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Lecture – 06
Estimation of Parameters In Simple Linear Regression Model (continued)

Welcome to the lecture number six if you recall on the last lecture we had estimated the

parameters beta0 and beta1 we had to further investigated their statistical properties we had

proved that beta0 hat and beta1 hat are the unbiased estimators of  their respective parameters

and we also found their variances.

In the model they were three parameters beta0 beta1 and sigma square out of those three

parameters we have estimated 2 parameters but the third parameter is still left.
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So we start with the estimation of third parameter which is sigma square, there is a difference

in estimating sigma square and the 2 parameter beta0 and beta1 by using the principal of least

squares there is no involvement of sigma square in the function s beta0 beta1 that we had

defined earlier, so it is not possible to differentiate s with respect to sigma s square, put it =0

and solve the equation to get the value of sigma square.

In order to obtain the lease s square estimate of sigma square we start with some estimator

based on our guess, now the next question is how are we going to make a guess, we had

discussed that  residuals  are  the difference  between observed and fitted  values  and sigma



square is the variance of epsilon i's so 1 option is that I can consider quantity like summation

i goes around 1 to n, epsilon i hat square and then 

We try to take this expectation this will come out to be a as the function of sigma square, then

we adjusted to obtain a good estimator of sigma square. Before doing that let me define it, so

we try to define something called residual some of square and that is defined as some of

square of the residual, so call it as ss res, ss res means some of square due to residual RES

means it is a short form of residual, but before going further 

Let us try to understand it this quantity have some important role in the regression analysis so

we would like solve it  further and let  us and obtain different possible forms of some its

square due to residuals. If you try to see here this quantity is nothing, but i goes from 1 to n

see here yi - beta0 hat - beta1 hat xi whole square. So, I can now make it like this, I try to

substitute the value of beta0 hat.

Which =ybar - beta1 hat xbar and then this becomes y1 - ybar - beta1 hat xi - xbar whole

square and this can be further written as summation i goes from 1 to n yi - ybar whole square

+ beta1 hat square summation i goes from 1 to n xi - xbar whole square - twice of beta1 hat

summation i goes from 1 to n xi - xbar yi - ybar.

If you recall earlier we had defined the quantity like sxy this sxy was defined here has a

summation of i goes from 1 to n, xi - xbar yi - ybar on the same lines I can define syy as i

goes from 1 to n, yi - ybar whole square, so this quantity now becomes syy + beta1 hat square

and this quantity is in nothing but your sxx - twice of beta1 hat sxy and we had seen that

beta0 hat is this and beta1 hat is sxy over sxx.

So can write down this sxy as a beta1 hat times sxx, so this becomes here syy + beta1 hat

square sxx - twice of beta1 hat square sxx, so this can be written as syy - beta1 hat square

sxx, this is 1 possible form, now I can replace here the value beta1 hat is = sxy upon sxx and

this I can further solve as syy – xxy over sxx whole square sxx and this will come to syy -

beta1 hat sxy.



So this residual some of the squares has got several popular forms and depending on the need

and situation we try to use them suitably. Now our next question is how to obtain the estimate

of sigma square?
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So let us try to use some of square due to residual to find out an estimate of sigma square but

before that we need to find out the distribution of yi so since we assume that our model is

beta0 yi= beta0 = beta1 xi + epsilon i and we have assumed that epsilon i are following a

normal 0 sigma square distribution and they are IID'S. I can write down here that expected

value yi is nothing but beta0 + beta1 xi.

And we also have earlier that variance of yi = sigma square more over yi's are the linear

combination of normal random variable of normal or normally distributed random variable

which in our case is epsilon, so I can also write that yi will also be normally distributed

random variable, I can write down here yi's are going to a fallow a normal distribution with

mean beta 0 plus beta1 xi and variant sigma square.

Now are they also IID, if you try to see they are independent but they are not identically

distributed  why  because  the  distribution  of  yi  is  depending  on  xi  so  as  the  observation

changes  the  mean  of  the  normal  distribution  also  changes,  so  yi's  are  independently

distributed following our normal distribution with mean beta0 + beta1 xi and variant sigma

square.



Once I  can  write  this  thing  then  we also  know that  some of  squares  of  normal  random

variable follow a chi-square distribution. So if there are n random variables each of them is

following a normal random variable then there are some of square will follow a chi-square

distribution with n degrees of freedom, so incase if I try use this thing, this some of squares

due to residual.

If you try to see this is nothing, but the sum of squares of normal random variables, so I can

write down here that ss residual divided by sigma square this will follow a chi-square with n -

2 degrees of freedom. one question comes how does 2 comes into picture, since I know that

epsilon i has they are depending on 2 unknown parameters, beta0 and beta1, which you are

estimating as beta0 hat a beta1 hat.

So there are 2 unknown parameter which are being estimated in finding out the epsilon I hat

square, so that is why there are 2 constraints and so that degrees of freedom are reduce by 2

and the degrees of freedom of this chi-square random variable are n - 2. Just for the sake of

your information and an quick review means we know that if there is some random variable z

which following a chi-square distribution with n degrees of freedom then its mean that is

respected value of z is n, that is the number of degrees of freedom.

And variance of z it is nothing but twice of n, that is the twice of the number of degrees of

freedom. So if I try to find out here the mean of this  quantity so I can write down here

expected value of ss res divided by sigma square this is following a chi-square distribution

with and - 2 degrees of freedom so its mean is going to n - 2. I can write down here or I can

write down here expected value of ss res, divided by n – 2.

Is = sigma square, so this implies that sigma square hat = ss res, divided by n - 2, so this is an

unbiased estimator of sigma square. If you try to observe what we d1 we started with the

model yi= beta0+ beta1 xi + epsilon i and based on that we have three parameter beta0, beta1,

and sigma square all of them were unknown to us what we did we collected a sample of data

and we had an observation something like x1, y1, x2, y2, xn, yn.

Based on that we have obtained the estimate of beta0, estimate of beta1 and now we have

also obtained the estimate of sigma square these three parameters can be estimated using

these three estimators,  so now we can say that  my model  is  known to us.  There is  now



another question when we are trying to estimate my model parameters for example we have

estimated beta0 by beta0 hat and beta1 by beta1 hat.

How I can say that these are good or bad we have established that they are unbiased estimator

and  we  also  have  found  there  variances,  and  we  had  obtained  there  variances  like  this

variance of beta1 hat this was observed as sigma square upon ssx and variance of beta0 hat

was observed as sigma square, 1 over n + xbar square over sxx.
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Once we are trying to estimate the parameters on the on the basis of a sample I would also

like  to  know what  is  the variability  of my estimators  because there can be more than 1

estimator for the same parameters that can be unbiased, but then how to choose among them.

I would try to choose the estimator which has got a small variance so now I have got these 2

variances, but these are the values of the variance in the entire population.

If you try to see here this is depending on sigma square here and see here and sigma square is

the value in the population, so these 2 variances are going to be unknown to us so my next

objective is how do I estimate the standard errors of beta1 hat and beta0 hat. 1 option is that

now since we have obtained that sigma square hat is ss res divided by n - 2, so 1 option is that

I can write down the variance of beta1 hat as a sigma square 

Upon sxx, but in this case I don’t know the this variance, so I can do 1 thing that I can replace

sigma square by sigma square hat, so this gives me an estimator of variance of beta hat, so

now this is an estimator of variance of beta1 hat. Now what is the advantage that once I get a



set of data I can estimate my model parameter beta1 using the ordinary least square estimator

sxy upon sxx and now I can also provide its standard error.

Just by taking the positive square root of estimate of variance of beta1 hat, so this will also

give us an idea that what is the performance of my estimator  in terms of the variability.

Similarly I can also find out the estimate of the variance of beta0 hat, what I have to do I

simply have to write down the variance of beta0 hat and I have to replace sigma square by

sigma square hat and if I want to find out its standard error it is very simple just try to take

the positive square root of estimate of variance of beta0 hat that is all. 

So now I have got a both the estimators beta0 hat beta1 hat I  have shown that they are

unbiased and I also have found their standard errors. So once I try write down a model give

its parameter find out the estimate of all the parameter as well as standard errors up to certain

extent we have obtained a model. After this thing there are some other considerations like test

of hypothesis confidence interval estimation on the estimated parameters.

So that we will try to continue with those things, but before that let me try to explain you 1

more thing, we have considered here the simple linear regression model.
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Yi= beta0 + beta1 xi + epsilon I, right this is a model which has got interceptor. Now there

can be another situation where we need to consider a model without an interceptor, in that

what would happen that I would try to consider the model something like yi=beta1 xi +



epsilon i the first question come, what is the difference between the 2? Why should I consider

the intercept term some time to be present or some time to be absent?

I will try to take up simple example and I would try to explain you for example when I

consider an example of yield of a crop, for example yield of a crop depends on the quantity of

the fertilizer, rain fall, temperature so on in this case if we try to put some fertilizer in the soil

means our crop will increase, but on the other hand I do not put any fertilizer the soil itself

has some inherent fertility and because of this I will get some yield, if you try see here what

is the interpretation of here yi.

If I try to write down here the model in terms of expectation, if I have the intercept term in

the model this model is like this with intercept term and this model is something like beta1 xi

if I do not have the intercept term, so if you try to see what is the interpretation of beta0, beta

0 is nothing, but if I say if xi= 0 then expected value of yi= beta0, so that mean beta0 is

nothing but the average value of y.

In this case when am trying to put 0 fertilizer in the soil am I getting 0 outcome, on the other

hand if  I  try  take  the model  without  intercept  term that  something like beta1 xi  without

intercept term, then if xi= 0 then expected value of yi= 0.So if I try to take an example to

explain the 2 situation I can say in the case of crop when I put no fertilizer in the soil.

Still I get something so my outcome is not 0, so the average yield is not going to be 0, so in

that case I would like to have model with an intercept term. On the other hand if I say that y

is my here something like the luminous of a bulb and xi is my current we all know that when

we witch on the switch, then some current goes into the bulb and then the bulb glows, but if I

put no current inside the bulb the bulb will not glow and the luminous will 0.

So in this case I know when I put xi is equal to 0 then my average value of yi is always 0, so

in this case I would like to have a model without an intercept term. So there are situations in

practice where some time I have to consider a model with intercept  term and some time

without intercept term and based on that I would like to show you in this simple frame work

that what happens to the estimate of parameters.
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So now in case if I try to consider here a model yi= beta1 xi= epsilon i all my assumption

remain the same as earlier that beta1 is a parameter xi is my face it is non-scholastic and

epsilon i are my IID normal 0 sigma square random errors. Right in this case my objective is

to find out the parameter value beta1, so I again use the principal of least square and I try to

minimize the sum of a squares which I try to denote.

Now here s of beta1 i goes from 1 to n epsilon i square and this is nothing but your i goes

around 1 to n yi - beta1 xi whole square. When I try to differentiate it with respective beta1

and put it = 0 this gives me - twice of summation i goes around 1 to n yi - beta1 xi, say xi = 0

and when I try to solve it this gives me the values of here beta1 has a summation i goes from

1 to n xi yi upon i goes from 1 to n xi square.

This an estimator of beta1 so I can denote it as a beta1 say star hat I am trying to use here a

notation star just to distinguish beta1 hat from the beta1 hat that was obtained in a model with

intercept term. Because for the sake of clarity I can write down here that your beta1 hat is sxy

upon sxx which was summation xi - bar yi - ybar upon summation xi - xbar whole square.

And this  was obtained  in  the  model  yi= beta0+beta1  xi  +  epsilon  I,  so  that  there  is  no

confusion between the 2 symbols of the beta1 hat. So now what do you observe here does this

expression and this expression are the same not really they are very different, so the model of

the story is that when you are trying to fit a model with intercept term and model without

intercept term.



There is one parameter that the slope parameter beta1 is common, but their estimators in the 2

models they are different that you have to keep in mind. Now it is also not difficult to show

that the second order of derivative of beta1 with respective beta1 square at beta= beta hat star

this comes out to be greater than 0 so this implies that beta1 hat star minimizes as beta1. 

Now this beta1 star is the ordinary least square estimator of beta1 when we have no intercept

in the model.
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So now at the same time we can do a similar exercise and we try to establish the statistical

properties that is finding out the unbiasedness character and the variance of beta1 star, so here

is now here summation i goes from 1 to n, xi yi upon summation i goes around 1 to n xi

square. So I can find out expected value of beta1 hat star this comes out to be summation I

goes around 1 to n xi expected value of yi upon summation.

I goes from 1 to n xi square, and this quantity is nothing but i goes from 1 to n, xi an expected

value of yi  is  nothing but beta1 xi,  upon summation i  goes from 1 to n, xi  square.  This

quantity is nothing but summation i goes from 1 to n xi square upon summation i goes from 1

to n xi square and this is same as beta so this remains unbiased estimator, so beta1 hat star is

an unbiased estimator of beta1.

That  is  established  so  there  is  no  change  in  the  property  of  unbiasedness  of  the  slope

parameter of the 2 estimators in the case of model with intercept term and model without

intercept term. Similarly if I try to find out here the variance of beta1 hat star this is nothing



but summation i goes from 1 to n xi square variance of yi divided by summation i goes from

here 1 to n, xi square plus whole square.

And the gross product terms becomes equal to 0 because we have assumed that y 1, y2, yn

are independent and we already established that variance of yi is sigma square so once I

substitute  this  thing  this  comes  out  to  be  nothing  but  sigma square  I  goes  from 1  to  n

summation xi square,  and in this case if you also want to find out the estimate of sigma

square that can be also obtained quite easily sigma square and let us try to say star.
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So this can be obtained here as 1 upon n - 1 summation i goes from 1 to n yi square - beta1

hat say star summation I goes from 1 to n xi yi. So you can see here that even the estimator of

sigma square in case of model without intercept term is quite different than the form of the

estimator of sigma square when there is an intercept term in the model.

So, the model of the story is that if you do not want to consider the intercept term in the

model  please don’t do like this  that  you fit  a model  with intercept  term and you simply

substitute  the  intercept  term =0  and  use  the  same  estimates.  You  will  need  to  find  the

estimates of the parameter separately and the standard errors of the parameter estimates will

also change.

So we stop here in this lecture and in the next lecture we will try to consider the maximum

likelihood estimation of the parameters beta0, beta1 and sigma square and we will try to see



how does it make a difference when we try to use different estimation techniques to estimate

the parameter thank you and till then good bye.


