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Lecture – 15
Testing of Hypothesis (continued) and Goodness of Fit of the Model

Welcome to this lecture, you may kindly recall that in the earlier lecture we had discussed the

analysis of variance in a multiple linear regression model this is a test for testing the null

hypothesis that all the regression coefficient are = 0 or not. So through the test of analysis of

variance, we are judging the overall adequacy of the model.
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Now, we have two options, suppose the results from this analysis of variance, they indicate

that h-naught is accepted or second option is that h-naught is rejected right. So in case if h-

naught is accepted, then there is no issue, we understand that none of the variables are going

to contribute in explaining the variation in y. When h-naught is rejected, this indicates that at

least there is one independent variable that is explaining the variation in the values of y.

And there is another alternative also, that there can be more than one explanatory variable

which are helping in explaining the variation in y. So now the question is this we would like

to  identify  those  variables  which  are  contributing  and  those  variables  which  are  not

contributing. So in order to do it, we have to proceed one by 1. 1 by 1 means we have to go

step wise and we need to test the significance of regression coefficients 1 by 1.



So now we try to discuss here the test of hypothesis for individual regression coefficients, and

these regression coefficients are based on our assumption that well, they are responsible for

the rejection of null hypothesis. So since, we have considered the regression coefficient beta

2, beta3, beta k. So I would like to develop a test of hypothesis for individual beta So let us

try to postulate our null hypothesis, say h-naught beta j = say here 0.

And j goes from here two to k, you may also recall that in the case of simple linear regression

modelling, we had discussed the construction of test statistics for testing the significance of

slow parameters h-naught beta1 = beta1 naught. So this test of hypothesis now in our case

that is going to be base on the similar lines what we did in the case of simple linear regression

model, but in this case our alternative hypothesis in which we are interested is h1, beta j is not

= 0.

So now, in the case of simple linear regression model, we had two cases, when sigma square

is known and when sigma square is unknown. In this case, we can see that we have estimated

the sigma square by some of a square due to residual divided by the degrees of freedom. So

here we are interested in the case when sigma square is unknown to us and that is being

estimated from the given sample of data.

So under social assumption, we can construct the test statistics tj which is beta j hat - its given

value which is 0 divided by standard error of beta j hat which I am denoting as a sigma

square cjj, where cjj is the jth diagonal element in the matrix x transpose x whole inverse,

why if you try to remember, we had obtained that the covariance matrix of beta hat was

sigma square x transpose x whole inverse.

And this covariance matrix is giving the variances of beta1 hat, beta2 hat, beta k hat on the

diagonal terms and they are covariances on the off diagonal terms. So in order to find out the

standard error of beta j, we are picking up the variance of beta j hat. So this is being given by

sigma square and the jth diagonal element of the matrix, x transpose x whole inverse.

Now this statistics is going to follow a t distribution with n - k - one degrees of freedom

under H nought. And, you can also recall that we are estimating sigma square by ss residual

divided by degrees of freedom.
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So now in this case, once we have obtained the data, we have calculated the statistics tj, my

decision will become reject h-naught at alpha level of significance if absolute value of tj is

greater than the critical value t alpha by two at n minus k - one-degrees of freedom. So this is

actually  a sort  of marginal  test.  Marginal test  means earlier  we had analysis  of variance,

which is testing the equality of all beta two, beta three, beta k together.

And now we are coming on the aspect of testing one regression coefficient at a time right. So,

that are why this is called as a marginal test, why because, also the beta j depends on all other

explanatory variables also except xj. So now using this thing, we can now identify that which

are  the  independent  variables  are  explaining  the  variation  in  y  and  which  are  not.

Simultaneously, I would also like to discuss the aspect of confidence interval estimation.

So in this case, if we try to find out the confidence interval for beta j, then the hundred 1 -

alpha percent confidence interval for beta j, j goes from two, three, up to here k is given by

the  expression  and  if  you  recall  in  the  case  of  simple  linear  regression  model,  we  had

obtained the confidence interval for the slow parameter beta one and intercept term beta0. So

here also we are going to follow the similar philosophy.

So, I can say here that this beta hat j - beta j upon is the standard that sigma square hat cjj,

this lies between - t alpha by 2 and - k - 1 and t alpha by 2 and - k - 1 and this probability is

going to be 1 - alpha, and based on this I can find out the confidence interval as beta hat j - t

alpha by 2 and - k - 1, sigma hat square cjj and beta j hat + t alpha by 2 and - k - 1, is square

root of sigma square cjj.



So this is the hundred 1 - alpha percent confidence intervals for an individual beta j. So now

here you can see that how the theory concepts and algebra that we have learnt in the case of

simple linear regression modelling is helping us in developing the model for a case when we

have more than one independent variables Now continuing on the aspects of this confidence

interval, this is a confidence interval for an individual regression coefficient.
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Now we can also construct the simultaneous confidence interval on regression coefficients

right. What do we really mean by simultaneous confidence interval on regression coefficient?

So this is actually a set of confidence intervals that are true simultaneously with probability

one minus alpha right and they are also called as joint confidence interval.

So now in order to construct a joint confidence interval, we can use the result that beta hat -

beta transpose, x transpose x beta hat - beta upon k - one MS res this follows a F distribution

with k - 1 and n - k - 1 degrees of freedom. Now I can write down that we would like to find

out the value of beta in such a way that beta hat - beta transpose x transpose x beta hat - beta

over k - 1 times MS res is less than or = F alpha k - 1 and - k - one degrees of freedom.

And  the  probability  of  such  an  event  is  1  -  alpha.  So  now  hundred  1  -  alpha  percent

confidence region for all parameters in beta is the region which is given by this inequality k -

1 and this describes an elliptically shaped region. You see, when you have only 1 parameter

then we have a confidence interval when we have two parameters and we want to find out

their simultaneous confidence interval that can be a region in the two dimensional.



Similarly when we go for the ith dimensional, this confidence interval will be transformed

into a region. So now, this confidence interval is essentially the simultaneous interval for all

the parameters beta1, beta2, beta k, so this is going to be a sort of elliptically shaped region.
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Well, after this we come to another aspect and we talked about coefficient of determination

and this is actually denoted by R square. So now the first question is what is this coefficient

of determination,  now you see, now we have reached to a stage where using the data on

independent and dependent variables, we have obtained a model by estimating the parameters

beta1, beta2, beta k and sigma square.

Now this estimation technique can be anything, either least square estimation or maximum

likelihood  estimation,  and  based  on  that  we  have  obtained  the  fitted  model.  Now basic

question is that how do we know that the model which we have got is good or bad or how to

judge the goodness  of  fit  of  this  model.  So this  coefficient  of  determination  helps  us  in

determining the goodness of fit of a model.

So first question comes, how should I judge it? In case if you try to recall in the case of

simple linear regression model what we have done. We had one independent variable x and

we had one dependent  variable  y, we had obtained the data  and then we have created a

scattered  diagram and  it  was  something  like  this.  So  suppose  if  I  try  to  take  here  two

situations something like this x and y and in which the skills of x and y are the same here and

we try to fit here a line like this and here this.



Now what you can say that which of the model is going to be fitted better, so obviously in

this figure I can see that the points are lying more closely to the fitted line in comparison to

this figure. Here you can see that the points are lying here and here and they are quite far

away then the points in figure number one. So this gives us an idea that in case if the points

are lying close to the line that means our model is better fitted.

One simple option to major this quantity is to find out the correlation coefficient between x

and y. So obviously, in case of figure number 1, the correlation coefficient will have a higher

value than in figure number 2. This concept is extended and this is used to judge the goodness

of fit in a multiple linear regression model. Now we try to extend the concept of a simple

correlation coefficient and we try to use the concept of multiple correlation coefficient.

So in case if I define R be the multiple correlation coefficient between y and x1, x2, here say

x k. Then the square of this multiple correlation which is denoted as R square, this is called as

coefficient  of  determination  and the utility  of  R square is  this  it  describes  how well  the

sample line fits to the observed data, and in some sense this measures the goodness of fit of

the model.

And it also measure the explanatory power of model and this reflects the model adequacy in

the sense that how much is the explanatory power of the explanatory variables. So in simple

sense I would say R square is a measure that will give us an idea that the model which we

have obtained whether this model is good or bad and if good how much this is good, and if

bad how much this is bad.
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So we try to consider here the model and we consider here a model yi = beta1, beta2 xi 2 +

up to here, beta k xik = epsilon i, i goes from here 1 to n. One very important thing we have

to keep in mind that we are assuming here that intercept term is present. This R square has a

limitation that it assumes that the intercept term is present in the model and the value of R

square can be obtained only in such a condition.

If you do not consider the intercept term in the model, then the definition of R square which

we are going to consider here, this will not remain valid. So now in this case, we try to define

the R square has one minus say sum of a square due to residual divided by sum of a square

due to total.  Now if you see the interpretation of this R square under what condition you

would call that a model is good fitted.

The model is good fitted when the contribution of the random error component in the model

is as small as possible, and ideally this should be = 0. So now this can be return as SST minus

SS res divided by SST. Now, you may recall that in the case of analysis of variance we had

proved that SST = SS reg and SS res. So now if I try to use this relation over here, this can be

written as SS reg or SST.

So now, the expression for this R square will simply now here one - SS res that is epsilon hat

transpose epsilon hat divided by summation i goes now one to here n, yi  - y bar, whole

square. Now the question comes, how do we ensure that this definition of R square is giving

us what we want? If you see in a good model, what will happen, for example, if I try to

consider this expression R square = 1 - SS res over SST.



So a model will be good in case if the contribution due to random error is as small as possible

and in that case, ideally we would assume that sum of square due to residual should be 0. So

in this case, if I say that if sum of a square due to residual is zero then R square = 1 and this is

a best fitted model and that would be an ideal condition in which we are all interested.

Now  on  the  other  hand,  in  case  if  the  model  is  not  at  all  good  fitted,  that  means  the

contribution of the sum of square due to regression is 0 that means none of the x1, x2, x k

variables are helping us in explaining the variations in the values of y and in that case when

the sum of a square is due to regression become zero then SST = SS res and R square in this

case becomes one minus one over one that = 0.

So this would be indicating the poorest fit of the model or rather I would say this is the worse

fitted model. 
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So now we see that the value of R square is lying between zero and one and R square = 0, this

indicates the poorest fit, worse fit and R square = 1, this indicates the best fit. Now, if I try to

take any other value of R square say for example, 0 point nine five, then this indicates that 95

percent of the variation in y is being explained by the fitted model or the independent variable

x1, x2, x k.

This R square has one limitation that value of R square increases as number of explanatory

variables increases, this is a limitation. Now suppose somebody is trying to fit a model with



certain number of explanatory variables. Now some more variables are added in the model,

which are not relevant,  they are simply useless variable.  They are not affecting at all the

values of y.

So this does not indicate that the model will get better by using those irrelevant variables, but

and we try to do so, the value of R square will increase and that would indicate my model is

getting better and better. So in order to handle this limitation, we can define variant of R

square which is called as adjusted R square. So this adjusted R square corrects this limitation.
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So now we discuss about the adjusted R square. The adjusted R square, this is denoted by R

bar square and this is defined as 1 - sum of square due to residuals divided by n - k upon sum

of squares due to total and divided by n - one. So this can be further simplified as one - n -

one over n - k times 1 - R square. Now if you try to observe, what are we going to do here,

we are trying to divide sum of square due to residual by n - k.

So if you try to recall  what was your n - k in the context of some of the square due to

residual, this was actually the degrees of freedom associated with the distribution of SS res in

the context of analysis of variance and similarly, if you see we are trying to divide the total

sum of a square SST by here n - 1. So here again, this n minus one is simply the degrees of

freedom associated with the distribution of SST in the context of analysis of variance.

So this adjusted R square helps us and it does not increase has the number of independent

variables are added in the model, but on the other side, adjusted R square also has certain



limitation.  So, first limitation is this, that adjusted R square can be negative. With this is

difficult  to believe that well,  that is a square quantity but if you try to see with this is a

function of n k and see this here R square.

Yes, R square cannot be negative. For example if I try to illustrate this limitation, let me take

a hypothetical example that k = 3, n = 10 and R = 0 point 1, 6 and then R bar square will be

one - 9 over 7 into 0 point 8 4 and this value turns out to be less than 0. So obviously now

you can see here that R bar square has no interpretation.

On the other hand, if you try to look at this situation from the application point of view, I

would argue that in practice such situations are very rare to occur, why because if you see we

are here getting a value of R square which is 0 point 1, 6 that means the fitted model is

explaining only 16% of variability using the variable x1, x2, x k. So obviously this is already

indicating that the linearity of the model is questionable.

So in this situation, even I would not like to use the multiple linear regression model, but

rather I would try to fit some other model.
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So now after this, let me try to explain that what are the limitations of R square, well R

square is  a  very popular  goodness of fittest  statistics  among all  the user  in experimental

sciences,  but  it  has  got  some  serious  limitations  also.  First  limitation,  we  already  have

discussed that if constant term or the intercept term in the model is absent, then R square is

not defined.



This can also be shown mathematically, but I am skipping the proof here, and in case if

someone is considering a model without the intercept term and still if he or she tries to find

out the value of R square, there is a risk that the R square value cannot be negative. The next

question comes, then if someone is trying to fit a model without intercept term, then how the

goodness of fit of a model can be judged.

Well, there is a unique answer in the literature some adopt measures have been defined, but

definitely  there is  no guarantee  that  those adopt  measures  will  give us a  good statistical

outcome, but any way this is the limitation of the R square and this is how it has to be used

okay. The second limitation of R square is this that R square is sensitive to extreme values. So

I can say in simple word that R square lacks robustness.

Now coming on the issue from the application point of view that we know that when we are

going to fit  a model to a given set of data,  we need to first make sure that there are no

extreme values in the given set of data and in case if they are present, there are some other

ways to handle them. So I really, this condition will not happen in practice if somebody is

carefully making a model, but definitely in case if somebody is ignoring this aspect then R

square will lack the robustness.

And earlier, we had also discussed the third limitation that R square increases as the number

of explanatory variables increases. Now, let me come to a different type of situation where we

are interested in comparing two different models. Suppose, there is a situation and there are

two models which are fitted. Suppose the model number 1 is say yi = beta1 + beta2 xi 2 +

beta k xik + epsilon i.

Second  model  is  that,  the  model  is  fitted  using  the  same  data,  but  by  taking  the  log

transformation, that all the values on the response variable, there log is taken and then the

model is fitted. So in this case, I would like to denote the regression coefficients by gamma1,

gamma2, gamma k in place of beta1, beta2, beta k, so the model can be written as here xi 2 +

here gamma k xik + some suppose some random error component epsilon i.

In this case, if we try to define the R square then for model number one, the R square is

suppose, R1 square that is defined as one minus summation i goes now 1 to n, yi - yi hat



whole square divided by i goes from 1 to n. Say yi - y bar whole square. Now we have to

define  the  R square  for  model  number  two,  now there  can  be  various  possibilities.  For

example, one simple option, I am not saying this is the only option there can be many other

option.

One option is that 1 - summation i goes from 1 to n, log of yi - log of yi hat square divided by

i goes from one to n, log of yi - log of y bar. Here also someone may argue that instead of

taking log of y bar we would like to consider the arithmetic mean of log of yi’s that first we

take the transformation and then finding out the sample mean but anyway that is not my

objective way to discuss those things, but it is clear from the values of R one square and R

two square that these two values are not comparable.

So now the issue is very, very simple that two different persons or the same persons have

obtained two different models and he wants to know out of this model number 1 and 2 which

is a better fitted model, so this cannot be obtained using the definition of R square. So I am

not saying at all that R square is a bad measure but R square is a very good measure, R square

measures the goodness of fit but it has some limitation and it has some nice properties. So I

would suggest that use R square but be careful, handle with care.
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This R square has also got a relationship with F statistics that we had obtained in the case of

analysis of variance, we see how, if you recall that in the case of analysis of variants, we had

considered the model yi = beta1, beta2 xi 2 + beta k xik + epsilon i and at that time also I had

told that we are going to consider here the presence of intercept term in the model because



that we will use later on to established relationship between R square and this F statistics.

So now, this is the situation we are going to use it here. So if you remember that over a null

hypothesis in the case of analysis of variants was h-naught beta2 = beta3 = beta k = 0. This

was your under analysis of variance, and based on that we had finally obtained the F statistics

which  was  obtained  as  mean  square  due  to  regression  divided  by  mean  square  due  to

residuals and this was actually n - k upon k - 1, SS due to regression and SS due to residuals.

Now this can further be expressed as a n - k over k - one and SS regression and now using the

relationship that total sum of square is equal to sum of square due to regression plus some of

square due to residuals, I can rewrite some of square due to residual as total sum of squares -

sum of square due to regression. So this can be written as here, n - k over k - 1, SS reg

divided by SST divided by one - SS reg divided by SST.

So this comes out to be nothing but n - k over k - one and then R square over one - R square.

So you can see here that there is a close form relationship between the F statistics of analysis

of variance and R square and both are very closely related and then they have a very close

interpretation also. So F and R square are closely related. We will see how? When I say,

suppose R square = 0.

Then in this case F also becomes zero and when we say that R square = 1 then that becomes

infinity in limit. So this implies that larger the value of R square this implies greater the value

of F. So now what is the interpretation of this thing, so I can conclude that if F is highly

significant that means the test of hypothesis based on this F statistics is indicating that all the

regression coefficients are significant, then we can reject h naught.

And when we reject the hypothesis h-naught, when all the variables x2, x3 up to x k they are

relevant variable and they are helping in explaining the variation in y. So I can conclude that

y is linearly related to x2, x3, x k and that is what we had also said in case of analysis of

variance that this is a test  of overall  adequacy. So now one can see that  there is  a close

connection  between  F  statistics  of  analysis  of  variants  and  this  R  square  and  their

interpretations are also related.

So when we are going for the software issues then we will see that the software outcome



consist of R square values, adjusted R square values as well as the analysis of variance stable.

So looking at the outcome of software, we try to make different types of conclusions for the

fitted linear regression model. So now we stop here the topics of multiple linear regression

smodel, and in the next lecture, we will come off with some other issues, till then good bye.


