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Okay, so last time we finished Cantor–Zassenhaus algorithm. So in the input, you are 

given  a  univariate  polynomial  over  a  prime  field  F  p  of  degree  d.  So  it  is 

preprocessed, which means that F completely split into splits into roots. There are d 

distinct roots. All are numbers from 0 to p – 1. So the in the output you want to find 

some factor of f.

So obviously, if you can find one factor of f then repeatedly, you can ultimately find 

the, apply this repeatedly, ultimately find a root. So Cantor–Zassenhaus algorithm, CZ 

algorithm is you pick a random a and then just compute this GCD, okay? GCD of f 

with this shifted x to the p - 1 by 2 - 1. So shift this by a and then compute the GCD.

And the proof was just that roots alpha 1, alpha 2 of f when perturbed by a will have 

opposite residuosity. So 1 will be a root of, alpha 1 will become a root of h and alpha 

2 will not, right. So they will get separated.
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Time complexity is linear. It is this d log square p. But then this is after preprocessing.
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Include preprocessing etc., then overall we have solved factorization over any finite 

field in sub cubic time. And the best that is known is sub quadratic. Doing it in linear 

time is an open question from scratch, okay. And all these algorithms fast algorithms 

that are used in practice, they are all randomized, okay. So another open question is 

doing it deterministically.

So those are  the two open questions.  So deterministic  poly-time.  That  is  an open 

question. Second is, so actually even if you qualify this finding square root mod p. So 

even if you qualify this to degree 2, d = 2, which is nothing but computing square 

roots  modulo  a  prime,  that  also we do not  know anything better  than  CZ.  Okay, 



deterministic poly-time algorithms are open. And second is, second is randomized O 

tilde d time.

Okay, so both these are open questions. The second question is for finite field F q. If q 

is prime then you already have this solution. Well that was log square p. So maybe I 

can put log square here. But can you make d linear? Okay, so for over finite fields this 

is not known. Okay, any questions till now? So with this you can solve factorization. 

There are no practical difficulties.

Let us move on to the applications of factorization, right. So whatever factorization 

algorithm we will learn there will be applications. So for finite field there are huge 

number of applications and then when we will factorize integral polynomials then that 

also will have huge number of applications. So we will cover some applications also 

at an abstract level. But it will give you the idea.
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So polynomials over finite fields in coding theory, okay. So what is the question in 

coding theory?  So in the first  class, this  was discussed very briefly that the basic 

problem is  so Alice wants to send so Alice wants to send let  us say n bits.  So a 

message that is n bits long to Bob. So the space here is 0, 1 to the big N. Okay, so this  

message she wants to send over a so it is a physical channel.

So any physical channel will be prone to mistakes,  to over a channel having t bit 

errors, okay. So I mean if she just sends these big N bits the message as plain text then 



even if a single bit gets corrupted it will be useless for Bob. And Bob will not be and 

b will not be able to find out which bit is corrupted of course, right. The location is 

also will also be unknown.

So if  it  was  a  English  text  then  Bob can  obviously  do  some error  correction  by 

intuition. But if suppose this was a password or this was a number then there is no 

possibility of any intuitive error correction, right. So even if one bit is lost the whole 

message is lost. And actually the errors may be in t bits. And t may be actually quite 

dense in N. So it is possible that t is one-third of N.

So one-third of the bits are actually corrupted and also you do not know which ones. 

So what is the simple solution for this? Sorry? Parity? So parity is just one bit. But the 

yeah, you have to pad. You have to basically copy the bits. So you for every bit, so if 

suppose the error is  possible in only one bit.  So how much of copying would be 

required? Right, so at least two and maybe three times, right.

So every bit you have to I mean, if you just repeat a bit twice that still is not enough to 

know what it was before. So 0, 0 or 1, 1 both of them may become 0, 1. And then 

from 0, 1 it is never really clear whether original thing was 0, 0 or 1, 1, which means 

0 or 1. So you actually need three. If you make it three times copying, then you can 

take a majority vote. So majority vote will tell you.

So for one bit error, you have to send 3N. And for t bit error yeah for so you have to 

send 2t + 1 for every bit. So this is really multiplicative. And if t is a if the errors are  

dense,  then  it  actually  becomes  quadratic  growth.  So  for  to  send  N  bits,  Alice 

essentially has to send N square, right. So that is the brute force solution. So how to 

correctly communicate in minimum bits.

So you want to avoid redundancy as much as possible. Your optimization problem is 

to minimize the bits sent. So trivial solution is N times 2t + 1 many bits with each bit 

repeated 2t + 1 many times. And so in this case, the encoding is just copying. And the  

decoding for Bob is just majority vote.  “Professor - student conversation starts” 

Sir,  why  is  it  2t  +  1?  Yeah,  because  of  majority  vote.  “Professor  -  student 

conversation ends”.



So Bob  takes  a  majority  vote  per  block  to  find  the  bit,  okay.  2t  +  1  t  may  get  

corrupted, but still t + 1 will be correct. So if you take a majority vote majority will 

give you the answer. Any questions? So that is, t we will always think of as a fraction 

of N. So this is really quadratic blow up in the message.

Quadratic blow up actually, maybe completely infeasible. If you are sending, let us 

say, a satellite is sending images of celestial bodies to Earth, then there is simply no 

way that  you  can  blow up the  image  to  a  quadratic  size,  okay.  That  will  not  be 

feasible. Because all the instruments involved are small and the distances are big. So 

you actually want this to be nearly linear blow up, okay.

Quadratic  may  be  actually  completely  infeasible  in  this  regime.  So  just  saying 

polynomial in N is not enough, okay? You actually want O tilde N in this case. So 

what is the solution?
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So we will see many or at least one clever algebraic solution. So in all these practical 

solutions, finite fields are involved. So these are algebraic solutions. So that is due to 

Reed and Solomon. So they gave a code requiring merely N log N bits to correct 

nearly half of the errors. Okay,  which is a very which is like the optimal solution 

because errors if the errors are half N by 2 many bits are flipped, then it is information 

theoretically impossible to recover the message, right.



So just below N by 2, any fraction below N by 2 below half. If it is if the channel is  

good enough to guarantee that say 0.49 or 49% of the bits will be corrupted. At least 

51% will not be, will not be corrupted. If that currently the channel gives you then 

Reed Solomon code only requires N log N length code word okay. So the code the 

message  is  encoded.  It  is  sent  over  the  channel.  49% of  the  bits  of  the code get 

corrupted.

Obviously, the positions are unknown. But Bob has a decoding algorithm which will 

recover the message. And everything is efficient and optimal.  “Professor - student 

conversation starts” Sir, in the channel when we send N bits then the error was of t. 

Suppose it is N by 3. So now if we are saying 2N bits would the error still be N by 3 

or it will become 2N by 3? “Professor - student conversation ends”.  

No, we think of it as a percentage. It is a density guarantee. So basically every bit has 

a probability of getting corrupted. In practice, it may also depend on the length of the 

message, but the simplest model is that every bit has an attached probability of getting 

corrupted. So the basically the expected number of corrupted bits is just probability 

times the length.

“Professor - student conversation starts” Sir, the previous solution was also like 

probabilistic, right? It may be possible that all the bits of like 1 log are corrupted. So 

we cannot get the message.  “Professor - student conversation ends”. Yeah, but the 

probability will be low. I mean, there is always a probability that your hard disk in 

your machine will crash, right.

But  still  you go around every day working on it.  So that  is  all.  So everything is 

probabilistic. Yeah, till few years pass and then your hard disk really crashes and lose 

everything. So obviously, at that point, no error correction, no code can work. But the 

probability of that happening is we want to reduce it as much as possible. But still you 

cannot  make it  zero.  So you  can only make probability  small,  but still  it  will  be 

positive.

So these coding methods will be required. Without codes computers cannot exist. So 

this was in fact the first problem to be solved before real computers were made. Yeah, 



so that obviously gives you all these application possibilities. So Reed-Solomon codes 

are widely used. Probably their variants and more optimization happens in practice. 

But the basic idea is from Reed - Solomon.

So you will need this for mass storage systems. So like I said, your hard disk and then 

secondary storage like CD, DVD etc. So distributed online storage. So everywhere 

you will need some coding mechanism so that even if part of your physical device 

gets corrupted up to some probability of course, you can recover. When that when a 

situation  happens  when  the  probability  when  the  corruption  is  more  than  the 

guaranteed probability.

Obviously, at that point, you say that your device has crashed, because then your data 

is not cannot be recovered by using by whatever coding mechanism there was. Okay, 

so that  is the point  when you say that your  device has crashed. Other things like 

barcodes.  So  when  you  see  these  barcodes  on  products,  barcodes  can  also  get 

scratched and bad things may happen to it, but still you want the barcode to work as 

much as possible.

So even to draw the barcode you need some coding mechanism. And then obviously, 

all kinds of communication. So to take stunning examples, deep space and satellite 

communications. But it also includes obviously mundane communication in your cell 

phone and all. So all this 2G, 3G, 4G, 5G is part of the problem they are solving is 

improving the  coding.  So they keep improving it  by an incremental  amount  with 

every version.

So  communications  storage  and  other  kinds  of  places  where  you  need  physical 

sensors, okay. So yeah so let us see the idea of Reed-Solomon, what is the algebraic 

idea.
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So it views them, basically it divides the message into blocks. And then using the 

blocks as finite field elements, it defines a polynomial, okay. So every message that 

Alice sends is actually a polynomial in one variable over a finite field. So you can 

think of every message as a function over a finite field. So it is a function from F q to 

F q, okay. And to make things keep things simple, obviously, this function will be a 

univariate polynomial.

But  there are  variants  of  Reed-Solomon where  this  function  may be multivariate, 

okay. So that is called Reed-Muller, etc. Probably, we will not see that in this course. 

But it  is  an extension of this  basic idea of Reed-Solomon.  So this  is a univariate 

polynomial over a finite field. And so what do you want to send over the channel? If 

you had sent the polynomial itself, then that is basically sending the plaintext, right?

That would not help. So instead, what should you send? No sending coefficients is 

plaintext. Yeah, so you use the other representation, which is what we also did for 

polynomial multiplication that you send, you compute the polynomial, and you send 

the function values. So if you send a lot of function values, even if some of them get 

corrupted, maybe Bob can devise a clever algorithm to recover the actual function, 

okay.

So that is the very basic idea of error correction that by looking at some corrupted list 

of evaluations where some of them let us say one-third of them are corrupted, still you 

want  to  learn the actual  correct  function,  okay.  And obviously,  you do not  know 



which values are corrupted. So Bob will only see a list of evaluations and we will also 

know the argument.

So Bob sees the argument and the value, but the values may be corrupted, one-third of 

them in an arbitrary way. From that the function has to be learnt. Yeah, so it is not 

very easy to see at this point, why this thing is possible, okay. So we will go through 

this slowly and send the evaluations. So A sends its evaluations to Bob, okay.

So the encoding is, exact implementation will be you first, as I said, consider your 

message into blocks to get the coefficients of the polynomial. So break the big N bit 

message  m into k blocks each of size b bits.  So how will  you  view these b bits 

algebraically? 2 raised to b? Yeah so yes so 2 raised to b is the field you pick. You 

pick the Galois field via some model of size 2 raised to b, which is equivalent to 

basically picking a degree be irreducible, right.

So  that  will  give  you  a  finite  field.  So  you  think  of  these  blocks  as  finite  field 

elements in G F 2 raised to b. And they are k many. So you can build a k -1 degree 

polynomial. So that is the that function is the message. As elements d 0 dot dot d k - 1 

in the finite field of size 2 raised to b. Based on that you can define your polynomial. 

So your function is this. So it is a univariate polynomial over G F 2 raised to b.

And then you want to evaluate it. So you pick let us say small n many points e 0 dot  

dot e n – 1 in the finite field. So obviously, when I say that it is meant that n has to be 

less than equal  to 2 raised to  b.  Okay,  so you should pick this  so we have three 

parameters already. We have B which determines k. And B should be such that 2 

raised to b should be more than N. The finite field should be big enough.

So you pick enough points e 0 to e n -  1in the finite  field and then evaluate  the 

function and send the values which is P e 0, P e n – 1. Okay,  so values are also 

elements in the same finite field. And they are n many. So that is the definition of the 

code, okay. So this will be how many bits? B n right? So B small n, B times small n. 

So obviously, this B times small n will be sufficiently larger than big N.



There will be some stretch. So code actually is stretching the message, but not by 

much.  We will  see  that  later.  So  this  stretched  code  or  string  obtained  from the 

message is  then sent over the channel.  Many of its  bits  will  get corrupted,  which 

means when you look at  the blocks many of these P e i’s will be wrong. I mean  

wrongly received at Bob’s end. But whatever Bob receives from that Bob has to learn 

P, right. That is the setting.
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So this encoding is a, first of all it is a linear map from 0, 1 to the N viewed as finite 

field space to 0, 1 to the b n viewed as the same finite field space but slightly bigger, 

okay. So this is what we are doing. So this 0, 1 to the big N was slightly smaller 

space. So these elements, we are actually expanding them into a bigger space, finite 

field space. And then the hope is that even if some of these images get corrupted, still 

there will be enough information left for Bob to learn.

So this map can be computed in how much time? What do you think? It is already you 

are doing it little n many times. And how much time will it take to compute P at e i? P 

was a degree k polynomial, right? Sorry, B k. So yeah time is not much, it is barely 

quadratic, actually. Small n times B is the output size. And that is being multiplied 

merely by this k. So it is slightly more than linear, but seems sub quadratic in the 

output size.

Okay,  so it  is  a fast  algorithm.  There is  no problem in efficiency.  So one simple 

observation is if there are no errors in the channel does not get corrupted then Bob can 



find P in what case? So suppose you send this c bar, so Alice sends the code c bar 

over the channel, but the corruption did not happen. So Bob, can try to learn P by 

interpolation, right. So what are the conditions for that for the interpolation to work?

N should be more than more than k, greater than equal to k. So by interpolation, as 

long as n is at least k and these small n many elements should be distinct, right. So the 

field size should be at least that. So that is the basic setting you definitely need. So 2 

raised to b should be at least n and n should be at least k for any of this to work, 

because this is needed even when there is no corruption.

So that is the kind of information theoretic bound you have to satisfy. Yeah, but so 

what if t of these actually got corrupted? What happens then? So this interpolation 

will completely fail, right. Because interpolation is a very fixed equation. And in that 

equation, if even a single bit is wrong, then the whole calculation is wrong, right. That 

does not seem very tolerant to even few errors, even a single bit error.

So you have to come up with a interpolation method that is tolerant to errors. So how 

does Bob decode m from a corrupted version c bar prime of c bar? Okay, so Bob 

received some version c bar prime. So let the values which are wrong are e i 1 to e i t 

okay. So we assume exactly t errors in these unknown places i 1 to i t, okay. And 

remaining n - t we assume them to be correct.

So this is a thought experiment, because Bob does not know i 1 to i t. In fact, Bob 

does not even know a t for sure, right. So t is only an upper bound. Errors maybe 

much fewer than that. So Bob will do a thought experiment first. So suppose that the 

errors are in these places e i 1 to e i t and try to come up with a method that does not  

require i 1 to i t in the algorithm, decoding algorithm. So let us title decoding RS.
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So this mainly is an idea from Peterson. It is a very clever idea. It has remarkable 

consequences. So the idea is to consider an error locator polynomial.  So this Q is 

basically for Bob it is unknown. It is he calls it an error locator polynomial Q x whose 

roots are exactly the places where there is a mistake. And observes that the coordinate 

of corrupted code word jth coordinate.

If you take the product of the difference in what Bob should have received and what 

Bob actually received times the value of the error locator at the jth point, what can 

you say about this product? This is always zero, right? Does not matter what j. So for 

all points, this product is zero. Note that e j is known, c j prime is known, but c j is 

unknown and Q is unknown right in this equation.

So c j and Q are the unknowns here. So this is the starting equation right and we will 

just,  so  Peterson’s  idea  is  just  to  play  with  this  equation  and it  will  give  you  a 

decoding algorithm. So this is so what is c j? c j is P e j. So P times Q is equal to c j 

prime times Q. And let us define P times Q to be R. So R is the product polynomial. 

So P is anyways unknown. P and Q both are unknown.

So we just take the product and that R is also unknown. So there is this unknown 

polynomial R which at value e j is c j prime which is known times Q e j where Q is 

unknown right. So here R and Q are both unknown. Everything else in this equation is 

known to Bob. Sorry? E j are the points from the finite field at which the evaluations 

are taken. These are the arguments.



So in terms of the coefficients of R and Q, what can you say about this equation? 

What type of an equation is this in terms of the unknowns, what can you say about 

these equations? Is it linear, nonlinear? Yeah, so obviously, this is a linear system for 

the unknowns, right. So whenever you see a linear system you solve it. So that is what 

Bob  will  do.  “Professor  -  student  conversation  starts” The  root  of  Q  are  the 

corrected  elements  of.  Yes  that  is  the  error  locator  yeah.  “Professor  -  student 

conversation ends”.

And R is the product of correct polynomial times error locator. So coefficients of R 

and Q are the unknowns. And in that you have N linear equations, right. So this linear  

system you will now try to or Bob will try to solve. Okay, let us write down one more  

thing here. What is the degree of Q? That is t and what is the degree of R? k – 1 + t. R 

is well Q is monic.

Monic means that  the leading monomial  has coefficient  1 because it  was just  the 

product of x minus e i j’s. On the other hand R is not monic, right? So yeah so just  

remember that, we will use it next.
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So this means that number of unknowns is? So for R you get (k – 1 + t) + 1 right  

because it was not monic, degree plus one. And for Q you get, you exactly get t. So 

that is k + 2t. That is the number of unknowns. And the number of equations is n, 



small n. Okay, right. So intuitively,  if you have enough equations, then the system 

then the roots should get or the solution should get determined, right.

So if you take small n to be at least k +2t then it should completely specify Q and R, 

right. That is the intuition. I mean obviously, whether it will happen or not, that we 

have to prove. So we will prove this fact that for all solutions R, Q of the system, Q 

divides R as long as n is sufficiently large, okay. So what is the system? The system is 

this right? So R e j is equal to c j prime times Q e j for j 0 to n – 1.

This is a linear system with n constraints and k +2t many unknowns. So as long as the 

constraints are many compared to the unknowns we will prove that whatever solution 

you  find R and Q,  Q will  divide  R,  okay.  That  is  a  very strong property.  Is  the 

statement  clear?  No.  R and Q are  arbitrary  solutions  of  the  linear  system.  Yeah, 

maybe I should use something else here. Maybe R tilde or.

So we are talking about,  this  is  a statement  about  arbitrary solutions of the same 

system. Previous slide only tells  you that the that system has R solution where R 

divides Q. But this claim is saying that actually every solution will satisfy this. So that 

is  a  very  strong  claim  and  it  will  have  a  great  consequence  which  is  when  you 

compute the quotient R tilde x divided by Q tilde what will that be?

So intuitively that will be the P x. This also we have to show. So basically what Bob 

will do is that Bob will just find an arbitrary solution of the system and then divide.  

Then compute the quotient R tilde by Q tilde. That will be the original message, okay.  

And we will see that this will be a very robust way to interpolate even in the presence 

of t many errors where t will be quite large.

So the errors are dense, but still this interpolation is robust, okay. It will give you P.  

Okay, so I think we can do this. So what is the proof? So let us assume that 2 raised to 

b is at least n and n is at least k + 2t. We are in this setting. So you know that the 

system has at least one solution. Example R equal to P Q and Q the error locator, 

right. So the error locator and error locator times original function that is a kind of by 

definition a solution of this linear system.



So it is not, it is a feasible system. It is not infeasible. Okay, let me change that tilde to 

prime. I will use prime. So let Q prime R prime be some other solution. So consider 

this polynomial which is R prime minus P times Q prime, okay. What can you say 

about this polynomial delta looking at the linear system? Sorry?

So the linear system was any equations, but the places which were correct, n - t many 

places can we see that delta is vanishing on those places, right? Why can we say that? 

Because on the yeah when j is the correct place c j prime is c j. So that is the value of 

P, right. R prime Q prime is an arbitrary solutions that satisfies this. So R prime is 

equal to P times Q prime at least on the correct places.

So delta vanishes on n – t points in e 0 to n – 1. Basically the ones that are not e i j  

other than the error. What do you know about the degree of delta? So degree of P is k 

- 1 and Q prime is right and degree of R prime is same. So the degree of delta cannot 

exceed k – 1 + t. And what have you assumed about k – 1 + t? Right, n – t – 1.  So  

now do you see the proof? Right.

So delta is a polynomial whose degree is less than n – t. But it is vanishing on at least  

n - t points that are distinct, right. So this means that delta is actually zero because it is 

happening over a field which gives us both the claims.
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So you get that P is equal to R prime x divided by Q prime x. Okay, so Q prime 

divides R prime arbitrary solutions of the system. Moreover, the quotient is P. That is 

the message. Yeah, so this is what Bob will do. Any questions? How much of t can be 

tolerated? So t has to be less than equal to n - k by 2. This is n – k by 2.  So remember 

that little n is the kind of clusters in the output, right.

So  if  your  alphabet  is  the  field  alphabet,  alphabet  has  field  elements.  So  in  that 

alphabet, you have little n many is the length of the code word. And roughly half of 

that can be corrupted, right. So it is not n by 2, it is n - k by 2. But it is quite close to  

half.  So you can see this  as n times 1.   So it  is close to n by 2. This fraction is  

multiplying 1 - k by n. Can we estimate that what is k by n?

So this you wanted 2 raised to b to be at least n. And capital N was b times k. Yeah, I  

mean there are many possibilities. So you can take b and k to be let us say square root 

N, square root big N and then you can compare the two. So this key over little n will 

be actually quite small. So you can get arbitrarily close to little n by 2, okay. So if you 

want t to be 49% that you can achieve by appropriately fixing k, little n and b.

So you have started with, remember that you have started with big N that is all. That 

was the given parameter. And with that given you can just choose k, b and little n to 

get  the error  tolerance  you  need for  any desired  t  less  than n by 2.  So whatever 

fraction you want you can do this, okay. And yeah the time complexity is clear. So 

this will be a very fast algorithm. You just have to solve the linear system.

So this is the only thing you have to solve. So this is this gives you essentially this 

little n cross little n matrix. So that you have to solve. So time to solve, trivially you 

can say it  is  polynomial  in n,  but even stronger claims can be made.  So you can 

actually show that the time to solve this special system is something like O tilde nb.

So you can actually solve it quite fast and so overall we can do everything in sub 

quadratic. Any questions? Yeah. So let me just give a fixing. Then we can stop.
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So example fixing is. So you can take b to be log N, k to be N over log N and little n 

to be N. And the t that it can handle is then, okay. So note that 2 raised to b is greater 

than equal to little n. And little n the second inequality is little n is greater than equal 

to k + 2t. So this is what you get. So you can get extremely close to n by 2. And here 

big N by 2. So in the finite field alphabet you are stretching N by log N to N, right.

So it is a very minor stretch. So by stretching N by log N to N and working over a 

finite field whose size is N as well you are able to correct errors close to 50% in the 

finite field alphabet, right. That is the result. So this is close to 50% correction in F 2 

raised to b alphabet. So RS code is of length N sorry N log N and corrects up to N by 

2. Okay, this is the final result where we can stop.

So in the finite  alphabet  if  Alice wanted to  send a message  of  big N many field 

elements, then she only has to stretch it to by a log factor instead of n square. And the 

errors that Bob would be able to handle on the channel is nearly half, okay. So this is 

a very surprising fact. It was not at all clear in the beginning a priori whether this 

thing could even exist, right. So this is a very fast algorithm.

This is a sub quadratic time algorithm for encoding and decoding. Any questions? 

Okay. Yeah, factoring was not fundamentally used here. But it is used to optimize this 

computation of P. So this R prime by Q prime computation, obviously, you can do it 

by division, but in certain applications to make it faster, they actually tried to do this  

by factorization.



And then it is faster in their applications. Yeah, but what was fundamentally used is 

finite fields, okay. So finite field is why this thing works. And it has to be a large 

enough finite  field.  Although you can see that  here,  this  is  the Berlekamp setting 

because the characteristic is only 2, right. So it is a very low characteristic finite field, 

only the smallest possible characteristic.

And  then  you  are  working  in  its  extensions,  right.  So  this  is  a  good  case  for 

Berlekamp. So whenever you want to find a root or factor, Berlekamp can be applied. 

Okay.


