these 

variables x, t, y bar such that g is a multiple of l k and g k, g k prime mod t raised to 2 

raised to k with the degree restrictions, okay. So what is that? So for g the degree 

restriction is that degree of g with respect to x is smaller than that of f and degree of t 

is smaller than at most d, okay. 

 

This is expected because or this is natural, it is intuitive, because we hope to just like 

in the case of bivariate factoring, we hope that this g k prime will be associated via 



multiplication by a product associated to a factor g of f x, y bar t. So the degree of it 

with respect to x should be strictly smaller. And if you look at the degree of g respect 

to t and also y bar actually, it should be it cannot exceed d, okay. 

 

That is one thing. But for y bar, it is a bit more complicated because there are many 

variables, right. There are there is y 1 to y n. So let us write that down. So degree of g 

with respect to y bar is what? It is degree of so I am defining the degree of g. Yeah 

that is bad notation. Let me change it slightly. We will call it d prime. Let me call it d 

prime, which is actually degree of g with respect to y i for all i and just sum it up. 

 

This, yeah the intuition of this is not clear, we will see in the calculation. So we will 

claim that this will be at most 6d 5, okay? So that is the claim we are making. We are 

saying that this g k prime itself may not be dividing f x, y bar t. But there is some 

multiple of it which can be found by solving a linear system where the degrees are 

like this. So degree with respect to x is strictly smaller than that of f. 

 

Degree with respect to t is less than equal to that of f. And the individual degrees of g 

with respect to y i they sum up to this 6d 5. So actually, this g may not, this g may still 

not divided f. What we will do, once we have shown this claim is that we will actually 

take its GCD with f, like we did in the bivariate case, and we will show that the GCD 

will divide f, okay. 

 

So this is a mysterious polynomial g. So let us prove this claim first. It is similar to 

slight it is similar to what we did in bivariate, but slightly more complicated because 

of n being arbitrary here. 
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So the first thing that we will do is use this random a bar property that we had before. 

So we know that we have a good fraction of a bar such that f x, a bar t has a liftable 

factorization. Actually why is that? Why is that fraction good? Let us go back. Just 

take a step back and try to understand this. So what we are actually assuming is the 

opposite of what we want to show that for most of the a bar b bar, f x, a bar t plus b 

bar is reducible, okay. 

 

And then because it is reducible so you can and because x, b bar f x, b bar is square-

free so you can Hensel lift. So that is what we are reading off. So that actually I 

should add here, is reducible and square-free greater for greater than equal to that 

much fraction for most a bars. Actually that is what our assumption, starting 

assumption. So we will actually use this part now. 

 

That for most a bar whatever we have done is actually true. So which means that for a 

good fraction of a bars, x, a bar t has a liftable factorization which implies that there 

exist g a bar and l k, a bar such that g a bar x, t is g k prime x, t a bar times l k, a bar. 

So how is this happening? Well, this is just the same equation that we get by Hensel 

lifting say in the second way, right. 

 

So in the second way you got this f x, y bar t factorizes as g k prime. And then you 

also then we also showed that g k prime in fact, when you fix y bar to a bar it is g k a 

bar. So that those properties which we have shown we are using them now. Okay, this 



red equation we are now using. It is true for most a bars. Okay and the remaining part 

we are just calling it l, right. It was g k prime times h k prime. 

 

But that remaining thing we are calling now l. So this is just a reformulation. So and 

you can see easily that this degree of g a bar with respect to t varies at most d because 

this is actually a factor, univariate factor which we lifted. So the degree is bounded by 

d. Now on the other hand, let us make it now let us make a bar formal. Yeah, so on 

the other hand consider the equation g x, t, y bar g k prime x, t, y bar times. 

 

So let us remove the variables. It is disturbing. g k prime times l k mod t raised to 2 

raised to k. Consider this equation in red and consider the equation above in blue. So 

for the red equation, you know that if you fix y bar equal to a bar for many a bars for 

in fact most of the a bars, the linear system has a solution, right. So intuitively it 

should also have a solution without fixing y bar. 

 

That is the key idea, okay. This is why we have been trying to connect y bar with a 

bar. So it should have a solution as or since for most y bar fixed to a bar the system 

has a solution, okay. This idea in green is the is the key thing that we wanted to get at. 

So we have these two linear systems. And the red one is the main one the functional 

one. For it to have a solution it takes actually enough if it is random fixings have a 

degree bounded solution. 

 

So now all that remains is to formally prove this. So for that we will basically convert 

this linear system into a matrix and the proof will basically boil down, right. So let us 

just now implement this idea or show that this is what is actually happening. So this 

linear system how many unknowns are there? So number of unknowns, let me first 

specify here that we are thinking of unknowns as polynomials or functions in y bar, 

right. 

 

So g k prime is a polynomial in x, t and y bar. We want to find g and l k. So let us 

view them as bivariates. So x, t with the coefficients being functions or polynomials 

in y bar. So in that sense how many unknowns are there? So that number is easy to 

compute. So degree of x is what, at most d, right? And degree of t in this equation is 



also at most d. That is because of what you know about g k prime and the type of g 

and l that you are looking for. 

 

Let me take that back now. So for g it is d times d, is d times d. For g, for l k degree of 

x is yeah it is at most d. But degree of t may go up to 2 raised to k – 1.  Okay, that is 

the bound. So this is for g and this is for l k. So then the then we can estimate it like as 

follows. Okay, I did not tell you what k is, how big k should be? So let me add that. 

So I will be needing it to be between d square and 2d square, okay. 

 

I am assuming k to be something like 2 log d, okay. So with that, it is d square plus d 

times 2d square which is so that is cannot exceed 3d cube. So number of unknowns in 

this bivariate system is at most 3d cube. So let us call this number of unknowns m. 

Okay. Yeah, and note that this red equation is actually a homogeneous equation, it is a 

homogeneous linear equation in these unknowns, right. 

 

So you get kind of this m cross m matrix when you compare x t monomials both sides 

to get constraints. Yeah, but why would it have a nonzero solution, right. So for that 

we will rely on the random fixing of y bar. We know that if we randomly fix y bar 

then there is a solution always. So from that you can deduce that for formal y bar also 

there has to be a solution. Because if there is none then what happens? 
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So if equation 3 has no solution then the corresponding m, small m cross small m 

matrix M. So what are the entries of this matrix? Entries are coefficients of g k prime. 



So then this corresponding matrix M has a nonzero determinant, right. It is a 

homogeneous equation. If it does not have a solution, nonzero solution, then this 

means that the matrix M is actually invertible. 

 

So when you compute its determinant, let us call it so the matrix M has coefficients of 

g k prime right and those are all polynomials in y bar. So the determinant is also a 

polynomial in y bar. So that is nonzero. Its degree is given by the dimension which is 

m times each entries degree, which in turn depends on the degree of g k prime in y bar 

right, which is 2 raised to k at most. 

 

So what is m? m is at most 3d cube and what is 2 raised to k? That is at most 2d 

square. So you get 6d 5. So d is nonzero and it has degree at most 6d 5. So the 

probability that it vanishes for a random fixing of y bar, that is quite small, right. So 

for random a bars, also the same property will then continue. So for random a bars 

also there will be no nonzero solution, which you know is not the case, right. 

 

That is a contradiction. So this contradiction finally gives you that g and l k exist. 

Degrees restrictions or degree bounds which we were claiming in the statement of 

claim 1, degree of g with respect to x and t is clear. It is clear because here in this 

equation in blue, those are the g k prime x, t, a bar that you had, right. So both x and t 

the degree bounds you have we continue to have. About y bar you have to deduce. 

 

So that you can deduce as follows. So sigma degree of g y i, i 1 to n this is what? So 

this will really depend on the degree of the determinant, okay. Because remember that 

you have a homogeneous linear system. So the solutions will actually, solutions of 

this linear system they will actually be given by ratio of determinants. So we can 

safely say that all this is at most degree of the determinant of M, degree of d y bar 

which is at most 6d 5 as shown above. 

 

So this is by Cramer’s rule, okay. So what we have shown is that claim 1 which says 

that g and l k will exist in this restricted degree. g and l k will exist and they will have 

restricted degree. And the hypothesis was that f is factoring for most of the y bars 

equal to a bar setting, right. That is what we started with. So if f x, a  bar t factors for 

most a bar, then we have shown that Hensel lifting will give you this g k prime for 



most a and from that we have deduced that you will get a g k prime with formal y bar 

also. 

 

And from that you will get a g. So next time what we will do is that, we will just take 

the GCD of g with f, okay and that will actually factor f. And factoring f means you 

get a contradiction, okay. That is our, you get a contradiction or you get that f is 

actually reducible, okay. So if f is reducible for most y bar equal to a bar setting then 

it is actually reducible. So reducibility implies reducibility. So let us do this in the 

next lecture. 

 


