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I will just quickly again, go over through the go over the inter arrival times that we 

discussed in the last lecture. And then I obtained the distribution for inter arrival times. 

So, we already said, showed that fx1 t is lambda e rise to minus lambda t; that means, the 

x 1 denoted the arrival time up to the first, up to the first event that occurs. So, therefore, 

that is exponential, in the interval is lambda the interval for the first has exponential with 

distribution parameter lambda. Then, if you want to now, compute for x 2 then let us 

look at the probability x 2 greater than t when x 1 is equal to s. 

So, here you see again the idea is that the first interval the first event occurred here. And 

now, so this was your x 1 now, this time is denoted b y x 2. And, we are saying that this 

is greater than t. So, if this time is greater than t; that means, there is no arrival in this 

time. And, so you are looking at probability x 2 greater than t, condition on x 1 being s. 

But since, we have shown already, that the inter arrival times are exponential. And, so 

they are memory less, and therefore it does not matter. See, this probability will remain 

the same whether it is here or here or anywhere. So, it does not matter, when the first 



event took place the probability the conditional probability is the same as the, probability 

x 2 greater than t. 

So, this is the memory less property that we have already shown. So, therefore, this is 

equal to this, and here the same thing probability s comma s plus t 0 given that s 1 is s. 

So, therefore, this is equal to probability that there no arrivals in the time interval s 

comma s plus t. And, that probability is e rise to minus lambda t, is it ok? Because, here 

again the number that you the probability that you want to compute here, is that there is 

no arrival in this interval.  

And, so the conditional has no bearing on this probability also. So, therefore, this is e rise 

to minus lambda t, and here, this in term of your distribution function. You will write this 

probability as 1 minus F x 2 t and this is equal to e rise to minus lambda t. Therefore, if 

we differentiate both sides, you get f x 2 t is minus lambda e rise to minus lambda t. 

So, this goes out and therefore, you have shown that for x 2 also the distribution is, 

exponential lambda. And now, repeated use of this argument because essentially we are 

using the memory less property. And, so the same argument can be repeated for x 3 x 4 

and so on. So, we end up with this proposition, that when you take the sequence of inter 

arrival times these are identically, independently, distributed. Remember, we have 

assumed for the Poisson process independent increments, and stationary increments.  

So, therefore, these are inter arrival times are identically, independently, distributed 

exponential lambda random variables. That is, the process is probabilistically starts itself, 

which means its memory less. Every time, event occurs it starts itself again. So, there is 

no memory as to, when the last event occurred, it just starts fresh from after any event. 

So, when you start counting the inter arrival times, it rejuvenates itself again. Now, just a 

word about the parameter lambda. So, you see because this is exponential lambda. So, 

expectation of x I will be 1 upon lambda, and I mean the theory about exponential 

distribution does not say anything about lambda as long as lambda is greater than zero. 
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So, lambda can be any positive number. So, here before I come to that see a high lambda 

corresponds to a small average of waiting time. If lambda is large, then 1 upon lambda 

which is the expected value is small. And, so it is saying that this is the average of the 

inter arrival times so; that means, if the average is small, then the arrivals will be 

occurring in small intervals because the expected value is small. 

So, when lambda is high it corresponds to a small average of waiting time between 2 

consecutive occurrences. So, we were saying that when lambda has a large value the 

corresponding expected value will be a small number. And, so that would mean that the 

inter arrival times are smaller, in the small in the sense that the average is small. So, 

therefore, the arrivals are occurring at smaller intervals. And, in any case lambda is 

called the intensity of the process.  

So, there is no therefore, it simply says that lambda measures the, so if lambda is small 

then this will be big, so that means, the inter arrival time average is large. And, so the 

events are occurring at large intervals hence therefore, we are saying that lambda is 

called the intensity of the process also. And, lambda can be any positive number, but if 

we think of earth quakes in Indonesia say for example, and take 1 year as unit of time. 

Suppose, consider the process you know, if I am counting the number of earth quakes 

that have occurred, in a span of ten years say for example. 



And, so if I take the unit of time as 1 year, then lambda should not be large because if 

lambda is large then what will it say that 1 upon lambda is small and therefore, it would 

mean that the earth quakes are occurring at smaller intervals of time, but we all know 

that the earth quakes of course, they are un predictable, but normally it does not happen 

that earth quakes occur very often.  

So, one has to be careful that is; why this interpretation of lambda gives you an insight 

into, how when you go about modeling a process? When how should your choice of 

lambda be made? Our also like, if you look at moments this, I mean again this is the time 

this 1 d when a radioactive material sends particles. Then the intensity is high, the 

intensity is high and therefore, this is small. 

So, the particles spread radioactive particles spread very fast. And, so if you are counting 

at any point of this thing, how often the particle is arriving? Then the inter arrival times 

will be small, and therefore, this will be small. So, lambda would be high. So, just to give 

you an idea, and then you can look at many different examples, and see how the value of 

lambda will reflect the inter arrival averages. Similarly, you want to look at the 

parameter lambda t. So, lambda t is number of events. So, this is actually on the average 

the number of events in time t in time period t. So, this is your mean arrival rate. 

So, now number of events in 2 disjoints time intervals are independent, just now we said 

that they are independent increments. So, therefore, if you look at the arrival in between 

0 and 1, it is Poisson lambda. And this is Poisson lambda between 1 and 2 now; if you 

look at the time interval 0 2 then it will become Poisson 2 lambda. Because, again from 

now, by now we have by, so many different methods shown you, that if 2 random 

variables x 1 of course, here x 1 is Poisson lambda x 2 is Poisson lambda.  

Then x 1 plus x 2 would be again Poisson 2 lambda, the parameters get added. So, 

therefore, 0 2 would the number of arrivals, will be Poisson 2 lambda. So, therefore, in 0 

t it will be Poisson lambda t, this is the whole idea. So, this is the important thing and 

therefore, in time 0 t we will say that the arrival rate is lambda t, Poisson lambda t, this is 

the whole idea, because t can be fractional and so on. So, 1 can again interpret in the 

same way now another thing is that since we are talking of stationery increments 

therefore, what we have to say is that; the arrivals over the time 0 t are distributed in a 

uniform way.  



Because, they are random 0 to t they are anyway random events such then when we are 

talking of number of arrivals for example, when I am counting n t this is the number of 

arrivals in time 0 to t, in the span time in the span of time 0 to t. So, then we have to 

think the way the process is being modeled, is that in this particular time period, the 

arrivals can occur anywhere. And, so the best way to model that is, that the arrivals are 

uniform in the interval 0 to t, and through an example again I will try to make you 

understand this concept a little better. 
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So, after computing the distribution function of the interval arrival time, let the another 

quantity of interest is s n, which is sigma x i, i varying from 1 to n, which means x n is 

the waiting time for the nth event to occur. So, because see you are adding up x 1 to x 2 

to x n. So, x n is the time, when the n inter arrival time between n minus 1 and the nth 

event. So, therefore, s n will be the waiting time for the nth event to occur. 

So, just added up all the see on the line, you have you are starting from 0 this is x one 

this is x 2 and so on. And finally, this is x n. So, at this point the nth event has occurred, 

right starting from here, this is the first event, second event and so on. So, at this point 

the nth event has occurred. So, this is the total time; that means, this the total time you 

are denoting by s n. So, which is you can say waiting time for the nth event to occur, for 

the nth you know the time the volcano has to erupt particular volcano or earth quake to 

occur, whatever process you are looking at, you can interpret s accordingly. Now, from 



independence of x i’s, and being identically distributed as exponential lambda. And here, 

again you see in the last few lectures we have been talking about, some of independent 

random variables, and through convolution through m g f s and so on. 

We have looked at the distributions of sums of independent random variables. So, here it 

immediately follows, that s n is gamma and lambda. Because, here the x i’ s are 

identically distributed as exponential lambda, n of them you are taking some n of these 

random variables exponential random variables. So, the sum will be gamma, n comma 

lambda, and therefore, the p d f are the density function for f s n t is lambda, e rise to 

minus lambda t lambda t rise to n minus 1 upon, and minus 1 factorial for t non negative. 

So, this is the thing, but now again as I said it always helps to be able to use other tools 

that we have developed. And, so let us try to do it, and then of course, m g f again we has 

already been computed, for a gamma random variable is lambda upon lambda minus s 

rise to n. So, while writing m g f of s n the s got written by mistake. 

So, it is actually m g f of s n, which will be lambda upon lambda minus s rise to n. So, 

the idea was that you were computing it at s. So, therefore, it got written there. So, this is 

actually lambda upon lambda minus s rise to n. Let us look at it in an alternate way, and 

that is also interesting. So, let us just be very clear about this n t greater than or equal to n 

if and only if s n is less than or equal to t, that is if the number of arrivals by time t 

greater than or equal to n. Then, the time s n for the nth event to occur is less than or 

equal to t and vice versa. That is if s n is less than or equal to t then it will imply that n t 

must be greater than or equal to n. 

So, when you want to compute the distribution function of s n, this is probability s n less 

than or equal to t, which because the 2 events are the same, this is probability n t greater 

than or equal to n. And so since n t is Poisson distributed, a Poisson random variable 

with lambda t as the parameter. So, therefore, this probability can be written as sigma i 

varying from n to infinity e rise to minus lambda t, lambda t rise to i, upon i factorial. 

Now, let us differentiate this equation from both sides. 
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And, so on the left hand side this will be the p d f of s n, and now here, let us do it term 

by term. So, the derivative of this first. So, minus lambda e rise to minus lambda t, 

lambda t rise to i, upon i factorial, and then the derivative of this, which we are writing 

as. So, first function as it is e rise to minus lambda t in to, lambda rise to i remains as it 

is, t the power of t becomes, i minus 1 and then i factorial here, which you can you know 

cancel the i part here, then it will be i minus 1 factorial.  

So, and e rise to minus lambda t I have taken outside then this summation from n to 

infinity. So, I am not writing out many terms here, we just have to show you that you 

see, when you take n i equal to n, the term from here you will get lambda t rise to n upon 

n factorial. And, this will give to lambda rise to n, t rise to n minus 1, n minus 1 factorial. 

So, these are the 2 terms now, put i equal to n plus one.  

So, this will be minus lambda, lambda t rise to n plus 1, n plus 1 factorial, plus lambda n 

plus 1 t rise to n upon n factorial. So, you see this cancels with this, and then I thought, I 

will also write the values corresponding to i equal to n plus two. So, then that will be 

lambda, lambda t rise to n plus 2 upon n plus 2 factorial, plus lambda n plus 2, t rise to n 

plus 1, and n plus 1 factorial. So, that cancels out this. So, you can see the pattern first, 

and the fourth here then the third and the fifth sixth and so on.  

So, all these things will cancel out except this. Because, this is the lowest degree term 

after that the powers of t keep on increasing. So, this is the only 1 which is left out all 



these will cancel out. And, so you are left with e rise to minus lambda t into lambda, 

lambda t rise to n minus 1 upon n minus 1 factorial, same as 1, which is a gamma density 

function, gamma n comma lambda. 

So, I just wanted you to sort of you know, make use of this also. And therefore, you can 

even do it directly. So, once when you generate, so many tools, it is always possible to 

prove result by more than 1 way, and it also helps gives you a better insight, if you can 

do that. So, then expected value of s n will be n upon lambda, and variance s n will be n 

upon lambda square. Now, we will further prove some more properties of the Poisson 

process, and then you know work out examples to show you how you make use of these 

all these machinery, that we have developed. 

Now, for example, if you take a Poisson process n t, t greater than or equal to 0 then they 

can and they can be 2 sub processes. If you remember while discussing, the joint m g f I 

talked about Poisson process, and then I said, that if all the events that are occurring are 

being counted. Then they the probability of an event being counted was p, and event not 

being counted was 1 minus p. And then I showed you through the m g f, that each of 

them, each of these process again would be a Poisson. So, see while talking about the 

Poisson process, having 2 sub processes, which we call type 1 and type 2. And, so the 

probability that the type 1 would have occurrence with occur with probability p, and type 

2 with occur with probability 1 minus p. 

So, I have already. So, the only correction I want to make is that see here, you n t is 

lambda p t, because we are talking about with respect to t. So, then we are talking of 

arrival time arrival rate in the interval 0 to t. So, now, here similarly your n 1 t will be 

then Poisson, and this we showed through m g f processing of we showed that it can be 

both will be again Poisson. So, the sub processes n 1 t would be Poisson lambda p t, and 

n 2 the process type 2, which will be. So, the random variable is n 2 t will be Poisson 

lambda 1 minus p t. So, the we have to attach. So, what I wrote in the lecture was, 

without the t part everywhere here. So, this is what the correction is being made, 

otherwise I have explained, what we mean by these sub processes and so on. 

In the lecture itself, so exactly the same thing, but here again I will do this, I will try to 

prove the same result by using the machinery that the definitions that we have made 

here. I will try to do that because the m g thing we know. So, here it is saying that the 2 



types of; that means, you must be considering, let us say immigrants from another 

country, and the immigrants may be Hindus, Muslims whatever it is. So, therefore, the 

total process of immigrants coming from another country, may be a Poisson process and 

then the kinds of people that are arriving, you may want to separate them into 2 streams. 

One may be let us say Hindus, the other may be Muslims. So, there will be type 1 arrival 

and the probability of 1 of the arrival immigrants being Hindus is probability p, and the 1 

minus p is the probability of the immigrant being Muslim. 
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So, we will now, prove it in a different way, in an alternate way. So, as I said the 

proposition is that there is a Poisson process, and n t is the number of arrivals in time up 

to time t. Then if there is type 1 and type 2 processes, sub processes. And, so type 1 

process; that means, the type 1 event occurs with probability p, and time and the type 2 

event occurs with probability 1 minus p. We want to show that n 1 t is Poisson with 

lambda p as the parameter, and n 2, n 2 t is Poisson with parameter 1 minus p lambda. 

We want to show this. And as I told you, that we have already shown this result using m 

g f s joint m g f, but let me do it through. So, we will show that n 1 t, t greater than 0 this 

satisfies your definition 2, which remember we said is more easily verifiable. 

And, so let us do it quickly since n 0 is 0, this implies n 1 is 0. Because your n t is n 1 t 

plus n 2 t. If this is 0 then both of them must be zero. So, n 1 is 0 now, the other part is 

that you know, independent and stationary increments. So, which can also be easily seen 



because if I condition this by fixing n t equal to n. Then, the arrivals here are also you 

know they only depend on the length of the interval, and are independent of, what is 

occurred before. So, that is the memory less. So, by conditioning also you do not change 

the independent increment, property and the stationary increment property. So, therefore, 

n 1 t satisfies both, now we just want to show that your probability n 1 h equal to 1. So, 

the property 3 should be satisfied. 

So, let us just look at this event. So, if type 1 arrival in time h is 1 then ,we can write this 

break up this event as saying that n 1 h is 1 given that n h is one. So, total arrival is 1 and 

then n 1 is 1, and. so this will be condition this in to probability that n h, n h is 1. All 

probability n 1 is h and n h is greater than or equal to two. So, these are the 2 

possibilities, because either n h 1 has is 1 or n h 2 is greater than or equal to two. So, this 

would be this into probability n h greater than or equal to two.  

So, I like the probe because just by basic definition of the process, we are able to show 

this result. So, here see n 1 h is p, and then probability n h equal to 1 is because n is 

anyway Poisson process. So, we already satisfy the definition. So, therefore, probability 

of n h equal to 1 is n h plus order h, this when given that there is 1 arrival. So, then n 1 h 

the probability is p plus now again here arrival n 1 h is one. 

So, that probability is p and then n h greater than or equal to 2 n satisfies the condition 

four also. So, therefore, order h right and. So, this will be lambda p h plus order h 

because p see remember, when you say a function is of order like this, then constants are 

all allowed. Because, it is only the power of h which is important, it is higher power and. 

So, as h becomes smaller this goes to 0. So, therefore, that p gets absorbed here and 

therefore, this is it. So, this is what?  

So, therefore, this satisfies definition because lambda p is the probability now of arrival. 

So, therefore, this will be lambda p in to h, and this n 1 h is greater than or equal to 2 is 

satisfies. Because, this probability is less than or equal to probability of n h, greater than 

or equal to 2 right by the definition because n h is n 1 h plus n 2 h, and since, this is order 

h. So, this has to be also order h. 

So, nice simple proof and I like it, of course, you we have already done it through the m 

g f method, but that was for a general situation. Now, here, we are doing it for a Poisson 

process. So, therefore, the type 1 and type 2 you can see if you have sub processes, and 



certainly if this can be extended to more than 2 sub processes. So, if you have more than 

2 sub processes, each of them and of course, the some of the probabilities must add up to 

1, which it will and therefore, you can say that all these sub processes will be 

independent. Now, how do I show that n 1 and n 2 are independent, that part is also there 

that n 1 and n 2 are independent. Once we have shown and similarly, by this similar by 

this similar argument you will show that n 2 h is also Poisson with parameter lambda 

into 1 minus p. 

Now, you can now use the joint m g f method to show that they will be independent. So, 

this method I use to show that n 1 t will be Poisson with lambda p s the parameter. And, 

n 2 will be Poisson with parameter lambda in to 1 minus p, to show independence you 

can use the m g f method. 
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So, let us look at this example, suppose that people from Bangladesh migrate in to north 

eastern states of India at a Poisson rate of, lambda equal to five per day. So, the question 

asked is, what is the probability that the expected time until the 15 immigrant arrives? 

So, what is the probability that the expected time until of the expected time that the 15th 

immigrant arrives? 

So; that means, you are asking for s 15. So, s 15 is gamma 15 comma 5 by the result that 

we arrived some time ago. Because, it will be x 1 plus, x 2 plus, x 15 and. So, that will be 

gamma 15 comma 5, and the expected value is 15 upon 5. Remember because this is 



gamma this is n upon lambda. So, this will be 15 upon 5, which is 3 days. So, the 

expected arrival time that the expected time until the 15 immigrant arrives.  

Now, what is the probability? That the elapsed time between the 15th and 16 arrival 

exceed 2 days. So, here you are asking for x 16, because x 16 is the inter arrival time 

between the 15th and the 16 arrival. So, you are asking for the probability that x 16 is 

greater than 2. And, that will be e rise to minus 2 lambda, again this is from your, this is 

from your exponential distribution. Because, when you have lambda e rise to minus 

lambda t, and if you are asking for this thing from let us say a to infinity. Then, this is, 

what lambda upon minus lambda e rise to minus lambda t a to infinity. And, so this is e 

rise to minus a lambda. 

So, this is it. So, probability x 16 greater than 2 will be e rise to minus 2 lambda, which 

because lambda is 5. So, this is e rise to minus 10. And, I have just computed the value 

here, whether you can write this as e rise to minus 2 rise to 5, and e rise to minus 2. I 

knew the value is 0.133. So, we just rise it to 5 anyway now, if a Bangladeshi immigrant 

is a Hindu with probability 1 by 10 then what is the probability that no person of Hindu 

origin will migrate to north eastern region in the month of march. Just to show you the 

use of you know the, what we just discussed. So, here; that means, it is lambda p t. So, 

lambda is 5 p is 1 by 10 and the time is 31 days, March has 31 days. 

So, therefore, the no Hindu will arrive in that period, again will be e rise to minus 

lambda t p, which is e rise to minus 31 by 2. And, so you can compute this number. So, 

this is the whole idea and then of course, we will look at some more properties of the 

poison process, and work out if you more examples. 
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Now, let us look at this example, where we are trying to compute the conditional 

distribution of n s, given that n t is n. So, given that n arrivals are there in time 0 t, and s 

is less than t. So, now, you want to look at the conditional distribution of n s, given that 

see through all these examples, I am just trying to familiarize you more with the working 

of the process, and the machinery that we are developing. This is the whole idea, and is 

the process that makes subject quite interesting. So, the solution is that and then the of 

course, it is been asked do you recognize this distribution, once you get once you obtain 

the conditional distribution, the question asked is, do you recognize this distribution? 

So, you have given that n t is n, you have to find the probability, that n s is equal to k 

given that n t is n. So, now, that means, if up to time 0 s the arrivals are k, and up to time 

t the arrivals are n so; obviously, the number of arrivals in time t minus s is n minus k. 

That is, how it will make up the number of arrivals up to time t as n. So, time s the 

number of arrivals is k, and then in the interval s 2 t, which is the interval length. And, by 

now, we know that we just have to worry about the length of the interval, and not 

exactly, where that interval is occurring. 

So, the number of arrivals in time t minus s is n minus k. So, when you write down this 

probability, probability n s equal to k given that n t is n. This you can write as probability 

n s is k and comma n t the joint probability of n of t minus s is n minus k. Condition on 

the n t equal to n, and since again from the dependent increment property for disjoint 



intervals, s in to minus s the probability can be written as the product of these 2 

probabilities. So, therefore, this will be the product of these 2 probabilities, the 

numerator and the denominator will be probability n t equal to n.  

So, I suppose I hope this is clear. So, therefore, e rise to minus this probability is e rise to 

minus lambda s, lambda s rise to k upon k factorial, and this probability will be e rise to 

minus lambda t minus s. Lambda t minus s rise to n minus k upon n minus k factorial, 

divided by e rise to minus lambda t, lambda t rise to n upon n factorial. So, as long as this 

part is clear that when you see this probability of course, I can write in this way and in 

this I can write as the product of these 2 probabilities.  

And, so now, you see that this is e rise to minus lambda s, and here you get, e rise to plus 

lambda s, which cancels out. Then e rise to minus lambda t, and in the denominator you 

have e rise to minus lambda t. So, the e terms all cancel out, and you are left with. So, 

this n factorial will come in the numerator. 

So, the first term that I have written is n factorial upon k factorial n minus k factorial, 

this all put together. And then you have lambda s rise to k, and lambda t minus s rise to n 

minus k, divided lambda t rise to n. So, this is what I have written here. So, this whole 

expression simplifies to this.  

And, now here what you can do is see again the lambda rise to k and lambda rise to n 

minus k is lambda rise to n, which cancels with lambda rise to n here. So, you are left 

with s by t rise to k now, the t rise to n, I can write this as k plus n minus k. So, the k t 

rise to k couples with this, which is s upon t rise to k and this here it will be 1 minus s 

upon t rise to n minus k. 

So, see that now you can recognize this, if you treat p equal to s by t then this is a 

binomial probability, when we are choosing k items out of n; that means, you are asking 

for k successes out of n trials. And, n independent trials, and your probability of success 

is s by t. The more important thing is that this whole expression that the conditional 

distribution is independent of lambda; that means, no matter what the parameter of the 

poison process is these conditional this conditional probability is independent of lambda. 

It is only dependent on the length of the time intervals; that means, here it was n s and 

there it was n t. So, that s and t... So, I am sure there are many more interesting 



implications of this result, but again know you can get it nicely, by just using the 

definitions and so on. 
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Now, let me again take up this interesting optimization problem, and here again the 

machinery is not very complicated. Suppose that items arrive at a processing plant in 

accordance with a poison process with rate lambda, so that means the items are arriving 

at the you know, at the gate of the processing plant, and arrival process is poison with 

rate lambda.  

Now, at a fixed time all items are dispatched from the system. So, the items get 

processed and after if time t, when they all collect they are dispatched to they came. 

Now, the problem is to choose an intermediate time t, belonging to 0 comma t, at which 

all items in the system; that means, all the items which have been processed by time 

small t they get dispatched and then the remaining, which get processed from time t to T 

they will be after being processed they will be dispatched. 

So; that means, they have now they are not going to wait till the end of up to time t. So, 

in between also they would like to dispatch the items, and the idea here is that this will 

this way, they want to minimize the total expected wait time of all items. So, total 

expected waiting time. So, this is what we have to write down the expression and then 

see how we minimize. So, the choice of small t; that means, the intermediate time at 



which you want to dispatch, whatever items have been processed, this is that has to be 

fixed that has to be sort of obtained by this process. 

So, expected number of arrivals in 0 t is lambda t, remember because this is Poisson with 

parameter lambda. So, therefore, in time 0 t the expected value is lambda t. And, each 

arrival is uniformly distributed remember, I some time ago discussed when you are 

looking at the Poisson process, and it is properties and we said that because of the 

stationary increments, when the number of items that arrive in this time, they would be 

uniformly distributed, over the randomly distributed over the time interval 0.  

So, therefore, in time 0 t the expected any uniform variable distributed over 0 t has mean 

t by 2. So, the expected wait time is t by 2, all items which start getting processed from 

here till up to this. So, their expected wait time is t by 2, because we have said that the, 

you know, the processing is uniformly done. I mean in the sense that the processing is 

not uniformly done it is that is they arrival. So, is distributed the arrivals of these items is 

distributed uniformly in the interval 0 t. 

So, their expected wait time is t by 2 because they will be dispatched by the end of this 

time period. Now, so total expected wait of all items arriving in 0 t is therefore, lambda t 

into t by 2. So, expected wait time of any item is t by 2. Because, they are uniformly 

distributed in this interval the items and therefore, for each of them the wait time is t by 

2, and since the expected number of items that arrive in this time is lambda t.  

So, the whole thing is lambda t into t by 2, which is this. Now, the similar reasoning 

holds for items arriving in time t to t comma t, and therefore, for these items because 

they will get dispatched at time capital t. So, the total expected wait time will be 

therefore, lambda t square by 2 plus half lambda T minus t whole square.  

So, I hope this part is clear, and this reasoning is because expected wait time into the 

expected number of items that arrive. So, that gives me the total expected wait time of all 

items arriving in time, in the interval 0 t. So, to minimize that to find out the minimizing 

value of t, I differentiate this expression with respect to t, and I get lambda t minus 

because there is a minus here. 

So, 2 is gone. So, lambda t minus lambda T minus t is 0. And, this gives me t equal to t 

by 2, as you would expect. Because, the arrivals are uniformly distributed over the time 



interval, and just to make sure that this is the minimizing value, you find out w prime t 

and w prime t will come out to be 2 lambda, which is positive. So, therefore, this gives 

you the minimizing value. So, therefore, it says that you dispatch whatever items gets 

processed, in the middle of the time and then wait for the others to be processed and 

dispatch them at t. Simple which appeals to your reasoning also, but then through this 

machinery also we have arrived at this result.  
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So, before I begin, you know, talking about queuing models, I thought, I will finish off 

the lecture on Poisson processes with this example on exponential distribution. Because, 

it is somehow related and part of it. And, so and this would be the right place to talk 

about it, because we have talked off exponential of the Poisson process. And, we have 

talked of people expected number of people in the system and so on.  

And then because the inter arrival times had we have shown that each of them were 

identically independently distributed as exponential random variables. So, I thought this 

would be also this can be part of it. So, here the whole idea is that and of course, this is a 

simple example on the memory less property of the exponential distribution. So, consider 

a railway booking counter, that is run by 2 clerks suppose that mister Sharma enters the 

system he discovers, that mister Jain is being served by the clerk at 1 counter, and mister 

Varna is being served at the other counter. 



So, both the counters are busy, when mister Sharma enters the system. Now, mister 

Sharma service will begin as soon as either mister Jain or mister Varna leave the system. 

That whenever as soon as 1 of them is completes service, they will, he will leave the 

system and then mister Sharma’s turn will come to be serviced by the clerk.  

So, if the amount of time a clerk spends with a customer is exponentially distributed, 

with mean 1 by mu; that means, the parameter of the exponential distribution is mu. And, 

therefore, the mean time that a clerk spends with a customer is 1 upon mu, what is the 

probability that of the 3 customers’ mister Sharma is the last to leave? So, of course, here 

mister Sharma will only get serviced once 1 of the customer is left. 

So, the actual question is that when mister Sharma’s turn comes for being serviced there 

is 1 person 1 of mister Jain or mister Varna 1 of them is being serviced. And, so mister 

Sharma goes to the clerk for getting his job done, and then the idea is that who will leave 

the system first? So, suppose mister Jain is being serviced while mister Sharma goes to 

the clerk because mister Varna has left. So, the question being asked is, what is the 

probability that mister Sharma would still be in the system? When mister Jain leaves? 

So, essentially you are asking, who will be the first 1 to leave? Either mister Jain or 

mister Sharma mister Varna has already left. 

So, but exponential distribution is memory less. So, therefore, how long mister Jain how 

long more, will mister Jain take is independent of? How long he has already been at the 

counter? Because we have said that it is memory less and therefore, the service gets 

completed is not dependent, on how long it will take for the service to be completed? It 

has not depend on, how long he has already been serviced and. So, therefore, its equally 

likely that either mister Sharma will complete his service, before mister Jain or mister 

Jain will complete. I am just assuming that mister Jain is still in the system mister Varna 

has left, but you can do it either way. 

So, therefore, very simple you know use of the memory less property of exponential 

distribution. And, so therefore, the probability of mister Sharma leaving last is half, 

because it is equally likely, whether mister Jain completes his service first or mister 

Sharma completes his service, because of the memory less property. So, I thought this 

will just add to the Poisson process, and the other systems that we have been talking of 

birth and death process; that means, when you have people arriving at a service station, 



and then they are being serviced. And, so then we want to talk about, the you know 

number of people average number of people in the system then what is the average 

waiting time? And so on. 
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I would like to take this further because once we have been able to compute, you know 

arrivals, if we have been, we have discussed the Poisson process. One of the arrival 

processes is under these conditions that we have laid down. And, then now, we want to 

look at you know for example, you have a service center, and there you have people 

arriving for service. 

 Then you have people providing the service, and then that process is also random. So, 

now, you want to combine these 2 and therefore, the whole the theory that you, when 

you study such processes is known as, queuing process. And, then you want to for 

example, know when you have a post office you want to know, because if the average 

number of people arriving in the post office is large, then you would want to 1 clerk may 

not be enough to serve everybody. And, you would and then facility how they should be 

and so on. 

So, the very interesting question, but of course, we will study them at very basic level. 

So, it will be the queuing process is where you want to compute the average waiting time 

of a customer. You want to compute the average service time of a customer, then you 

want to look at the average number of people they are at any time there are in the system 



and so on. So, such interesting questions we would want to answer. And therefore, we 

will model the situation, where you have people arriving for service. Services are being 

rendered, and then people leave the system. So, the whole thing we would want to study, 

and this we will try to do in the next couple of lectures. 


