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Okay, so many weeks ago we were doing Reed-Solomon code.
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So this was the decoding algorithm.
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And in the code the encoding was just so you have this big N many bits that Alice 

wants to send to Bob. And so you break it into blocks of b bits, and there are k many 

blocks. So b times k is equal to N. And these each block b bit you see as a finite field  



element,  right.  A finite  field of size 2 raised to b.  So it  naturally  is  a finite  field 

element and there are k elements, so you get a degree k - 1 polynomial.

It is a non-monic polynomial, although that thing is not very important. But in degree 

k -  1  you  need k coefficient.  So the message  gives  you  that.  And that  defines  a 

polynomial P x. You send evaluations of this polynomial. Usually in applications it is 

assumed that you will send all possible evaluations, okay. So 2 raised to B is the finite 

field size. You will evaluate your polynomial at each field element.

And you will send these 2 raised to b values. So that is small n, okay. So you send n 

finite field elements, which is basically the polynomial  evaluated at all the points. 

And then arbitrarily this information will get corrupted in the channel and up to some 

limit  I  mean  if  the  number  of  errors  is  below  the  threshold  then  the  decoding 

algorithm will still be able to recover P and hence the message. So any questions. So 

you can set the parameter.
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From the decoding algorithm we got error tolerance nearly n by 2, okay. Small n is 

the number of values sent and if the error is less than n by 2 half of them less than half 

of them get corrupted, still it will work. Okay which is a very surprising fact because 

n by 2 is the theoretical limit,  okay and your algorithm is actually able to correct 

nearly up to the theoretical limit.



And today we will actually even cross this theoretical limit and we will be able to 

correct errors beyond n by 2, okay which is sounds impossible but it is doable.

(Refer Slide Time: 03:02)

But anyway, so here we set the parameters and okay. So big N is the main parameter, 

which is  it  is  a  single  parameter  setting that  is  the number  of values  sent  on the 

channel. The k is the number of coefficients. So that is just a little bit smaller. So the 

stretch here is  very small.  The stretch is  only from N by log N to N, okay.  It  is 

minimal stretch while the brute force would have required n square.

And the field size is also around N. 2 raised to b is also around N, okay. And for that 

error tolerance t is this N by 2 times nearly 1. As N tends to infinity this is nearly 1. 

So this  is  nearly N by 2.  So 50% error correction in  the finite  field alphabet.  So 

alphabet here is not 0, 1 but finite field. So the element we are counting as 1 extended 

bit of information.

Yeah we did not go into the details but all this can be done in nearly linear time in N. 

Okay, the evaluations and then the decoding etc., is quite fast. Okay. So with that we 

will move forward.
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So there is one concept the underlying concept of distance in this code and in general 

in error correcting codes. So for example, if in the previous slide this t that was error 

tolerance of the code 2t + 1 is called the distance. So in our case you have only seen 

one example of Reed-Solomon code. Distance of that is 2t + 1, t as before.

This is called distance because combinatorial if you look at two code words they are 

sufficiently far away in the space which means that even if the code word which was 

sent on the channel even if there is a corruption which is within a neighborhood of the 

code. From that corrupted string you the decoding algorithm will give you the center 

of the ball which is the code word and hence the message, okay.

So the balls around code words they are kind of non-overlapping. And their, you can 

say their  radius  is  t.  How do we define?  Right.  So  it  is  the  minimum hamming 

distance between any two distinct code words. So in a picture if you have ball around 

a code word c 1 and around a code word c 2. So code word is string of letters where in 

our case the alphabet is finite field element.

So c 1 is basically this big N many field elements and c 2 is another array of big N 

many field elements. So in how many locations are they different, okay? So in this 

alphabet that is what we are calling hamming distance. Usually it is for binary strings, 

but the same thing you can generalize to any alphabet. So c 1, c 2 are basically two 

arrays equal length and what is the difference.



How many locations are there where the arrays are different? That is called hamming 

distance between c 1, c 2 in this alphabet, in the finite field alphabet. And over all the 

pairs of code words pick the minimum, okay. Minimize over all pairs of c 1, c 2; c 1 

different from c 2 of course. So that is called basically distance of a code. Yes.

“Professor - student conversation starts” Is the distance then twice the whatever 

error  you  are  decoding?  “Professor  -  student  conversation  ends”.  Yeah.  So 

whatever is your yeah whatever is the requirement in practice you want to tolerate let 

us say t many errors. Then it is clear that the distance between these two arrays has to 

be more than 2t, strictly bigger than 2t.

Even if it is 2t you might be in a situation where t errors happen. And then that will  

be, that will correspond that corrupted the corrupted code word will correspond to two 

balls. And then you cannot distinguish how did it arise, what was the message? So the 

balls  really  have  to  be  non-overlapping,  right.  So  whatever  is  your  desired  error 

tolerance, distance has to be strictly twice as big. So that is it.

So if you have, now when this code words even is sent on the channel, then this might 

shift  to this  position c 1 prime,  right.  And c 2 when sent over a corrupt channel, 

erroneous channel it may shift here c 2 prime. So it might shift here and this might  

shift here. So c 1 may actually shift closer to the ball c 2, around c 2. And c 2 may 

shift closer to the ball around c 1. So they are getting very close.

And if these two balls were actually there was an overlapping point that point then 

you will not be able to decode. Because it will correspond to two code words. But in 

this case it is okay because the nearest code word to c 1 prime is still c 1, right. So that 

is the actually the advantage that Bob has. No matter what the channel does within the 

threshold of t, t or less Bob will able to always get to c 1 from c 1 prime.

And this radius is t of course of the balls, okay. So up to t errors, these corrupt strings 

will remain inside the ball. Any questions? So this is the notion of distance of a code 

word, of coding scheme in fact, in general. It is clear that you cannot cross 50%. You 

cannot even achieve 50%. So distance delta implies that error tolerance of any code 

word, of any coding scheme is less than delta by 2, right.



So if you have a mathematical coding scheme with a proven distance of delta or less, 

then in practice the error tolerance will be less than half. It cannot be better than this. 

So distance can be in terms of fractions it can be at most 1 and so the error is always,  

tolerance is always less than half, okay. So what in particular what it means is with 

the error bound.

So if there are half or more errors, the problem that is happening in decoding is that 

there are more than one possible code words and hence messages corresponding to 

what Bob got, Bob received. There are many messages corresponding to a corrupted 

code word. So there are two things now. So we basically want to cross this barrier of 

n by 2. So what if the channel makes corruption more than 50%, right.

So theoretically then it is impossible to find the message. But how many messages are 

possible corresponding to the string that Bob received, right. So if you can count if  

you can give an upper bound on the count then there will be hope that maybe there is 

a  decoding  algorithm  that  gives  a  list  of  messages,  okay.  So  that  is  called  list 

decoding. That did not exist before.

Even the concept actually came with the Reed, the list decoding of Reed-Solomon 

code, which we will see now, okay. And so that amazing algorithm will also give an 

upper bound on the number of messages corresponding to the corrupted string that 

Bob  got,  okay.  So  it  is  both  an  algorithm  and  a  combinatorial  result.  Because 

otherwise it is not clear how will you count the number of code words corresponding 

to a string which is heavily corrupted.

So the corruption is let us say more than 55%. So in that case, how many messages 

are  possible?  So  the  algorithm  will  not  only  upper  bound  the  number  of  search 

messages, it will also give them to you in the form of a list. So could we find all of 

them? That is the algorithmic question.
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So in particular are the, is the list small? If the list for example is exponentially long 

then there is no point finding them, which will happen at some point, right. If the 

errors are very close to how much? Yeah, so in the extreme case, if every bit has been 

flipped, almost everything has been flipped, then obviously, you expect the messages 

to be 2 raised to n many.

The list will be around 2 raised to n. And but what if that has not happened? What if 

you are still very close to n by 2, somewhere between 50% and 55%? So in that case, 

is the list still exponentially large, right? So those are the questions of, or how is the 

asymptotic growing? Because below 50%, it was just 1. So intuitively, beyond 50% it 

should be slightly bigger than 1 but not exponential, not 2 raised to n.

So that was achieved by a theoretical computer scientist called Madhu Sudan fairly 

recently. So he found an efficient way to list decode, okay. So even this term was a 

first. So in particular, list decode Reed-Solomon. So this is what we will see now. So 

we will do list decoding for Reed-Solomon. So the setting is as before. So just to 

recall. So you had Alice had a message d 0 to d k – 1.

These are the k field elements. The Reed-Solomon coding algorithm gave her n field 

elements, which is basically the evaluation. So P is the polynomial that this message 

defines and the evaluation of that at sorry e 0. e 0 is the kind of the first field element 

then e 1 is the second and so on. So compute all these values and just send it over the 

channel. The channel will corrupt it.



And we will assume that at least T many are correct, greater than big T many. So 

greater  than  T  are  correct.  And  the  remaining  n  minus  big  T  maybe  are  in  fact 

incorrect. They have been corrupted. So what Bob gets is we are calling it c 0 prime 

to c n - 1 prime, okay. So in this only T positions are correct and obviously, Bob has 

no idea of which big T many positions are these.

There is no way to find that a priori, right because the number of positions is n choose 

T which is exponentially large. And moreover, we will not restrict big T to be half. So 

the correct ones may be less than n by 2 right. So this is a very difficult problem for 

Bob.  So how will  you  solve it?  How will  Bob try to  find the list  of all  possible 

messages d 0 to d k – 1? For some bound on big T, so you fix some bound on big T.

Let  us  say  just  below  n  by  2.  And  within  that  bound,  how  many  messages  are 

possible,  right.  That  is  the  question.  So  the  way  we  decoded,  before  the  unique 

decoding that was why so there was this auxiliary polynomial,  right, error locator 

polynomial.  So what was that? It collected the wrong positions, right. So it was a 

univariate polynomial whose roots were supposed to be the wrong positions.

So now what is done is something quite different.  So now, we will actually error 

locator polynomial we will pick will be bivariate, okay. So that the idea will be that if 

the channel was error free then for field element e the value would have been P (e). So 

the  bivariate  polynomial  will  try  to  interpolate  these  points,  okay.  Field  element 

comma P of that element.

So that is the point in the 2D space and the bivariate polynomial will interpolate that.  

But obviously that is not what is happening in the channel. So the channel will not  

really correspond to P (e) for n minus T many places. But anyways, we will build and 

see what to deduce. So let us first change the error locator polynomial.

(Refer Slide Time: 20:15)



So we are changing the definition.  So consider a bivariate error locator Q x, y of 

degree D x and D y. These are the individual degrees. So let me define it. So D x is 

the degree of Q with respect to x. And D y is degree of Q with respect to y. Okay, so 

we call these individual degrees. So now the error locator polynomial will be very 

different from what we used before.

First of all it is bivariate and in the definition you would not even see anything to do 

with errors, actually. So we will fix D x and D y later. Let us first develop the setting 

such that what we want is Q (e j, c j prime). We want it to be 0. Yeah, so this is just a  

say a curve that passes through all these points that Bob has received, right. So Bob 

has received e j, c j prime.

So this is just the kind of the curve that fits whatever Bob received. So you do not 

really see what errors is it capturing, right. The definition is very different from what 

you saw before. Okay, so for what conditions on D x and D y will this queue exist? 

That  also  we  have  to  remember.  It  will  not  exist  for  every  D  x,  D y  right?  So 

intuitively, this Q will exist only when D x and D y are sufficiently large.

If one of these is very small, then this low degree Q will not be able to fit all the 

points. So exactly the bound you get is this. So as long as D x, essentially D x times D 

y the product of these two is at  least n. Q will  exist.  Why is that? So how many 

unknowns are there in Q? So this 1 + D x times 1 + D y. It is a bivariate polynomial  

of these respective individual degrees.



So that many unknowns and clearly in those unknowns this system is a linear system. 

So if the as long as the unknowns are more than the constraints. Also observe that this 

is a homogeneous linear system, right. So there is no question of infeasibility. So just 

by numbers how many unknowns are there you are guaranteed a solution. So this, 

essentially D x times D y should be at least n and then Q definitely exists.

In fact many Qs may exist. Then such a nonzero Q exists. And it can be computed 

quite easily by linear algebra, right. So it exists and it can be found easily. So Bob 

does that. We have still not fixed D x and D y. That we will, because D x, D y we will  

put more constraints and then we will solve it. Okay, so Bob now has computed this 

Q, how do you think this Q will help?

Do you see that  this  Q hides  the message,  or  contains  the message  or  the list  of 

messages, in fact. All possible messages are somehow contained in this Q. So let us to 

see that let us look at the idealized setting when the channel does not make a mistake, 

or does not corrupt. So that would have been, so let us say you look at this univariate 

polynomial, which is by setting y equal to P x, right?

So a correct so a message P of our interest. If the channel was correct, then it would 

have given x, P x. Bob would have received x, P x. So if you substitute that in Q, let 

us call that polynomial R. So do you see that this or how can you ensure that the Q 

that Bob has found vanishes at y equal to P x, right. This is exactly what you want.

So this bivariate polynomial Q just computed in step one, what if its factors give you 

y minus  Ps  for  all  Ps,  right.  So that  so basically  Bob will  then  find Q and then 

factorize it. And the factors will give the list of messages or in fact, first yeah P is the 

message. So Bob will have the list of messages. But for that, we have to or Bob has to 

make sure that the Q that has been computed actually vanishes at y = P.

So this R should be 0, right? Can that be achieved? Can that be ensured? So let us see 

the degree of this. So degree is D x of Q plus in y you have substituted P whose 

degree was k – 1, right. So k - 1 times D y. That is the degree of R. So obviously, we 

have to use the fact that at least T many e js are correct, right? So R at those e js is 0. 



So we know that R at at least some of the e js does vanish for T many j in 0 – n – 1, 

right?

This is the hypothesis. We still have not fixed T. We have not fixed D x, D y, T. We 

will do that in the end, but some guarantee has been provided the T many positions 

are correct. Sorry? Yeah. So what is e j, P ej? P e j for those js is c j prime. And the Q  

that Bob has found satisfies that. This follows from equation 1, from this equation. So 

from that equation, R e j you can see is Q at e j, P e j.

But P e j is the value that Bob received. So by construction of Q is true. So for T 

many values R is vanishing. But you actually want R to vanish for all the values for 

all j. I mean, okay not, not really. Or you want just R to vanish, right? So what matters 

is what is the degree of R? So we have to compare this vanishing of R at some e js  

with the degree of R. So if the degree of R is less than this, then R vanishes, right.

That is the, so the last check that you have to do is compare this number T with the 

degree of R. “Professor - student conversation starts” But in the first equation we 

have assumed that it vanishes for all those 0 to n – 1, not just for T. Sorry? In first 

equation we have assumed that it vanishes for all. “Professor - student conversation 

ends”. That is fine. I mean, how is that in contradiction with, in conflict with the fact 

that R e j is equal to T many j?

You are just using part of the construction of Q. So the point being made here is that, 

as long as T is bigger than the degree, degree is actually smaller than this bound D x + 

k – 1 D y. So as long as T is bigger than D x + k – 1 D y right, which is greater than 

equal to degree of R. What can you deduce? That R is 0.

And if R is 0, then you would have deduced that y – P is a factor of Q right, which is 

what Bob wants that the factors of Q should contain P. Because Bob can use enough 

algebra and come up with a factorization algorithm. You have not seen how to factor 

bivariates.  You have only seen how to factor univariates.  But as promised in this 

course, you will see factorization algorithms for any number of variables.



So Bob can use one of those algorithms factor Q and hence find P. And not only one 

P but all possible Ps. Moreover, since Q has limited degree, there are a few Ps, right. 

So this algebraic root is giving you a very interesting combinatorial fact, right. That 

the number of such strings that could get corrupted and reach Bob is small. That is the 

message. That is the P (x) right. That was the settings we had before.

P is the polynomial you get from D i’s. So P is D i x i. Okay. That is the original 

message. You want to find the message P. And since it is not unique, you want to find 

all of them. So all so right now, we have not fixed anything. So T is free, D x is free, 

D y is free.  So you just  set  them appropriately.  And for that  setting you have an 

algorithm. Any questions? So there are yeah, so there is this constraint.

Essentially D x times D y should be at least n and there is the other constraint that D x 

+ k D y should be less than T. These are opposite constraints. So you have to be just 

careful to satisfy these opposite constraints. And for that setting of T D x D y you 

have a working algorithm, list decoding algorithm. So let us collect that in a lemma.
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So if n is less than the product and the sum is less than T. So product should be large 

and sum should be small,  right? If that happens then actually any curve fitting the 

points that Bob got. This has y – P x as a factor. Okay, so factorization is the way to 

go. Okay, Bob will just to linear algebra, use a system, linear system solver and then a 

factorization algorithm and that will give the whole list, okay.



So this is an, it is a first and it is an amazing algorithm. So yeah so the list decoding 

algorithm let us see with the some parameters fixed. So let us fix, you can see that you 

want the product large and the sum small.  So why not take essentially them to be 

square root of n, around square root right. So that is why we will fix something close 

to square root. So let us fix D x to be square root of n k.

D y to be square root of n by k. And T to be twice square root of n k, okay. So square 

roots appear. You can see that D x times D y is more than n by design and D x + k D 

y  is  smaller  than  T,  smaller  than  twice  square  root  of  n  k,  right.  So  those  two 

constraints are satisfied. So you can apply the lemma. I mean obviously, the square 

root this may not be an integer. So you will just take floor or ceiling.

Simply compute Q such that Q e j, c j prime is 0 for all j and the degree bounds for Q,  

individual  degree bounds or D x, D y right. That is the setting.  And then third is 

factorize  this  bivariate,  which  you  do  not  know how to  factorize  right  now.  But 

assuming some factorization algorithm factorize this and collect its factors of the form 

y - P x. So essentially factors that are individual degree 1 with respect to y and monic,  

okay.

So these are special factors if you collect them. Let me use different f x, y – f x. Is 

there any property on f? Any property of f that you want to satisfy? How was your 

message like? Yeah the, so if the if the factor has f with degree more than k - 1 then it  

is not a message. So there is no point keeping that in your list, in Bob’s list. So these 

factors with degree of f less than k, right.

So you collect these and this is your list of messages f. So how many are they? What 

is the upper bound? It is linear in y. So the yeah D y. D y is which is square root of n  

by k.  “Professor - student conversation starts” Yeah, but you are calculating that 

by degree of y, right? Yes. And if he wants to look at degree of x and that will be D x  

by k because each factor would have a degree k. “Professor - student conversation 

ends”.

Right. So we can see in the end square root of n by k. That is sure. So number of f’s is 

less than equal to individual degree of y which is less than equal to square root of n by 



k, right. So you get a very precise bound, which is which is incredible that, yeah, so 

let us interpret this. I do not think you have interpreted the parameters, what do they 

physically mean.

So if you want to send a message with K field elements by stretching it to n field 

elements over the channel, where the channel will at least preserve square root of n k 

many  locations  or  field  elements  correct.  Right?  So  in  that  case,  the  number  of 

possible messages corresponding to a corrupted string that Bob received. Number of 

possible messages is at most square root of n by k.

You get a very precise bound for this setting. So how many errors are being tolerated? 

So that is just n - 2 square root of n k. So even in the presence of those many errors,  

which is actually quite large if you think of k as much smaller than n, in that case n 

minus square root of n k is nearly close to everything, which is n, right. It is not really 

55% it is more like 99%.

For  setting  of  k,  you  can  actually  make  it  99% of  the  field  elements  have  been 

corrupted by the channel, right? Only 1% correct information is there. But still a list 

of all the possible messages will be outputted by this algorithm. Right, but then k has 

to be suitably small. So basically what it means smaller k for the same n means that 

you need slightly more stretch that is all. But the stretch that you need is only by a 

constant factor, right.

So for a constant factor stretch of the message, you can go up to 99% errors, right. 

This is, this seems theoretically impossible. Okay, so we just output these, that is the 

final step. So output the list f as above. That is the list which is output, okay. Any 

questions about this algorithm?

(Refer Slide Time: 44:25)



So for n equal to k log square k. So basically k is being stretched to k log square k, 

which is not really constant factor. Why did I say constant factor? Okay, no this I 

think will achieve more. So for this, we only need 2k log k correct values. Okay, so k 

is stretched to k log square k. But amongst these k log square k which were sent over 

the channel, you only need k log key values to be correct.

Right, which is actually, if you look at the fraction, this is tending to zero, right. So 

you really want you just need for this algorithm to work to give a small list the density 

of correct values is nearly zero. It is not even a constant, right. That is a even more 

stunning setting. Is this clear? But the stretch here is non constant, it is k 2 k times log 

square. Okay. Yeah, so what you have in the end is it is collect everything.

So this list decoding algorithm is in randomized polynomial time. Well, we have not 

shown that completely because of this major missing algorithm to factor Q x, y. But 

that will be our goal from now. So in the next many lectures, we will see how to 

factorize bivariates. Basically, we will reduce bivariates to univariates and then use 

Cantor–Zassenhaus. So everything will be ultimately randomized poly-time.

And it works up to n - 2 square root nk many errors. And the list which it will output 

is very small, square root of n by k. So definitely smaller than n. Yeah, so for this  

these things to work now we have to solve some new problems, right. So what are the 

new problems that arise out of this in computational algebra?
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So  in  decoding  RS  codes,  we  require  two  new  algebraic  algorithms.  So  first  is 

construction of a finite field itself. In particular, it is F 2 raised to b. So we happily 

said that the encoding algorithm will pick a field and then do the encoding. But since 

b is really a variable, how will the algorithm find this finite field or construct this 

explicitly? So till now you have done many exercises on finite fields.

So you certainly know that they exist and the question boils down to finding a an 

irreducible polynomial of degree b. But how do you find it? In the application of this  

coding, encoding algorithm actually 2 raised to b is not large. 2 raised to b is only as 

big as n. So you can also do this by brute force, Because the number of irreducible 

polynomials the space is only n. So you can just try setting all possible values 0, 1.

But the bigger question is suppose b is given to you in the input. So then 2 raised to b 

is exponentially large in terms of b. So you cannot do brute force. You cannot go over 

all  the  polynomials  of  degree  b  basically,  the  space  is  too  big.  So  how do  you 

pinpoint,  one  irreducible  out  of  all  polynomials,  right.  Any  ideas?  In  the  first 

assignment,  there  was  this  question  where  you  constructed  or  you  saw  how  to 

construct irreducibles over Q.

So integral irreducibles, rational irreducibles that there was an explicit example, right. 

But for finite field, you never saw an explicit example that you can just pick. So this 

actually is an algorithmic problem. You have to for every input, you have to do some 



computations and come up with an irreducible polynomial. So that we will see next. 

That is the first problem.

The second problem that has arisen is, is a much bigger problem, which is factoring a 

bivariate polynomial. In fact, if you think about it, given a bivariate polynomial, you 

currently do not have any idea how to check whether it is reducible or irreducible, 

right. Forget about factorization. Even a bivariate how do you check its irreducibility, 

right? That is that seems to be a very challenging question.

So we will solve all those problems at a later point. So what is the easiest thing that 

comes to your mind to search in this exponential space of polynomials? You already 

know the key word. No, so you pick a random polynomial.

“Professor  -  student conversation starts” Yeah,  pick  a  random polynomial  and 

factor it. So that is enough? But y is the guarantee irreducible factor would not be 

necessarily a required degree.  “Professor - student conversation ends”.  No, even 

better. I am saying that pick a random polynomial. It is already irreducible. It is a one 

line algorithm. Now if you want to see why it works, well that is of course hard.

So that is what we will do now. Why should such a thing work? So constructing F q 

in general where q is P raised to b. This is given in binary in the input, right. So the  

input size is b log p. So this is simply a number. It is just given to you in the input.  

And for this number, you have to construct that sized field, finite fields, right. That is 

the input output description.

You could do it by brute force, but then the time you will spend is q. And since the 

input is given in binary q is exponentially large. When b crosses 50 then this number 

is actually more than 2 raised to 50. And that then becomes very quickly, it becomes 

infeasible to actually go over all degree b polynomials with coefficients 0 to p – 1,  

right. That is a that is truly an exponential space as b grows.

Basically you want to construct an irreducible polynomial over F p of degree b. So 

this  construction  of  a  finite  field  is  completely  equivalent  to  this  irreducible 

polynomial construction. There is no difference in between these two problems. That 



you can see by the exercises on finite field. So finite field will always correspond to 

an irreducible polynomial. That is the way to represent it.

Then irreducible polynomial will immediately give you a finite field, okay. These two 

questions are one and the same, also computationally. So what we will show is the 

random choice works. So random choice will work only if the density of irreducibles 

is  quite  high in this  space of polynomials,  right.  So this  is  basically counting the 

number of irreducible polynomials.

So  we  will  basically  give  you  the,  we  will  estimate  the  number  of  irreducible 

polynomials of degree b over F p. So have you seen this calculation before? This is 

sometimes done in discrete math course? Yes. So it yeah for the exact one it does, but 

I  will  not  need  Mobius  function.  I  just  want  an  estimate.  So  I  will  approximate 

everything. What it will use, the starting point is there is this magical polynomial that 

you have seen before that collects all the irreducible polynomials, right.

So  already  the  irreducible  polynomials  are  collected  in  one  place  which  is  this. 

Essentially x to the q – x. So this contains degree b irreducible polynomials but also 

some  lower  degree  ones.  And  using  the  recursive  structure  there  we  will  get  a 

recursion,  which will  give us an estimate on the number.  Okay,  so that Frobenius 

polynomial is the reason why all this works again.
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So let pi l be the number of irreducible polynomials in F p x of degree l. Now recall 

that x raised to p raised to l – x has as factors all irreducibles of degree what, dividing 

l right? That is what we deduced before in Cantor–Zassenhaus analysis or somewhere. 

So l but also the factors of l,  all  those irreducibles when you multiply them, you 

exactly get x to the p to the l - x, right.

This is without repetition. They are uniquely dividing. Dividing with multiplicity 1. 

So all your irreducibles of degree I want to name k dividing l. So let us write this as a  

formula p to the l is equal to what? p to the l is the degree of this polynomial. It is  

equal to pi k where k divides l. And degree k irreducible has degree k, right. So and 

their number is pi k. So this is k times pi k, right.

So k times pi k for all k, their sum is equal to the degree of this Frobenius polynomial. 

Is that okay? Okay, so just based on this, we will prove a major property that pi l is 

between, or let me give it as a density. So density, the density of irreducibles amongst 

all polynomials of degree l is at most 1 by l and 1 by at least 1 by 2l. So this is a  

brilliant result for many reasons.

One is that it actually is an algebraic version of the prime number theorem, right. So 

prime number theorem also says that the density of prime numbers below x is around 

1 over log x. And what is log in this? The analog of log here is l, right. So here also it 

is saying that it  is 1 by l.  So algebra and number theory are not so different,  but 

algebra is easier, right. That is what you will see.

So this thing has a very short proof. On the other hand, the original prime number  

theorem has a very involved proof. Yeah, this can be written also in a more precise 

way. So but that we do not need for the algorithm. It is time is up. So in fact, you can  

say that pi l is p raised to l by l. That is the main term plus square root of this. Okay,  

so this second thing is very precise. It is actually giving you the asymptotic behavior 

of pi l.

The main term is p raised to l by l. The error term is square root of that. So it is error 

term is significantly smaller than the main term. Now if you look at the analog of this 

from for  prime  numbers,  that  is  still  an  open question.  Okay,  whether  the  prime 



number theorem the error term can be made square root. That is the open question for 

around two centuries. It is called the Riemann hypothesis, okay.

So in one paragraph we can prove Riemann hypothesis  here, but not in the prime 

number,  actual  prime numbers.  “Professor -  student conversation starts” Prime 

number  is  the  left  hand  side  inequality  valid  and 1  by  2l.  “Professor  -  student 

conversation ends”.  Yeah, it is some constant. Yeah, if you look at the best results, 

even this must be true. Yeah, so this is true for all l.

The prime number estimate you need then bigger and bigger x. I remember definitely 

this on the right side or factor of 2n on the left the factor of half will work in the prime 

number case. Okay, so we will start this next time. So short proof, it just follows the 

recursive formula we have written above.

Okay, the above can be seen as a relationship between pi l and things smaller than l. 

Like l by 2, l by 3. So it is a recursive formula. If you use that recursive formula 

carefully, you can prove this theorem. It is quite easy. Okay.


