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Welcome to the lecture,  now in this lecture,  we are first going to talk about standardized

regression coefficients. You see when we are trying to fit a multiple linear regression model

then it  is based on different types of independent variables like as x1, x2, x k and these

variables are measured in different units. For example, x 1 can be in kilogram, x 2 can be in

liter, x 3 can be in some other unit.

So, when we are trying to compute the regression coefficients, they are trying to denote the

rate  of  change  in  the  value  of  y  that  is  the  output  when  there  is  a  unit  change  in  the

corresponding value of independent variable. Once these variables are measured in different

units, sometimes it becomes difficult  to compare the regression coefficients.  So in such a

situation, it is difficult to compare the regression coefficients.

If, I try to take an example, suppose the fitted model is y = 5 + say x1, + 1000 times x 2, and

suppose, this x 1 is a variable, which is measured in see here liter and x 2 is a variable, which

is measured in milliliter, so now if you try to see partial derivative of y with respect to x 1, it



= here one and that is essentially your beta1 hat and partial derivative of y with respect to x 2

is here 1000, which is essentially the value of beta hat2.

So, if you try to see here, the value of beta1 hat this is denoting the change in the value of y

when x1 changes by one liter and this is indicating the change in the value of y when x two

changes by 1000 milliliters. Now, if you try to observe the value of beta1 hat, which is here =

1, this is much, much smaller than the value of the beta 2 hat, which = here 1000.

But if you try to see both of them are denoting the same change, right, this is in liter and

whereas this is in milliliter and one liter = 1000 milliliter. so, if you try to see the values of

beta1 hat and beta2 hat are indicating that x1 and x2 have got different effects, but effects of

x1 and x2 are the same. So now in such cases, we have a problem that how to compare the

different regression coefficient.
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And  in  such  situation,  one  option  is  that  we  can  work  with  dimensionless  regression

coefficients and the use of dimensionless regression coefficient will  avoid such problems.

Now, the next question is how to obtain the dimensionless regression coefficient and this

dimensionless  regression  coefficients,  they  are  actually  called  as  standardized  regression

coefficients.

So, in order to obtain such standardized regression coefficients, we have two approaches, one

is unit normal scaling procedure and another is unit length scaling procedure. In both the

procedures,  we try to  change the values  of study and explanatory  variable,  so we try to



discuss them one by one. So, first of all I try to discuss the unit normal scaling procedure. In

this case, we try to define the values of explanatory variables.

So let us denote by say xij star as the original observation xij minus the sample mean of the

observation on the corresponding explanatory variable divided by sj, where this sj square is

given by one over n - 1, summation i goes from 1 to n xij - x bar j whole square. So, we are

trying to take a particular explanatory variable, we try to collect the observation on them, we

try to find out their mean and their sample variance.

And we try to subtract every observation xij by its corresponding mean and divided by the

corresponding standard deviation, and similarly we try to transform y as yi star and in this

case also we try to subtract the original observations y i by their sample means y bar and

divided by their standard deviation where s y square is 1 over n - 1, summation i goes from 1

to n y i - y bar whole square.

And in this case if you recall, we had i goes from one to here and n and j goes from one to k

because we have k explanatory variables.

(Refer Slide Time: 07:36)

So, when we try to scale the explanatory and the steady variables, then what happens that this

scaled explanatory and steady variables have mean 0 and variance unity that is one, and when

we are doing such scaling, then intercept term is lost in such a scaling. Now, I can transform

my original model, which was based on y and x1 x2 x k in terms of the scaled variables y star

and x star.



So our model becomes say y i star = beta1 star x i one star + beta2 star x i 2 star up to here

say beta k star x i k star, plus epsilon i, i goes from 1 to n, and based on that, we can obtain

the least square estimator or even equivalently the maximum likelihood estimator also under

the assumption that epsilons are following the normal distribution with mean 0 and variance

sigma s square and their IID beta hat, let us denote it by beta hat star. 

And this becomes here x star transpose x star, whole inverse x star transpose y star, and,

where this x star is the matrix, which is obtained by the scale observations on x1 x2 x k and y

star is a vector of observations on the steady variable, which are obtained after the scaling.

In this case, if you try to see, we are trying to standardize the observation like in the same

way as we do in the case of normalizing the random variable that is a random variable - its

mean divided by the standard deviation or a standard error. So that is why this procedure is

called as unit normal scaling procedure.

(Refer Slide Time: 10:15)

So now we discuss the next procedure, which is unit length scaling. In this case, we define

two quantities say sjj, which = i goes from 1 to n xij - x bar j whole square and say ST, which

= i goes from 1 to here n y i- y bar whole square. So if you observe these quantities are

similar to the earlier procedure of unit normal scaling, but sjj and ST, they are based on the

quantity similar to in the analysis of variance that we are going to discuss later on.



And, based on that sjj and ST, we try to now scale our explanatory variables and steady

variable as xij, let me now denote it by naught. So this will be the original observations xij on

the jth explanatory variable minus the sample mean of the jth explanatory variable and square

root of sjj, and similarly we try to scale the observation on steady variables as an original

observation, y i - its mean divided by square root of ST.

In such a case what happened that the new explanatory variable say x j naught has mean 0

and length, which is obtained by square root of i goes from 1 to n, xij naught - x bar j naught

whole square, this = here one. So that is why this procedure is called as unit length scaling,

and in this case, now the model can be rewritten in terms of scaled variables as y i naught =

beta1 naught x i 1 naught + beta 2 naught x i 2 naught + beta k naught x i k naught + epsilon

i, i goes from 1 to n.

And then in case we try to find out the estimator of beta as beta hat, which can be the least

square  estimator  or  the  maximum  likelihood  estimator  assuming  the  normal  quick

distribution for epsilon i's this turns out to be x naught transpose, x naught whole inverse x

naught transpose y naught, where x naught is the matrix of observations on k explanatory

variables, after they are standardized.

And similarly y naught is the vector of observations on a steady variable after they’ve been

say scaled.
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Next, we come on the aspect of now test of hypothesis. So, we are going to first discuss here

test of hypothesis, which is called as analysis of variance, right. This is a test which is used to

check the overall adequacy of the model. Next question is what do we really understand by

the overall adequacy? You see a model is obtained by estimating the model parameters beta1,

beta2, beta k, and we want to check here whether all the variables are significant or not.

So, we consider here a model say beta1 + beta2 x 2 + beta3 x three up to here beta k x k +

epsilon, and here we assume that all the observations on explanatory variable x1 that takes

the value1, so that beta1 here is the intercept term, and all beta2 beta3 betak, they are the

slope parameter. We are intentionally considering the presence of intercept term in this model

because that we are going to relate with coefficient of determination that we are going to

discuss later on

So this test of hypothesis is about testing whether all beta2 beta3 up to beta k they are 0 or

not. So obviously if you try to see here, if all beta2 beta3 beta k, they become 0 that means

my model becomes only here y = beta1 + epsilon. So this is a casting the significance of all

the slope parameters together, and this hypothesis determines, if there is a linear relationship

between y and all x2 x3 see here x k.

Now there are two options, whether this h naught is accepted or h naught is rejected. Well,

obviously if h naught is accepted that means all the regression coefficient have got value 0, so

all the corresponding explanatory variable x2, x3, x k they are not contributing in explaining

the variation in y, but the rejection of h naught implies that at least one of the explanatory

variable among x2, x3, x k contributes significantly in the model.

And in this case our alternative hypothesis is that at least one beta j is different from 0, where

j goes from two, three up to k and the test procedure to test such a hypothesis, this is called as

analysis of variance. So let us now try to briefly discuss that how this test of analysis of

variance is obtained, and this analysis of variance shortly called as ANOVA.
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This ANOVA technique is actually based on partitioning the total variation, in this case we try

to partition the total deviation, which is actually here y i minus y bar, and we try to divide it

into 2components, for example I can write y i minus y bar = y i - y i hat + y i hat - y bar. So if

you observe here, this quantity that is giving us total deviation and this is a deviation around

the fitted line and this is a deviation of fitted line around mean that is y bar.

So now what we do, we try to square on both the sides and we sum them up from i goes from

1 to n. So when I square it, this becomes y i - y bar whole square and when I try to sum, this

becomes i goes from 1to n, and when I try to square on the right hand side, I get the square

quantities of both these factors + their  cross product term.  The cross product terms term

becomes 0, so we get here summation i goes from one to n y i hat - y bar whole square +

summation i goes from 1 to n y i - y hat whole square.

Now this quantity is called as total sum of squares and this quantity is called as regression

sum of squares and this quantity is called as sum of squares due to residuals, and this is

denoted as SST and this is denoted as SS reg and this is denoted as SS res that is our earlier

notation also and one important  thing we have to note it  down here that when we try to

partition the total sum of squares SST into two components sum of squares due to regression

and some of square due to residual then both these terms are orthogonal to each other.

So this analysis of variance techniques is based on the partitioning the total variation into two

different orthogonal components sum of squares due to regression and some of square due to

residuals.



(Refer Slide Time: 22:23)

Now based on that, we can write down the expression more compactly before we go for the

further analysis. Your SST here is nothing but i goes from 1 to n yi- y bar whole square this

can be written as i goes from one to n y i square- n times y bar square and this can be further

written as y transpose y - n into one over n square y transpose l into l transpose y where l is a

column vector of all elements one.

And this can be further written as say here say y transposes i-1 over n ll prime times' y. So

you can see that this quantity quite resembles with the metrics like i- x x transpose x whole

inverse x transpose. Similarly, sum of square due to residual is nothing but, i goes from 1 to n

epsilon i hat whole square and this I can write down as epsilon hat transpose epsilon hat and

which can be written as y- x beta hat transpose y - x beta hat.

And when I try to open it this becomes y transpose y- beta hat transpose x transpose y, and

this  we had also  written  earlier  as  a  y  transpose  h bar  y  and the  sum of  square  due  to

regression, this is nothing but your i goes from one to n y i hat- y bar whole square and we

note down that we also have established that total sum of square = sum of square due to

residual and some of square due to regression.

So I can write down sum of square due to regression as SST- SS res and if I try to substitute

all these values we get here beta hat transpose x transpose y- n times y bar square. So these

are the three components, which are obtained by partitioning the total sum of squares into two

orthogonal component sum of the square due to regression and some square due to residuals.



Well, I'm trying to briefly describe what are we going to do? This quantity sum of square due

to regression divided by sigma square this follows a chi-square distribution with k- 1 degrees

of freedom under h naught and SS residual divided by sigma square this follows a chi-square

with n- k degrees of freedom under h naught and this concept we had discussed earlier also

and both of them they are independent, right.

Now I have 2random variables, which are chi-squared distributed with a certain degrees of

freedom, both are independent. So I can use here the F statistics and we define here statistics

F naught say SS reg divided by its degrees of freedom upon SS res divided by its degrees of

freedom and we try to call it say here mean square due to regression divided by mean square

due to residual where your MS reg is the mean square due to regression.

This  is  actually  means  any  mean  square  is  divided  by  sum  of  its  squares  due  to  the

aggression, in this case divided by the degrees of freedom, and similarly MS res this is also

divided by SS res divided by degrees of freedom and - k and this will follow a F distribution

with k - 1 and say n minus k degrees of freedom under h naught.

So now in simple words, if I want to test the hypothesis h naught beta two = beta3 = beta K.

We simply have to compute sum of the square due to regression, sum of the square due to

residual and then we have to obtain the statistics F naught.
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Once I have obtained the statistics F naught, this follows F distribution with the degrees of

freedom k minus 1 and n - k under H naught. So, now I can write down my decision, which is

reject h naught, if f naught is greater than F alpha with degrees of freedom k- 1 and say n - k,

where these values are obtained from the tables of F distribution. Now this entire procedure is

expressed in the form of ANOVA table, which is actually analysis of variance table.

This analysis of variance table is constructed like follows and advantage of understanding

this ANOVA table is that when we are using the software, the outcome is given in terms of

analysis  of variance table.  So,  it  is important  for us to understand that how the different

ingredients of that ANOVA table have been computed and what are their interpretations.

So,  this  ANOVA table  will  have  the  first  component  as  see  here  what  is  the  source  of

variation?

The second component will be, what is the value of corresponding sum of squares, then it

will also mention the degree of freedoms and then it will mention the mean square and then at

the end it will give the value of F naught. So in this case we have the first source of variation,

which is regression, due to regression.  We are trying to fit a model, so the entire variability

of the model is partitioned into two components.

One we are trying to capture through the fitted model, and that is controlled by sum of square

due to regression and the path, which is beyond our control that is due to random variation

that  is  being  controlled  by  the  sum of  the  square  due to  error  or  sum of  square  due to

residuals. So the first component of variation is regression, second component is residuals

and after that the third component is there total.

So, sum of square due to regression, we have obtained and we have denoted by SS reg, sum

of square due to residual, this is obtained and we have denoted by SS res and total sum of

squares is obtained and denoted as SST. The corresponding degrees of freedom are k- 1, n - k

and their sum this is n- k + 1 k - 1 which = here n - 1.

And based on that we have obtained the mean square due to regression and mean square due

to residual, which are obtained as SS reg divided by degrees of freedom, which is k - 1 and

this is sum of square due to residual divided by the degrees of freedom and - k and then the



value of F naught is obtained here by MS reg divided by MS res. So this is about the analysis

of variance table that is obtained in case of the software usage.

So now we stop here with this ANOVA table, and in the next lecture, we will try to consider

the test of hypothesis on the individual regression coefficients, their confidence interval and

some other aspect, till then goodbye.


