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Line Integral - II

So you must have understood that when I  define line integrals,  I  define I  depend

heavily on the concept of parametrization.

(Refer Slide Time: 00:30)

And this parameter is a real variable. So t between a and b. Once I know this fact, my

attempt of writing a line integral further becomes like this. So if you know the way I

have defined line integral, you know that the line integral for a vector field F has been

defined as through the parametrization, right, a to b F (c(t)) dot c dash t dt. So what I

have done is  I  have converted this  so called  integration  of a  vector  function into

integration of a scalar function involving t.

So that is the key idea behind this definition of the line integrals. So parametrization

helps  me  to  convert  from  a  vector  valued  scenario  to  a  scalar  valued  scenario

involving one variable. Now the question is that can I write this, because all these

integral definitions that we have learned has been done through Riemann sums, limit

of Riemann sum. So we have to talk about Riemann integrals in various situations.



So can we have a Riemann sum representation here? Actually, if you look at it, if you

look at the definition, maybe I will just do it here.
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So here is my a to b and here is a curve which it parametrizes. So here is my curve c

(t). So you do a partition and you know how to do it now, t 1, t 2, t i-1, t i, t i+1 and so

and so forth t n-1. So the n+1 points giving n number of intervals. So take any interval

t i to t i+1 which we will call the ith interval and choose a point u i, t i to t i+1 or

whatever you want to say; u i as an element here.

So the Riemann sum that you would create in this case, your delta s i arc length is

actually c(t i+1) minus this is your change in the length of, change of the arc length as

you move from t i to t i+1. These are delta s i. So the Riemann sum okay, so the

Riemann  sum actually,  so  in  this  case  our  Riemann  sum,  let  us  write  down  the

Riemann sum here. So you choose any u i which is arbitrary.

So the Riemann sum would be f (c(u i)) into dot product of delta s i is a vector. So

these are all vectors. So what we are doing, we are writing individual Riemann sums

basically. This is dot s i is c (t i) minus this c is a vector. So we are writing for a given

partition point we are writing this as a dot product. Because here multiplication means

dot product. So here so this is written as f (c (u i)) into c (t i+ 1) – c (t i).

That is what I write. So now what I do to get the Riemann sum I need to sum this

whole thing. From i equal to 0 to i equal to n -1. I need to sum up. So this is the



Riemann sum. Now the delta s i, now if I write down in terms of the Taylor series

right? c dash t i, if I write down a Taylor series linear approximation of it is delta t i

which is t i + 1 minus t i plus some error.

That is what a first order Taylor expansion we give me. Please understand t i is a real

variable.  You can say okay the function is  R 3.  But what  we are doing, for each

component of c (t i), c t i+1 or c t i, this has three components, c 1, t i+1 minus c 1 t i,

c 2, c 3. Just three components. What are the three components?

The x, y, z basically. So on the x part I am applying the Taylor’s expansion first order,

y part I am writing the Taylor’s expansion, z part I am writing the Taylor’s expansion

and putting them as a vector. So what I am doing here is like this. So your c (t) is

expressed as, I am just writing in terms of rho vector (x (t), y (t), z (t)) points on the

curve. So c (t i +1) – c(t i) is a vector.

Which is given as (x(t i+1) – x(t i), y(t i+1) now these are functions from r to r y t i;

z(t i+1) – z(t i ). So what you will do, you will write here the first order Taylor’s

expansion that is x dash t i into delta t i plus error which I am writing as E 1. Here

what I will do, I will write y dash t i into delta t i plus error E 2 plus z dash t i delta t i

plus error E 3. So that is what I am going to write.

So if you take them up, so it will what will happen you will have x dash t i into delta t

i right? The vector y dash t i into delta t i and z dash t i into delta t i, that is added with

this  vector  E  1,  E  2,  E  3  the  errors.  Now if  I  take  the  delta  t  i  outside,  scalar

multiplication of vector, this is nothing but x dash t i, y dash t i, z dash t i plus error,

plus the error vector. So what is this?

What is x dash t i plus z dash t i plus this damn thing sorry this thing is nothing but c

dash t i. This thing is nothing but c dash t i. Sorry for the use of the word damn, it

comes out of excitement. It is no hard feeling to anyone. So here what you have done,

you have expressed these difference in terms of the derivative of c dash j. That is

where the derivative actually appears in the first place. Now if the error is very small

delta t i is very small, then you can write delta s i, you can approximate as c dash of t i

delta t i.
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So in that case, the Riemann sum can be approximately written as i equal to 0 to n – 1

F (c (u i)) dot c dash t i into delta t i. Now as the whole thing goes to zero, you can

understand this is now as limit as n tends to infinity if this limit exists, if the limit

exists then limit n tends to infinity, you can easily now figure out what will happen.

This will become d t this will become c dash t, this will become F (c (t)) because these

things are t i and t i+ 1 are coming closer and closer as n goes to infinity. This limit if

it exists is mocked by the integral where t is varying from a to b F (c (t)) dot sorry dot

c dash t dt. That is the game right. So it has a expression through Riemann integral.

There are few technical things we should remember about this thing is that when you

are taking a line integral suppose you have a point a in space. So let me have a path A

of a point A and a point B in space. So there are there is a I say that it I move between

A to B along a path along a path C. Then the path C actually determines how you are

moving. Either you are moving from A to B or you are moving from B to A.

The nature of C will determine that. There is a beautiful example in the book and the

value of the line integral can change depending on which way you are moved that

whether you have gone along C from A to B or whether you have come from B to A.

That orientation, that change of direction can change the value of the line integral. So

there is a nice example and which I think is very useful.



So here,  they give you two points in three dimension,  x is  0,  0,  0,  some point  x

naught. Another x 1 point which is the final point is 1, 0, 0. See if I draw the axis. So

this is my x axis, this is the z axis and this is the y axis. So essentially I am looking to

move from this  point  to  this  point  along.  So here is  the line segment.  So let  me

remove this line segment and oh my God.

I should take the black and join the line segments. The remaining part can be in this

color. Which color I take, oh my God, okay? So now I will describe two paths. One

path will take me from 0, 0, 0 to 1, 0, 0. Another part will take me from 1, 0, 0 to 0, 0,

0 and on these two different parts, the value of the line integral would be different. Let

me consider the vector field F given as i. So it is 1 into i, it is constant.

That f position is always constant. And there are two curves. One is c 1 t which is t, 0,

0. So when it is 0, 0, 0 when t is 0 it is t is between when t is 0 we are at when c 1 0 is

0, 0, 0. When t is 1 that is c 1, 1 we are at 1, 0, 0. So c 1 comes along this direction.

And then I define another path c 2, parametrized path c 2. So this is my curve c 1 and

this is my curve path parametrized by c 2, 1 – t 0, 0, 0 small tweaking you see.

So when I put t equal to 0 it is giving me this point. When I put t equal to 1, it is

giving me 0. So there is another path c 2 is taking me from this point to this point, the

reverse. C 2 is taking me on the reverse direction. So let us now calculate the line

integral. The line integral I will not calculate, I will ask you to calculate. Take it as a

homework and calculate.

The line interval calculation is very F is fixed here, it does not matter, whatever c t put

it is the value is the vectorial component is just 1. And c dash t is you know what to

do. It is a 1, 0, 0. And of course, is not a very big idea, very big thing to do. And c

dash 1 t is nothing but the i vector, i vector plus zero j vector zero k vector right. So

you know how to do the thing. So it is i dot i basically.

So it is 1 essentially 0 to 1 dt. So if I go by the curve c 1. So let me call this a c 1 the

big curve. C 1 is the big curve c 1 is parametrized by this. Another big curve c 2 is

parametrized by this. Both are the line segments. So by c 1 if I take my line integral,



that value is +1. But I come by c 2 so there is a physical meaning to this. This F is a

force acting on the particle moving along this path.

Then if the particle goes from 0 to 1, 1, 0 and comes back from 1, 1, 0 to 0, 0, 0 along

c 2 then the total work done by the particle is 0. So you see this orientation has a

important thing to do about the value of the line integral. So this is something that one

needs to keep in mind while talking about line integrals. Another thing I do not want

to get into the issue is of reparametrization.

I do not want to confuse you at the moment with reparametrization.  That is I can

another I can take another parameter u and write t as a function of u and I change the

parametrization of the curve again. But ultimately the line integral values would be

same. That is what I just want to tell you. I do not want to get into the technicalities of

reparametrization.

But  now for  example,  we are going to  talk about  the physical  aspect  of  this  line

integral. We will talk about the meaning of work done. Of course, there are certain

things which you need to learn yourself.
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Which is for example, if you have from point A to point B, if I move in curves, A to C

and then from C to B and I call this curve as C 1 and I call this curve as C 2 then the

integral over the whole curve can be done separately. First over C 1 and then over C



2.  I am not writing the vector sign when I am writing this just as a function on the

integral, but it is actually a vector valued function, plus C 2.

So these are some things you can understand. Your intuition is absolutely fine, young

people to understand this. Even if there are some senior people who are watching this,

this is not a very big issue. So we will now talk about physical aspects of this notion

of a line integral. One of the most fundamental physical aspect is that of work. Work

has already been defined in physics as force into distance.

So work done, so if there is a, say a stone lying here and you are pushing it with a

force F in this direction, and it starts from this position. I am just taking the position

of the center of mass, and starts from a position x 1 and reaches a position x 2 along

the real line, right? Then the work done is simply the magnitude of the force into the

distance that is traveled, that is work done.

But when you come to higher dimensions when an object a particle is moving in a

trajectory, then there this distance, how you compute the distance? The distance is a

vector, the distance has to be given by a vector. And of course, the work done has to

be expressed in terms of a scalar product. Work done cannot be, so basically what you

are doing? You are looking at the work done along all the components.

And then summing them up and that is exactly the inner product. So basically if there

is a particle here in three space and here is a force acting on it. And this force can be

decomposed into three component  forces.  I  am just  talking about  mechanics  now.

Those who know some mechanics will understand. This is F 1, F 2, F 3. And that is

why, these are a component forces, right?

So that is why this F vector, F is viewed as a function from R 3 to R 3. So there are

three components because you can decompose a force. If there is a particle and force

is acting on it,  I  can decompose it  along the horizontal  direction,  the what  I  call,

horizontal  direction,  the  vertical  the  height  direction,  along  the  length,  along  the

breadth, along the height, three directions.



So now when you have decomposed it, now you assume that you are making a small

movement along so, if you take a particle and if you move it very, along a very small

movement,  you  make  a  very  small  movement  from  here  to  here.  This  is  a

displacement  vector,  which  is  dr  vector  can  be  expressed  into  three  different

components along, one along the length, breadth, and the height.

That is d x, d y and d z, you can decompose it along these three directions. So then

along the direction of x the work done is F 1 into d x. Along the direction of y the

work done is F 2 into d y. And along the direction of z the work done is F 3 into d z.

Because we are, the components are decomposed along length, breadth and height. So

the force acting along the x direction is F 1, so F 1 into d x.

Along sorry  I  have  to  make  it  F  2  here.  This  should  be  F  2,  just  to  maintain  a

symbolical things. Now along the breadth via y direction it is F 2 and along the z

direction it is F 3. So then the magnitude, work is a scalar. It we have to give the

magnitude  of  the  work.  You  do  not  talk  about  what  direction  of  work.  It  is  the

magnitude, how much work you have done.

Energy is a capacity of doing work in some sense. So work, so because when you do

work, you spend some energy. So F 1 dx is the work along the x direction, F 2 dy is

the magnitude of the work along the y direction, F 3 dz is the magnitude of the work

along the z direction. So total magnitude of the work is this along in this small, once

you make this very small movement, this is the total magnitude of the work.

And so if you move along a curve C, this is the total work. So this one dimensional

idea is again bought into the higher dimension and you know what is this. This is the

differential form and you know how to do this thing. This is not the only case, this is

not the only scenario where, this is not the only scenario where this line integral can

be used. Let me talk about the notion of work done in a gravitational field, right?

So suppose, there is a three dimensional particle and at every point other than upon

origin 0, 0, 0, 0, that the gravitational force field can be defined and that we have, we

know how we can define it.
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So the gravitational force field is defined in this way. So how is the gravitational force

field defined?
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You know the gravitational force field F is an attractive force. So, if a bigger mass M

is there and a smaller mass m gets attracted, right. Now I will put this bigger mass at

the point is 0, 0, 0 or it does not matter. I will put it at some point say x 0, y 0, z 0.

And the smaller mass at the point x, y, z and x, y, z is not equal to zero. Then along

this line, there is a force which attracts m towards capital M, this mass.

So this is an attractive force and it is along the direction negative to the radius vector

by which I reference the small m with respect to the capital M. So the gravitational

force is always written like this. If this is r for example, if this was 0, 0, 0 and it is



GMm by r vector the distance between them or r cube into r vector, with a minus sign

because this minus sign is telling that this force is attractive.

Now what happens is that here, if I write it down, and I can write at any point x, y, z

where a particle of mass m is there. I will write it down I will take this x 0, y 0, z 0 as

0. The bigger mass is at the origin, this is origin that is this is the point 0, 0, 0. And at

any other x, y, z not equal to 0, 0, 0 the mass the whole thing is written as GMm by r

cube. So basically r is root over x square plus y square plus z square cube of that into

the r vector.

And what is r vector, x i vector plus y j vector plus z k vector, right? And this can be

written as minus GMm x square plus y square plus z square to the power 3 by 2 into r

vector is x i vector y j vector and z k vector. This completely defines the vector field f.

If you want I will put a f symbolism here.

It completely defines, its components are, see if you want to write it as a function

from R 3 to R 3 then this is given as I am writing as rho vector instead of a column

vector for just for the convenience of the space. It is written as GMm s square plus y

square plus z square to the power 3 by 2 into x minus these are the function. This is

here F 1, capital F 1.

GMm by x square plus y square plus z square to the power 3 by 2 y minus GMm by x

square plus y square plus z square to the power 3 by 2 into z. That is the way I write

it. Now let me look at so let r 1, let r 1 vector be given by a point x 1, y 1, and z 1. So

I am moving the mass in a gravitational field from x 1, y 1, z 1 to x 2, y 2, z 2. And r

2, so here is the big mass and here is first position and then the second position.

So r 1 is this and r 2 is x 2, y 2, z 2. Then I really have to find the work done by the

gravitational force field, work done by the force F; to move from r 1 to r 2, to move

the particle from r 1 to r 2. It is like a sun and the planet is moving. So there is always

an inverse square law of force, the gravitational force towards the sun. Because when

the earth is moving around the sun, the earth is constantly being pulled towards the

sun by the sun's gravitational force field. Okay, now how do I calculate this?



It is very important to understand that the gravitational field is a gradient field, F is a

gradient field. That is grad f itself is a gradient of some function f. So what is that

function f? So f is actually GMm by r; f is actually GMm by r. Now the work done by

the gravitational field to move from this point to that point is same as grad f dot s ds.

And that is nothing because for a gradient  field we just  you know it  does,  it  just

depends on the value of the function f at the two points.

So it is f (x 1) or r 1 if you want to say, f (r 1) – f (r 2) sorry f (r 2) to r 1. So it went

from r 1 to r 2. So what is that? So the work done finally is GMm into 1 by r 2 minus

1 by r 1. So it just depends on the radius vectors, value of the radius vectors. That is

all. So f is the scalar field whose gradient is the vector field.

So the negative of f, the negative of f, if I write the negative of f as V then V is called

the gravitational, by definition, by convention we do it. It is not that we really have to

do it always, but it helps in many calculation. It is called the gravitational potential.

So you see how this basic idea of line integrals can be helpful even in determining

how a particle moves in a gravitational field and what is the work done on it.

So we are learning some mechanics and mechanics is always fun. So with this I close

this talk and in the next one we will talk about surfaces. So if you can parametrize a

curve by a single variable, can a surface be parametrized? I may not know whether it

is  a  graph of  any  function,  but  if  I  have  a  surface,  can  I  parametrize  it  by  two

variables, two real numbers. The answer is yes. And that is what we will discuss in the

next class. So thank you. Thank you once again.


