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Alright, so, what we had seen was that, we need an ortho normal basis, an ortho normal basis

of a finite dimensional vector space, fine. We need this fine, ortho normal basis. What we

have know that, V a finite dimensional implies it has a basis and it can be obtained from any

non-zero vector, alright. So, we would like to do the same thing again here, alright. So, first

let us try to understand what is called the Gram-Schmidt orthogonalization process and then

get this. 



So, what is called Gram-Schmidt’s process, alright? It is called orthogonalization process that

I am going to make it orthogonal. So, let me add the statement here. So, let S is equal to u 1, u

2, u n be any linearly independent set. Then Gram-Schmidt’s process gives a collection of

vectors, gives a set w 1, w 2, w n such that 1; length of w i is 1, 1 less than equal to i less than

equal to n. 2; w i and w j their inner product is 0 for i not equal to j. 

And 3rd is very very important; very very important is that, linear span of u 1 to u i is same as

linear span of w 1 till w I, for 1 less than equal to i less than equal to n, alright. So, what we

are saying is that, I may starting with any linearly independent set, I am able to get an

orthonormal set alright, this is an orthonormal set. How do I get orthonormal set? So, let look

at this w 1, w 1 has the property that length of w i’s is 1; inner product within w i and w j is 0,

and therefore I get an orthonormal set. 

What is extra that I am having in this process is that, the linear span is maintained. So, what

we are saying is that, linear span of u 1 is nothing but linear span of w 1; linear span of u 1, u

2 is equal to linear span of w 1, w 2 and so on, at each stage the linear span is maintained,

alright. And the idea of the proof is just using projections. So, let us try to prove this

construction, alright. So, let us get into this, alright. 
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So, proof. How do I, what is this algorithm about, alright? So, define w 1 as u 1 upon length

of u 1, alright. So, the first is. So, here I am giving the first element has u 1, second as

element as u 2 and u n and therefore, I am building w 1 as u 1 upon this. So, you can see that

length of w 1 is nothing but length of the whole thing u 1 upon length of u 1 which is nothing

but 1 upon length of u 1 into length of u 1 which is 1, alright. So, this basically the unit vector

in the direction of u 1, alright. 

So, once we have got that this u 1 vector. So, recall for us that, what we are done was I have

this vector v; I had u with me, there was this projection vector Q, P, O. Then the projection

OQ this vector was nothing, but; it was u inner product with v upon length of v into v upon

length of v, alright. So, here for us it will be u comma w 1 and w 1; because w 1 is a unit

vector for us, alright. 



So, now, so I am going to look at this part. So, what we are going to look at, define v 2; I have

got w 1, now I will defining v 2 that is very important; v 2 is, define v 2, define v 2 has u 2

minus u 2 comma w 1 w 1, this what we are defining, fine.

So, what we are doing is, look at u 2; from u 2 remove the composition, the component, the

projection. So, this is the projection of u 2 on w 1; we are removing that part. Since we are

removing this part, we are left out with this vector which is perpendicular, alright. So, you

can see here or you can use the previous theorem, where we had shown that if I keep it

removing the components where. 

So, recall this theorem, recall, which is very important theorem that I being saying it again

and again that; if u 1 to u n is an orthonormal set, then for any v belonging to V, the vectors v

minus w and w are orthogonal, where w was looking at alright, v comma u i u i. This is what

I had proven one of the previous classes that things are perpendicular, fine.

So, this I am trying to recall for you, very very important that if I keep removing any

component the whatever is left out is again perpendicular. So, this part tells me that, v 2 is

perpendicular to w 1 alright; because look at here it says that, this is perpendicular to this. So,

whatever I am obtaining, the linear span, it is perpendicular to that part. 

So, v 2 is perpendicular to this I already know; you can verify that also, but this theorem tells

me that, this implies that this is 0, fine. That v 2 is perpendicular to w 1; I do not know

whether the length of v 2 is 1 or not, idea was to get w 2. So, the idea of the theorem was, I

want to get w 2 such that the length of w 2 is 1, fine. Length of v 2 may not be 1; so I have to

get w 2 to get things. So, I define, so this implies this because of this theorem.

So, define w 2 is equal to v 2 divided by length of v 2. Once I have defined this; this implies

that length of w 2 is 1. So, what is w 2? w 2 is the unit vector in the direction of v 2, which is

this direction; in this particular case this is this direction that I am looking at fine, direction of

v 2. And inner product of w 1, w 2 is same as inner product of w 1 with v 2 upon norm of v 2



which is same as 1 upon norm of v 2 upon w 1, v 2 which is already 0 fine, because of this

part, fine. 
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So, we have already got w 1 and w 2; how do I get w 3? So, w 3 again I define w 3 to be is

equal to. So, the idea is, if I want to define w 3; I have to get v 3, get v 3 also, get v 3 and

write w 3 as v 3 upon length of v 3, fine. Since I am doing this I am dividing; so dividing by

length of v 3, we need v 3 to be non-zero, fine. So, let us try to do this part also. So, define

first row. If I want to get w 3, I have to get first v 3 and I have to show that whatever v 3 I get

that should be non-zero, alright. 

So, let us be defined v 3 as, v 3 minus, sorry u 3 minus; from u 3 remove the component

corresponding to w 1 alright and remove the component corresponding to w 2, alright. So,

what I have done basically; here is I have got the set S prime as another set S prime which is



w 1, w 2, this is an orthonormal set, S prime w 1, w 2 is an ortho normal set. I am defining w

as fine, i is equal to 1 to 2; u 3 comma w i w i. So, what we know is that, w and u 3 minus w

are perpendicular, are orthogonal, fine. 

Also, so what we from, this part I get that. So, this implies that, v 3 with w 1 is 0; v 3 with w

2 is 0. Question is, is v 3 non-zero, alright? So, if v 3 is 0 that will imply that. So, or which is

same thing as saying that, v 3 is same as this is 0; because we wanted to look at, we are

dividing by norm of v 3, not by v 3 as such. 

Since we are dividing by norm of v 3, norm of v 3 should not be 0. And if norm of v 3 is not

0 means, v 3 should not be 0; because this is the condition that I have that v 3 is 0, if and only

if the norm or the length of the vector is 0, alright.

So, I will assume that. So, suppose. So, let if possible, let if possible v 3 is 0; this implies that

u 3 is equal to u 3, w 1 w 1 plus u 3, w 2 w 2. And this imply that u 3 belongs to linear span

of w 1 and w 2, fine. So, if you remember your results about linear independence and

dependence it says that, as soon as the u 3 is in the linear span; implies that the set u 1, u 2, u

3 is linearly dependent, alright.
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So, recall. So, again recall this theorem; to recall let u 1 to u i be linearly independent and v

belong to V, then u 1 to u i comma v is linearly independent if and only if, linearly

independent if and only if v does not belong to L S of S or which we say that v belongs to v

minus L S of u 1 to u i. 

So, not S here; so u 1 to u, this is what our theorem was in linear independence dependence,

this is what we are using at each stage. So, let us go back; the statement here is that this is a

linearly independent set, our set S is linearly independent. 

So, at no stage; so linear independence implies that, u i does not belong to linear span of u 1,

u 2 till u i minus 1 for i greater than equal to 2, alright fine. So, this is what is important that,

there are some theorems which we may not have thought that so important; but they are

playing a role that, we are taking that u i belongs to the linear span will imply that this



becomes linearly dependent set. Recall also that the first time it happens alright; I have a

problem, fine. 

Because if I am saying that this set is linearly dependent; it means that there exist a k, such

that u k is linear combination of the previous ones that also we had proved. So, what we are

having here is that, S is the linearly independent set; and therefore u i is not the linear

combination of the previous ones, and therefore at each stage everything is going smoothly

for us, alright fine. 

So, now, let us go back again, so that you have clarity with you. So, what we have done at this

stage is, I have got w 1 which was u 1 upon length of u 1. So, this implies that linear span of u

1 is same as linear span of w 1; then we define w 2 as v 2 divided by length of v 2. And what

was v 2? v 2 was equal to u 2 minus u 2 w 1 w 1 alright, this is how we have defined. 

So, can I say from here that this implies that, linear span of u 1, u 2 is same as linear span of

w 1, w 2, can I say this? So, understand here; if I want to look at linear span of u 1, u 2, then

w 1 is already linear span of u 1. So, this is in u 1, I am looking at u 2. So, this part implies

that, this part implies that, v 2 belongs to linear span of u 1, u 2. And w 2 is nothing, but v 2

upon this; so, this imply that, w 2 also belongs to. 

So, w 2 also belongs to this part, fine. So, both this belongs to this therefore, this is a subset

of this. So, we have shown that L S of w 1, w 2 is a subset of L S of u 1, u 2, fine. Now, the

other way around; since we have already shown that v 2 is nonzero. So, I can write u 2. So,

from here I can write u 2 as v 2 minus u 2, w 1 w 1, this is just a scalar quantity.

So, I am writing u 2 belongs to linear span of w 1 and v 2; but v 2 and w 2 is the same vectors

as the unit vector difference. So, this is same as linear span of w 1, w 2. So, you have shown

that this also a subset and therefore, this is satisfied, fine. 
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So, what we are done here is, we have shown that; I am going from u 1 to w 1; linear span of

u 1 is same as linear span of w 1, u 2 gives rise to v 2, which gives rise to w 2. I get LS of u 1,

u 2 is equal to LS of w 1, w 2; at the next stage I have u 3, I go to v 3. This is not 0. So, this

was not 0; because of linear span of. So, v 3 does not belong to linear span of u 1 and u 2; I

got v 3, from v 3 I get to w 3 and again LS of u 1, u 2, u 3 will be equal to LS of w 1, w 2, w

3, is that ok?

So, this way you can build up the whole thing; at any stage if I look at u i. So, u i will give

rise to v i. Now, why is v i not 0? v i is not 0 as u i does not belong to the linear span of u 1, u

2, u i minus 1, alright. So, this is not 0; so, I can go from here to w i. 

And w i, what is w i? Unit vector in the direction of v i, alright. So, in the process that, the

way we are building up ideas this will imply that; LS of u 1 to u i will also be equal to LS of



w 1 to w i, alright fine. So, let me end it here; will we will look at applications of this in the

next class.

Thank you.


