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Lecture -12
Estimation of Model Parameters in Multiple Linear Regression Model

Welcome to the lecture you may kindly recall that in the last lecture we had described the

setup of multiple linear regression model like y=x beta+
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We considered here that y is linearly related to x1, x2, x3 through the regression coefficient

beta1 beta2 betak, before we try to estimate the model parameters a natural question comes

that how do we decide that the relationship between y and x1 x2 xk is linear are not, so we

take the help of a simple linear regression model in which if you recall I had a made a scatter

diagram like this.

Where I have taken x and y independent and dependent variable and we had made a scatter

diagram of the given observation and incase it is looking like this we can say that there is a

linear trend and possibly the relationship between x and y is going to be linear, but now if you

try see in this case we want to see the joint effect of x1 x2 x k on y is linearly related are not.

So  in  the  earlier  case  of  simple  linear  regression  model  we  could  work  only  with  the

2dimensional figure, but in this case there is going to be high-dimensional picture and up to

third degree possibly I can make a 3dimensional plot, but beyond third degree I cannot make



a plot. In this case we tried to take the help of so called multiple scatter plot, multiple scatter

plots are not difficult to obtain they are readily available in any software.

And in the case of multiple  scatter  diagram they are essentially  trying to plot the scatter

diagram among all  the variables pair- wise.  For example if  I  say if  I  have here a model

something like y=x1 beta1+x2 beta2+  where I have got only two independent variable in this

case the  multiple scatter plot will look like this, this will be a sort of three by three diagram.

In which I had to plot y x1 x2 here and y x1 x2 here, so what really happen that in this section

this will be a picture between y and y so there is no question of considering this graphic.

Similarly  here  in  this  section  the  graphic  is  going  to  between  x1 and  x1  which  has  no

meaning and similarly here the graphic is  going to be between x2 and x2 which has no

meaning.

But here this will give as a scatter diagram between y and x1, y is coming from here and x1 is

coming from here, and here there will be a scatter diagram between y and x2, x2 will be

coming from here and y will be coming from here. So, we try to look on this individual is

scatter diagram and then we try to take a decision whether the joint relationship between y

and x1 beta2 is going to be linear are not.

Well in a simple interpretation if I say if the relationship between y and x1 is linear y and x2

is linear then we expect the relationship between y and x1 and x2 also be linear, but there can

be some more complicated situation so we will try to take up some numerical example later

on and we will try to demonstrate that how do we take a decision in such situation.

So, one think we have to notice that this section will give us a scatter diagram between x1

and x2, what is this mean? I how would try to demonstrate it clear that how does it help us

actually if you remember we had made an assumption that rank of x matrix is going to be k

that is the same has the number of independent variable or number of explanatory variables,

so this implies that all x1, x2, x k they are going to be independent.

They are going to be other linearly independent, so we need to ensure before we go for any

linear regression analysis that whether these assumptions are verified or not so this multiple

diagram will  help us in diagnosing the issue that for example in this  case x1 and x2 are



independent are not, so incase if we see is a sort of linear trade or see any other type of

relationship that would indicating the x1 and x2 are not independent.

In this multiple scatter diagram this is a symmetric diagram, this is symmetric, symmetric in

the sense that whatever is the picture here the same picture will be here and the same picture

will be here this is how using the concept and idea of multiple scatter diagram we decide

whether the relationship between y and all x1 x2 x k is linear are not.
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Now we come to another important aspect and we try to estimate the model parameter, so

again just  for the sake of understanding we are going consider here a model y= x beta+

epsilon, where y is a n cross1 vector of observations on study variable, x is a n cross k matrix

of  n observation  on each of the k independent  variable  and beta  is  a  k cross1 vector  of

regression coefficient beta1 beta2 betak and epsilon is a n cross one vector of random error

components.

We assume  that  f  silent  is  following  a  normal  distribution  with  mean  vector  zero  and

covariance matrix sigma square i. So our model parameters in this case are beta vector or it is

equivalency that beta1 beta2 betak and sigma square there are altogether+1 model parameters

that need to be estimated to describe the model completely. So in order to estimate these

model parameters we have two options.

First think is this I can use the principle of least squares and second is method of maximum

likelihood.  Just  like in  the case of simple linear  regression model  we will  try to use the



principle of least square as well as maximum likelihood estimation in the case of multiple

linear regression model also, so first we are going to talk about the principle of least squares.

If you recall incase of simple linear regression model.

The model was y= beta0+beta1 x+epsilon and we had minimize the sum of squares due to

random error summation i  goes from 1 to n epsilon i  square.  Our objective was that we

wanted to find out the value of beta0 and beta1 by minimizing the sum of square due to

random errors, now in this case if you try to see this is not a two dimensional problem.

But there are parameters beta1 beta2 betak and sigma square, so obviously first we will try to

concentrate on the estimation of beta1 beta2 betak and sigma square will be estimated later

on separately, so if you try to see we are working here in a k dimensional Euclidean space.

Let us try to define suppose capital b is the set of all possible vectors in this k dimensional

Euclidean space.

So now our objective is that we want to find out the value of parameter vector beta such that

the sum of squares of random error is minimize over is entire space, so now I can define my

objective, my objective is to find say beta hat which is actually beta1 hat, beta2 hat say this

betak hat vector from B that minimizes summation i goes on one to n epsilon i square.
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So now let us try to do it so we will define here a function say s beta which is something like

summation i goes from 1 to n epsilon i square and this I can write down as here epsilon

transpose epsilon where epsilon is n cross1 vector, now the same thing can be written as



epsilon y- x beta transpose y minus xbeta and if I try to open this then we get here y transpose

y -twice of beta transpose x transpose y + beta transpose x beta.

We assume that  this  s  beta  is  the real  valued convex differentiable  function,  so that  the

minimum will always exist. In order to find out the minima we are going to use here a simple

vassal so before doing anything let we state this result, suppose z is a random variable of say

order m cross one, so this is a m cross m one vector, now in case if I to try consider here a

quadratic form something like z transpose a z.

Then partial derivative of z transpose z with respect to this z is A+ A transpose times here z

and this becomes twice of A z if A is symmetric. So we are going to actually differentiate the

function s beta and during this process we are going to use this result. So now if we try to

differentiate  s  beta,  partially  differentiate  s beta with respect to beta we get a twice of x

transpose x beta - twice of x transpose y.
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So from here I can obtain the normal equation by partial derivative of s beta with respect to

beta=0. We have this equation here as a x transpose x beta- x transpose y=0, so what we try to

do here that premultiply by x transpose x whole inverse, so we get here x transpose x whole

inverse, x transpose x beta=x transpose x whole inverse x transpose y, so this finally gives us

that beta hat=x transpose x whole inverse x transpose y.

Now we have to also ensure that this value of beta hat really minimize the sum of a squares

due to random error which is s beta, so in order to do so we try to find out the second order



partial derivative with the respective beta, and this comes out to be here twice of x transpose

x. So this matrix is at least nonnegative definite, and so this ensures that beta hat minimizes s

beta and then this now beta hat=x transpose x whole inverse x transpose y this is called has

ordinary least squares estimator of beta.

One think we need to note here is the following that here we are going to use that term x

transpose x whole inverse, how do we ensure that whether this inverse will always exists or

not, so if you recall we had made an assumption that rank of x matrix =to here k, this was a

full column rank matrix so then x transpose x is positive definite and so x transpose x whole

inverse always exists.

So you can see here that whatever assumptions we had made they have some utility they are

going  to  be  use  in  the  mathematical  derivation  of  the  results,  and  they  will  have  some

practical issues also that will try to address later on. Now what you have to always keep in

mind this result that this ordinary least square estimator of beta and remember one think here

beta hat is not a scalar, beta hat is a vector here something like this.
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If you try to see here I can write this beta hat is actually beta1 hat, beta2 hat and betak hat,

and so whatever you are going to get after solving this equation you will get a vector and the

individual  values of that  vector  they are going to give us the individual  estimates  of the

elements of beta vector. So once I have obtain beta hat then I can obtain the fitted model the

definition of the fitted model carries over from the definition.



That we describe during the simple linear regression model that we try to estimate the model

parameters and we substitute the model parameters in place of the parameters and the model

that we obtain that is called as a fitted model. In this case if you see we had a model y=x beta

+ epsilon and now we are going to replace beta y beta hat so this become our fitted model.

So this can further be written has something like this x transpose y, so here we will try to

denoted by here hy and where h is x x transpose x whole inverse x transpose. This matrix has

a particular name and this is called as hat matrix, and you will see later on that this hat matrix

plays an important role in the linear regression analysis and h matrix as some nice properties

also, but before that I can also define another quantity say h bar which is i-h, i is an identity

matrix. 

So both this h and h bar they have certain properties, first important property is that h and h

bar both are symmetric matrices, second important property is that h and h bar both are inden

potent so that means h into h=h as well as h bar into h bar =h bar. Third important properties

that we are going to use are the trace of h, what is the trace? Trace is the sum of the diagonal

elements of a matrix. 

So if you try to find out the sum of a diagonals of h matrix then this is trace of x x transpose x

whole inverse x transpose and we have a popular result in the matrix theory that trace of

ab=trace of ba where a and b are the two matrices and their product is well defined, so I can

write down this thing here as a trace of x transpose x whole inverse x transpose x and then

this become trace of ik and ik is an identity matrix of order k by k so this trace is actually

here k.

Similarly if you try to find out the trace of h bar this becomes a trace of say i-h, so trace of

identity matrix of order n by n- trace of here h and this comes out to be n- k so these are some

result that you will be using later on.
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Okay, now after that let us try to describe how to we define the fitted values you may recall

that  in  the  case  of  a  simple  linear  regression  model  we had  obtain  the  fitted  values  by

providing the values of independent variables to the fitted model. Similarly exactly on the

same lines I can define the fitted values here as for a given x the fitted values are denoted by

y hat and they are they are define as yx beta hat.

Next quantity we are going to define about the residuals, if you try to recall during simple

linear regression model we had define the residuals as the difference between observed and

fitted values of study variable exactly on the same lines I can definite here as a f silent hat

which is y difference y hat and so more logically I can write down here say y minus y hat, so

now we have obtain y.

y hat here is x beta hat and beta hat we had obtain as a here y minus x x transpose x whole

inverse x transpose y, so I can write down here y minus hy and so I can write down here i

minus h times here y, so this is equal to here h bar y, so this is a very convenient notation for

us to use to present the epsilon hat which is our residuals. Now we stop here and in the next

lecture we will try to investigate the properties of ordinary least square estimated of beta, till

than good bye.


