
Differential Calculus of Several Variables 
Professor: Sudipta Dutta 

Department of Mathematics and Statistics 
Indian Institute of Technology, Kanpur 

Module 02 
Lecture No 10 

High Order Derivatives. 

Okay, I will come to the last lecture of this module. Here we will discuss about, well in several 
variables calculus you don’t stop at taking first derivative, right. You then take second derivative 
and third derivative and finally arrive, finally you talk about function which has all derivatives 
and then you talk about Taylor’s theorem and Taylor’s formula. We will do that next week for 
several variables but for time being this lecture we concentrate on higher order derivatives. 
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So the same setup, F is from U open connected set, maybe connectedness is not essential for this 
lecture RM, and we know we can define for some X in U, we can define this derivative, DFX 
which is a linear map from RN to RM, let me write it in this way. DFX belongs to L RN to RM, 
so this is the set of all linear maps from RN to RM and all in the, if I write in matrix form these 
are all, if I fix bases from RN and RM then this will give us all M cross matrixes, real matrixes. 

So if you talk about second derivative you must consider this X going to DFX, but now you will 
see this is the map from U to so DF if I call this map DF, this is the map from U to DFX belongs 
to L of RN to RM which is itself a vector’s space. If you now want to talk about the second 
derivative that is this square F, so X in U, this square F at X that is a derivative of this map, this 
will be a linear map from U is in RN to L of RN to RM. 



Well, you see it is already matrix value, this fellow is already matrix. Now you are defining maps 
from RN to matrixes so it will be, again you can say it is a matrix, huge matrix where each entry 
is a matrix of order (())(3:33). So total matrix will be M cross N into N. So this is very difficult 
to write down and people still do analysis but let us not bother too much about this thing because 
I think in matrix form it doesn’t help much.  

If you want to do some analysis you have to think of some other ways, maybe we encounter or 
may not in this course, but there is one thing if we take real valued function this becomes very 
easier.  
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In the sense that suppose of F from U in RN to R, real value and you know actually to talk about 
differentiable function in F you can write F as F1 F2 FM and you understand the properties or 
differentiability of each component FI and then you can talk about derivative of F in terms of 
those. So enough to from all practical purpose if you want to talk about higher derivative you 
consider F from RN to R and for RN to RM you start from here and then go up with the formula 
we have it. 

But now this DFX for X in U, DFX is a linear map from RN to R, so this is a row vector which 
we have actually written as, actually it is we have fixed notation Grad F at X which is you know 
del F dell X1, del F del X2, so on del X del XN, this is the reserved rotation for Grad. So you see 
now X going to Grad F at X, this now a map from U which is in RN to RN again, so D2 of FX 
maybe we will write it as a special notation I don’t want to use this notation because this is 
reserved for something else. 



Okay, let me write for this course, I am not going to talk about this. This will be in a linear map 
from RN to RM and this I can write it as M cross N matrix, how, well, Grad FX is from U to RN, 
Grad F a vector in RN, now I will consider this is a function, so what I will do… 

[Refer Slide Time: 06:55] 

 

I will write Grad F at X as, it is a RN to RN, del F is map from RN to RN so I can write it as N 
component, we have done it before. Well each FI is Grad F del XI. Now I know what is the 
second derivative, derivative of this map, this is we have already known so that will be del FI, so 
this will be del F1 del X1, del F2 del X1, so on del FN del X1, del F1 del X2, del F2 del X2, del 
X2 so on del FN del X2, del F1 del XN so one del FN del XN. We know this from before 
because I have written.Actually this is Jacobian of this map, del F at X., correct.  
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But now I know what is FI, so this matrix will be, I can write it as, I don’t have place to write 
here, maybe I go back to that board. So let me keep the setup, so Grad square F at X is, now I 
write what is definition of FI, F1 is Grad F del X1, so del square F, del X1 del X1, del X1 square, 
del F2 is, del F del X2, so that is del X1 del X2 so on, del X del X1 del XN, next del F del X1 del 
X2, del square, del square F del X2 square, so one del square F del X2 del XN, del square F del 
X1 del XN so one del square F del XN square. 

Which is written as del FI, sorry, del F, del X JXI, I equal to 1 to N, J equal to 1 to N. Some 
books use a special notation for this, special notation for this we will use it in our next 
calculation next time, it is called H F at X and written as Hession. Okay, so if you don’t 
remember which way to follow del XJ or del Xi, always go back to this way, that you write del 
FX is equal to F1 F2 FN, FI equal to this thing and then apply the derivative formula, so there is 
nothing much to remember here. In one minute you can just write it down if you know, how to 
write a derivative of a map from RN to RM by component wise. Now this matrix has this 
property. You see 1 2 (())(11:25) del X2 del X1, and 21 (())(11:29) del X1 del X2 so order is 
changed.  
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So what I can see from here is that this matrix H is a symmetric matrix if del square F del XJ XI 
equal to del square F del XI del XJ for all IJ. So if the mixed partial derivative, they are called 
mixed partial derivative. They are two different components involved, if changing the order are 
equal then the matrix becomes symmetric. 

But this is not always the case. For example, I give you very elementary example, let us say F 
from entire R2 to R, F of XY equal to X into Y, X square minus Y square divided by X square 
plus Y square when X and Y both is not equal to 0, is it no origin and 0 at the origin. What you 
can calculate here, so do this calculation yourself that del F del X, this is equal to, you just 
calculate it, del F del X equal to, well let us calculate it doesn’t matter. 

Let us calculate it at 0 Y, this will be equal to minus Y. So del square F del y del X at 0 0 so you 
verify this calculation is equal to minus 1, whereas del F del Y at X 0, this will be X, so del 
square F del X del Y this will be equal to 1, clearly this two are not equal so del square F del Y 
del X and del square F del X del Y at 0 0 they are not equal, one is minus 1 and as in Y. You do 
this calculation very easy (())(14:31) to do the derivative. 

But this is not a very likely nice situation for us, to go ahead with calculation to go ahead with 
calculus, we want the mix partial derivative be equal so that I get this matrix symmetric. It 
becomes very handy when you, next time we talk about Taylor’s theorem and also when you talk 
about maximum and minimum real valued function. So come up with certain criteria of check 
maximum and minimum this symmetric is essential otherwise it gets total mess. 
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So we actually want condition for equality of mix partial derivative. So we want condition such 
there del F del XI, del F del XJ and del square F del XJ del XI for given I J. Let me state it as a 
theorem. I state it for F from U, I state it more general, RN into RM, U is open connected state 
but open is enough here. Condition says, so let’s fix a point, I want to always check at a point, 
suppose given I and J, given I from I in 1 to M and J in 1 to N, del F del XI, del F del XJ both 
exists on a ball around delta. That is for all points in the ball around delta for some delta. 

See when X not is in U and U is open there will be always a ball but I want a ball such that this 
del F XI and del XJ both exists on the entire ball, not only at X not, on the entire ball for some 
delta greater than 0 and both differentiable at X not, that is del F and del XJ differentiable at X 
not. Then del square F del XJ XI equal to del square F del XI XJ, mix partial derivative at equal. 

So what is the condition they must be of course, this must two must exist so they must be 
differentiable at X not, but the condition is there both exists. I missed most important, and 
continuous. Why I did not write because I am saying that there is a differentiable but 
differentiable X not means it is already continuous at X not but I want it continuous on the entire 
B X not delta, but, if anyways, you can have this or may not have this, continuity of X not is 
enough. 

But it has to exists on the entire ball that is important, so you add N continuous or not it does not 
make any different, that is what I mean. Okay, the proof is little long and the proof is not going 
to, we are not going to use the entire idea of the proof any way. But still you need a proof once 
you write a statement. 
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So what I write here is proof, but I will write a sketchy proof. I will give you the idea of the 
proof you complete the lines in between. Okay. Do the sketching and you go like this. First may 
your reduction that I am only concerned about 2, XI given XI and XJ, so let us only consider 
because nothing to be changed for R1 and RM, F from You in R2 because two variables are 
involved at R. For RM what you do you apply component wise, two variables are involved do 
R2 is enough. If we have RN you do component wise. 

Okay and without loss of (())(20:09) your X not is 0 0, this is just to make the calculation easy, 
because U is any set in R2, here is the origin but you can always shift origin such a way that 0 0 
belongs here. There is a transformation of origin and that does not change any property 
differentiability, continuity anything. 

So we choose, we want to go into (())(20:41) hypothesis so some H greater than 0 such that H 0 
cross 0 H, this set is in U, so here is my U from You around origin I choose H such that this 
square of length H and height H, this is completely named. With that what you do, for a fixed H 
define G of X equal to F of X H minus F of XJ.  

Then we apply Mean Value theorem to get, this is equal to H into G prime at some Z1, right. Z1 
is 0 to H, but immediately you can write G prime Z1 equal to del F del X1 at some Z1H minus 
del F del X1, F at Z1 0 and apply the definition of what is del X1? That was my second step. See 
verify all those steps, I am not writing the entire proof.  
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Third step is you again write del F del X as applying MVT del square del X square at 0 0 at Z, 
not applying, applying the condition of derivative, sorry, applying this is differentiable, del F  del 
x at X 0 as del square F del X square 0 0 at Z plus H into del square F del Y del X 0 0 plus mod 
Z H into (())(23:58) U and H, U and H will go to 0 as H goes to 0 because as H goes to 0 Z also 
goes to 0, Z is between 0 and H. 

Okay, from that what we do, we calculate GH minus G 0 it will come out to be del square F del, 
okay, let me skip this step because this need some technicality, what I actually want to show is 
that this divided by H square this goes to del square F by del Y del X at 0 0. And what you do in 
the next step you repeat the entire thing by defining G1 Y equal to F of HY minus F of ZY, so 
here I take XH XO with X and I did G1 and G2. 

And you again show by the same step G1H minus G10 divided by H square, it will be just ulta, 
just other way round, sorry, this goes to 0, this thing as H goes to 0, this as H goes to 0 and final 
observation is GH minus G0 equal to G1H minus G10, so this two Limits will be equal because 
numerator are equal denominators are H square, so there is the idea of the proof. You fill up the 
details. 

Thank you!   

 


