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Alright, so, let us look at this problem consider the problem, minimization problem that we

want to minimize the distance between AX and b. So, if b is already in the column space,

then the distance between them is 0. So, I can solve the system AX is equal to b there no

problem. 

So, if b belongs to column space of A, then AX is equal to b has a solution and the value of a

star; the value of a star is 0 and there exist an X naught belonging to column space of A fine,

which gives us AX naught is equal to b fine so, I will get something.



Now, if b does not belong to the column space of A. So, b does not belong to the column

space of this is my column space of A, b is outside I am supposed to look at something which

is perpendicular here and then proceed fine. So, I am trying to find out the nearest vector in

column space of A, alright. 

So, now that we have proved the gram Schmidt process and so on. So, let us do that part. So,

what I know is that this is a subset of R m. So, we know that R m can be written as column

space of A direct sum null space of A transpose recall, the idea that I had R m here so,

fundamental theorem of linear algebra; of linear algebra. So, I had this line with me this was

90 degree, this was null space of A transpose I think and this was the column space of A fine;

so, I can take a basis of this.
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So, let u 1, u 2, u k be an orthonormal basis of null space of A transpose fine, we can extend

it, we can extend it to form a basis of R m. Further apply Gram Schmidt application, will give

an orthonormal basis say u 1, u 2, u k, then u k plus 1 till u m where, u k plus 1 to u m is an

orthonormal basis of column space of A.

Why you can do it? Basically because look at this what we are saying is that column space of

A is perpendicular to null space of A transpose alright. This perp is there therefore,

perpendicularity comes and therefore, you can do things alright. So, this is important for us. 

So, what we are saying is that, I have a vector b, I decompose be in terms of column space

some element of column space and something with the null space is that ok so, I am doing

that. So, because of this part now I can say that there exist a unique. So, b belongs to R m

implies b is equal to linear span of u 1 to u m. 

So, this will be equal to sum alpha i u i, i is equal to 1 to m, I can write it as i equal to 1 to k

m alpha i u i plus summation j equal to k plus 1 to m alpha j u j. So, this part belongs to null

space of A transpose and this belongs to column space of A alright and this is unique that is

important alright. So, I am writing b as fine as some y plus v, where y belongs to column

space of A and v belongs to null space of A transpose and this vectors are unique; unique

vectors and orthogonal, alright y and v are orthogonal.

This is the way the graph is and that is what the fundamental theorem of linear algebra tells us

that they are orthogonal fine. So, therefore when I am looking at this thing so, if I want to

look at minimum over this AX minus b minimum over X belonging to R n, then this is

attained by alright, I have take something from X, so, I would take y belonging to the column

space.

So, this is attained by y minus b alright. So, y is the vector which minimizes it, minimizes the

star alright. But what is y? y is element of column space. So, it is nothing but this so if we I

can write in terms of ordered basis also, but we are just saying here is that or in this problem



is that since y belongs to column space of A, implies there exist X naught belonging to R n

such that y is equal to AX naught alright this is what it is fine.

So, now, we already know that. So, what we are saying here is that I have a solution of a star

here which is X naught, I have to prove that A transpose AX naught is A transpose b alright.
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So, let us try to prove that to show A transpose AX naught is equal to A transpose, let us just

do that part. So, let us look at what is A transpose AX naught. A transpose of AX naught, we

just saw it was alright AX naught is Y. So, it is just Y for me which is same as A transpose of

what is Y. So, y if I look at from here fine.

So, y from here is nothing but b minus v which is same as A transpose of b minus A

transpose of v, which is same as A transpose of b minus what is A transpose of v? v belongs



to null space of A transpose. And therefore, A transpose of v is 0. So, I get it as A transpose

of b. 

Therefore, if X naught is a solution of a star, then X naught satisfies A transpose AX naught

is equal to A transpose of b or X naught is a solution of A transpose AX is equal to A

transpose b.
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So, I have proved one way. Now, let us prove the other way around, now to show. Now, let us

assume that X naught is a solution of A transpose AX is equal to A transpose b, to show AX

naught minus b this is equal to minimum over all X belonging to R n norm of AX minus b,

this is what I have to show fine. So, let us try that out. 



So, what does it mean to say that X naught is a solution here, and what does it mean to do

things here alright. So, this part implies that look at this part nicely, it says that A transpose

AX naught is equal to A transpose b, I wrote inverse A transpose b. And therefore, I look at A

transpose of AX naught minus b is 0, fine. Now, from here I want to relate these ideas here,

how do I do that? Fine. So, I am looking at minimum of AX minus b.

So, let us look at norm of AX minus b this whole square be careful. So, we are going to write

it as norm of AX minus AX naught plus AX naught minus b whole square. So, the way we

have been decomposing what we will get here is this will be equal to norm of AX minus AX

naught, whole square plus norm of AX naught minus b whole square plus, since everything is

real here should be 2 times inner product of AX minus AX naught comma AX naught minus

b. This is what we will have fine.

That is the way we would be decomposing that u and v are there, then if I write u plus b

comma u plus v the norm of u square plus norm of v square plus 2 times inner product

between u and v alright, that is what we have been doing. So, let us look at what is this. So,

this is equal to if I want to look at is by definition is AX naught minus b whole transpose AX

minus AX naught fine, which is nothing but or I think I have written it the other way round

here.

So, let me write the other way round alright. So, this is same as AX minus AX naught

transpose AX naught minus b, because X Y is same as Y X for us because this is same as Y

transpose X, which is same as X transpose Y, everything is real. If it was complex then you

can do at complex conjugate will get the same thing. 

So, this is same as just look at this part it is X naught. So, this is equal to X minus X naught

transpose A transpose into AX naught minus b, alright. So, this is equal to if you look at it is

X transpose A transpose minus X naught transpose A transpose. So, I am taking A transpose

on the right and then writing here fine.



So, this is what I have? X transpose A transpose minus X naught transpose A transpose X

naught transpose, X naught I have taken it as separately here fine and then A transpose. Now,

we have been given that this thing is 0 look at here, it is given that this is 0 and therefore, this

is 0. So, what we are saying here is that this part is 0. Now, when I say that this part is 0 what

does this imply? It means that look at this part AX means elements of column space of A,

fine.

So, any column any vector here minus this. So, I am saying that any vector so, this if I look at

so, I have a plane here which is the column space of A. So, AX is any vector here that I am

not bothered about AX naught is some fixed vector here look at this look at this. This is my

vector AX naught minus b then we are saying that this vector is perpendicular to everything

here, fine.

And what will that imply? If it is perpendicular to everything it means that that must be 0 as

such, fine. So, therefore, what we are saying here is that this is greater than equal to, this is 0.

So, norm of this is this, so, norm of this is greater than equal to the norm of this. So,

therefore, what I get is that norm of AX minus b whole square is equal to norm of AX minus

AX naught a square plus norm of AX naught minus b whole square. So, which is greater than

equal to norm of AX naught minus b whole square.

So, the minimum is attained at X naught itself alright, whatever you do because if you change

any X you get something extra here fine. So, this is what we wanted to prove look at the thing

here it said that, if X naught is a solution of A transpose A equal to this, then X naught is a

solution of a star. So, X naught is the one which gives you the minimum, is that ok. So, we

have been able to show this also. So, what I would like you to understand now is there are

two things here. 
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One is that if you want; so, want 1: if you want to solve AX is equal to b, if b belongs to

column space of A there is a solution using Gauss Jordan Elimination method alright, I

already have a solution fine. If b does not belong to column space of A, then no solution. 

But we can find the nearest vector, X naught belonging to column space of A, such that

nearest vector such that norm of AX naught minus b is minimum over X belonging to R n

norm of AX minus b. And how do we do that? And to get this what we are saying is that, just

solve A transpose AX is equal to A transpose b. So, in place of solving the system AX is

equal to b I need to solve this system to solve a new system alright fine.

Now, what the QR algorithm says? QR algorithm, this we are solving it because if you so,

what we had was, A was equal to QR fine. So, if we want to compute A transpose A is

nothing but QR transpose QR, which is same as R transpose Q transpose QR, which is R



transpose R alright; R was an upper triangular form R an upper triangular form. So, R

transpose is lower triangular fine.

So, I just have to solve the system R transpose R is equal to A transpose b, I just have to solve

it. So, again it is in some sense I am looking at a lower triangular and an upper triangular, I

am looking at this. And I am trying to solve the system this and we have already know how to

solve the system L u of X is equal to b. So, we are doing the same thing this is a new b and I

just have to solve this system as we did earlier fine.

So, there are lot of ways of doing it, understand it, if A transpose A, if A is full rank. If A

transpose a is invertible, which is same thing as saying that A is of full column rank, then I

can compute the A transpose inverse, because in that case Q transpose Q is invertible

everything is nice.

So, if A transpose invertible, then this will imply that this will imply X is equal to A

transpose A inverse A transpose b fine. If it is not invertible, then we can solve it using what

is called a Pseudo inverse or the Moore Penrose inverse, but that is not in our syllabus alright.

For us the syllabus is that only to pick those A’s for which A transpose A is invertible,

alright.
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So, let us go to the one of the first example that we looked at. I do not remember the exact

question there, but the idea was the following that we have to find, the foot of the

perpendicular from the point 1, 2, 3, 4 on the plane generated by the vectors. I think it was 1 1

0 0, 1 0 1 0, I think 0 1 1 2. I think this is what it was alright. So, we had got it by one method

fine.

So, plane generated by the vectors this. So, we had got it using the idea that this thing is

generated by the vector by the x minus y minus z plus 2 w was 0. I think let me check it. 1 1

is 0 1 0 1 is 0 1 1 and minus 2 yeah 1 1 minus 2 alright. So, we looked at this from there we

got the normal of the vector, normal of the plane as 1, minus 1, minus 1, 2 using this, what we

did was we looked at 1, 2, 3, 4 minus projection of 1, 2, 3, 4 on this vector, this vector

whatever it is.



So, V I write it as this on this. So, this gave me. So, what we are doing is look at this? So,

again I have a plane which is generated by x minus y minus z plus 2 w is equal to 0, I have

the vector 1, 2, 3, 4 here. I drop a projection here; this is my projection vector projection of 1,

2, 3, 4 on this fine. And we looked at this minus this. So, this was the vector, this is the

projection and this is the one that I am computing so, I computed this. 

So, once I computed this I could get this point which was on the plane alright, the other way

will be to look at this itself and proceed fine. So, the other way will be look at the

orthonormal basis that expands x, y, z, w belonging to R 4. So, that x minus y minus z plus 2

w is 0 alright.
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So, to do that I can apply the Gram Schmidt process; Gram Schmidt, so, I can take my w 1 to

be is equal to 1, 1, 0, 0 divided by root 2, I can take v 2 is equal to 1, 0, 1, 0 minus 1, 0, 1, 0



inner product with 1, 1, 0, 0; 1, 1, 0, 0 divided by 2, which is same as 1, 0, 1, 0 minus 1 upon

2, 1, 1, 0, 0 which is same as 1 minus half is half 0 so, minus half. So, this is 1 and 0.

So, therefore, w 2 can be taken as so, I can take w 2. So, just look at this part I can take out

half outside it will be 1, minus 1, 2, 0. So, again w 2 as 1, minus 1, 2, 0 divided by 6 the

square root of 6. Similarly, compute w 3 and then thus vector the nearest vector, then the

nearest vector will be equal to; so 1, 2, 3, 4, inner product of this with w 1 plus inner product

of 1, 2, 3, 4 with w 2 plus inner product of 1, 2, 3, 4, with w 3.

So, again I would like you to check that these three will also give you the same answer as this

alright. So, these two answers are going to be the same fine, we will look at we will try to

understand them. So, would like to look at this part. So, let us recall some, one theorem that

we had. And then from there I want to say that this is the one that I am looking at fine. So,

what I need is that I had these are the components that I am looking at.

So, I have to multiply by w 1 here, w 2 here and w 3 here to get the answer alright, the nearest

vector will be a vector not a scalar quantity right. So, I have to write that. So, let us try to

understand what it is. So, if write it I can think of this as I have a vector here which is 1, 2, 3,

4 alright, I am looking at w 1, w 1 is a for me it is a column vector.

So, it is a 4 cross so, what is this? This is a 4 cross 1 vector w 1 transpose. If I look at this part

this together gives me a 4 cross 4 matrix fine. Again If I look at just w 2, w 2 transpose this

also gives me a 4 cross 4 matrix. And similarly this part also gives me a 4 cross 4 matrix.
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So, therefore, if I want to look at so, consider w 1 w 1 transpose plus w 2 w 2 transpose plus

w 3 w 3 transpose, it is a 4 cross 4 matrix fine. Now, this is a 4 cross 4 matrix, I have just

write like this. And let us multiply this with 1 2 3 4. What do I get? Fine. If I multiply this

what will I get? 

I will get it as w 1 w 1 transpose times 1 2 3 4 plus w 2 w 2 transpose of 1 2 3 4 plus w 3 w 3

transpose 1 2 3 4 which is same as alright; which is same as this is a scalar quantity, this is

also a scalar quantity, this is also a scalar quantity. And this scalar quantity is nothing, but

this, this scalar quantity is this and this is same as this.

So, we have been able to write if I write this as a matrix and then multiply with the given

vector I am just saying that this part is nothing but the projection part alright fine. So, I want

you to understand this part is very important, what we are trying to say here is that that in



place of computing this separately I can just compute the matrix alright. This matrix is called

matrix, a projection matrix. So. 


