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Today we start with this special choice of the direction of descent d k is negative of the 

gradient of f of x k. It is clear that if grad of f x k is not equal to 0, then norm of grad f x k 

is not equal to 0 and grad f x k into d k in this particular case comes down to. So, this of 

course is strictly less than 0. Now, why such a method would be called the method of 

steepest descent. 
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If you look at this thing, so what do you have here is you want to multiply this quantity. 

So, this is... So, why this choice my question is this; why the choice of minus grad f x k 

equal to d k is called that direction of steepest descent. So, we are now going to study 

various types of algorithms depending on various types of descent directions we choose; 

that is various types of line search methods; we are going to study Newton’s method, we 

are going to study quasi-Newton method and so on with of course several examples. 

Now, in the last one I have given you that this example of Rosenbrock functions which 

we will see. So, we can apply that on the steepest descent technique. We can use the 

steepest descent technique on that and see what it illustrates? 

Now, theta is of course the angle between grad f x k. So, this is the descent direction. So, 

this is the direction of descent. So, this is strictly negative. Now even if it is this is strictly 

negative, what is the most negative value of this? The most negative value of this is 

nothing but when cos theta takes the most negative value, because here these are fixed, 

cos theta takes the most negative value and cos theta is equals to minus 1. So, if cos theta 

is minus one which means what when cos theta is minus 1 cos theta equal to minus 1 

gives the most negative value of this. Then cos theta equal to minus 1 implies at this and 

this angle theta it implies that theta is pie hundred eighty degrees which implies that d k is 

nothing but in this direction; d k becomes minus grad f x k, this is my d k now. 



So, d k of course the angle has to be 180. So, it will come in this direction. So, that is why 

it is called the direction of steepest descent because the value of this becomes most 

negative when I choose d k equal to minus grad f x k, because this corresponds to the 

minimum angle for which cos theta value is minimum. Now this is not the only issue with 

steepest descent method. The question is, is the steepest descent method very good 

whether it is very fast; we need to think about all this. How does the steepest descent 

method move? 
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That is suppose this is the actual minimum unconstraint minimizer of the function and 

this is my current chosen point x k. Now I have to find a direction which will take me 

somewhere here, then possibly it should take me along this direction, some in this 

direction in this way. This is the way line search method would work, this is x k plus 1 

and so on and it will move towards x bar; that is the basic idea. Then this is my d k and 

this is my d k plus 1 the direction of descents, but in the case of steepest descent method 

very important thing to note is that the direction of descent d k and the direction of 

descent d k plus 1 is perpendicular to each other; that is if you for example consider 

minimizing the function x square plus y square over x y in R 2. 

If you note this can you see here is 0 x bar is equal to 0 is 0 0 is the actual minimum 

minimize then what you draw around 0 are level curves. So, level curves are for this 



particular case is a set of all x y in R 2 such that x square plus y square is equal to some c 

square or some constant. So, this is called level c. 

Now this level curves. So, this is of radius c. So, you can have level curves like this and 

level curves like this smaller and smaller. Now the interesting fact is that if you are here 

in any x k, suppose you are on any of the level curves at any time you will be on one of 

the level curves which is obvious because if you know x, you know you will see what is x 

square plus y square if you know x y so you know x square plus y square. So, you know 

at what level curve you are in. 

So, the level curve you are on a level curve x k. Now from here you move to one point x 

k plus 1 this is x k plus 1, you will see what happens. Now you cannot move once it 

comes here in the case of steepest descent the next movement would be in direction 

perpendicular to d k. The next movement would be in another direction perpendicular to d 

k, the next could be like this and it could be like this, then it would be like this, then it 

would be like this, then like this. See the direction of descent cannot be in this direction 

because then it will increase the function value. So, it is decreasing function value, but 

you see this zigzagging procedure this sort of procedure where you are trying to maintain 

the perpendicularity that every point it is perpendicular. 

So, this d k plus 1 is perpendicular with d k d k plus one and d k plus 2 are perpendicular 

and so on. So, this zigzagging procedure slows down this algorithm very much; though 

there is an inherent simplicity in this algorithm we do not tend to get its benefit because it 

slows down because of maintaining this zigzag business. So, what I have to show is what 

I have claimed that this is zero. If you look at this thing I can tell you that but if you look 

at this thing just straight it is not easy to prove this; one has to come through a very 

different route. 

Now what we have been doing here is we have been considering this function from R to 

R at the given k. Now to find this alpha this required step length, our main job was to 

minimize phi alpha over alpha strictly bigger than 0. Now you see you are actually faced 

with a constrained optimization problem which you have not studied till now in this 

course. So, how do I find an alpha which will minimize pie alpha if there is one such? 

Your first step is to take the derivative equal to 0; you might say okay, this is not a 

unconstraint problem, this is a constrain problem alpha is strictly bigger than 0, but alpha 



is strictly bigger than 0 means we are just considering the positive real line and that is an 

open set. 

So, if you minimize over the open set and you minimize over the whole space then the 

optimality conditions necessary optimality conditions are the same; that is what we really 

have to do in order to find a step length. So, if alpha star is my solution or alpha k is my 

solution, then phi dash alpha k is equal to 0 because the required step length alpha k is the 

solution. So, if alpha k is the solution of this problem then alpha k is my required step 

length. So, that is I want the next point to be x k plus alpha k d k. So, phi dash alpha k is 

equal to 0 because that is the solution of this problem. So, which means that by definition 

you want to take the gradient that gradient of f of x k plus alpha k d k into d k is equal to 

0, but what is this alpha k x plus alpha k d k, because the solution of this problem would 

be considered step length value. 

So, the alpha which solves this problem is the step length value at the k th stage. So, this 

point obviously you know that we write x k plus 1 as x k plus alpha k d k because alpha k 

is the solution of this problem. It minimizes the function value on this ray; that is a ray in 

the direction of d k. So, this means this we have nothing but grad of f x k plus 1 into d k is 

equal to 0, but note that what is grad of f x k plus 1; by steepest descent method this is 

nothing but minus d k plus 1 and hence this is 0. So, d k plus 1 into d k is also 0 proving 

the fact that we are always in the perpendicular mode that the directions are perpendicular 

to each other. So, well we are now going to get into slightly more technical issues; we are 

going to talk about rates of convergence. 
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So, rates of convergence of the steepest descent method. So, what do you mean by the 

rate of convergence? Rate of convergence is some sort of ratio which gives you an 

understanding of how fast you are progressing towards the solution. So, let me just rub 

the board and let me erase. 
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So, when you have this. So, what do I mean by this term rate of convergence of the 

steepest descent method; you will find this very much in most numerical optimization 

books. See I am actually running an algorithm which is generating these iterates and 



which we want to converge. We want this to converge this sequence of iterates converge 

to the true solution x star. So, when k is very large we can choose one of these elements 

from the sequence and we can say we are sufficiently happy with such a solution. So, 

what one has to do is to find the distance between x k and x star and the distance between 

x k plu1 and x star and one is to find the relation between them; that is really looking at 

the ratio which is basically the relative change if this is less than some constant. So, then 

the constant is less than one then we say that as we are, this is x k. 

So, if the constant is less than one than we say that this is moving at a linear rate. 

Distance is usually given by the norm, then we say that it is moving at a linear rate and if 

the square of the norm of this distance square is less than some constant into distance 

square, then we say we have a quadratic convergence. In the sense what we are trying to 

show is that we are trying to assert in that what is the distance between x k plus 1 and x 

star in relative to the distance between x k and x star is x k plus one nearer to x star than x 

k. So, these are the question that one asks. So, this particular thing determines the speed at 

which the algorithm moves; for the steepest descent method this is very, very slow but we 

will consider this steepest descent method now for a very special class of problems called 

the convex strongly quadratic programming problem. So, we will consider the study of 

steepest descent for strongly convex quadratic problem. 
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So, here we will consider where Q is a symmetric positive definite matrix; we will 

explain why we are calling all this. So, we will diverge we will just take a little detour 

into convexity right now matrix. Of course, I expect everybody knows the definition of 

positive definiteness. So, we can look in to the thing little bit more in detail. 
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Now this is the function we have written on the board and we have claimed that this is the 

strongly convex quadratic optimization problem. So, we have spoken a bit about 

convexity in the very beginning and we have said that how does a convex function looks 

like when it is differentiable and that for a convex function every local minimum is 

global, and hence we need to show why this is strongly convex function. In fact we have 

to make a little definition of what strong convexity is and so that is our first task now 

before we try to analyze the steepest descent method for this particularly simple looking 

quadratic optimization problem. 
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So we just take a detour, maybe I should write here detour. You should take a detour and 

let us talk about strong convexity. So, what is strong convexity means? So, you have I 

think if I just go back and try to show you the definition of the convex function. 
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So, here is the definition of convex function. So, please keep on looking at the definition 

of the convex function as we write down the definition of a convex function here. 
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So strongly convex function, I am not going to write too much of details, but this is what I 

am going to write. So, this quantity which is this one plus, now this is nonnegative 

quantity. So, what you have that this thing is obviously bigger than this little part this 

part, it is a nonnegative quantity. So, of course here lambda is between 0 and 1 and x y is 

in any r, strongly convex you write implies convex, but convex need not imply strongly 

convex. 

Of course you can say, yeah, it is already clear from the name. See what we are expecting 

in this case of strong convexity that f is not only this part is not only bigger than this; this 

is bigger than some quantity which is bigger than this part is much more stronger than 

ocean. So, of course here rho is strictly bigger than 0 called the modulus of strong 

convexity and the rho has to remain same for every x y. This is something you have to 

know. So, f x equal to x square is strongly convex; f x equal to mod x is convex not 

strongly convex. So, these two examples are for this assertion. 

So, let us look at more or less at the quadratic function. Every linear function every linear 

part every linear function is both concave and convex; concave is of course the negative 

of convex, if f is convex minus f is concave. So, this part is always convex, but if you add 

two convex functions you will generate one more convex function. So, for a strongly 

convex function suppose you have taken Q is positive semi definite then f is convex, f x is 

half x Q x where Q is positive definite then f is strongly convex. Then f is strongly 



convex; that is for a strongly convex function the Hessian is always positive definite that 

is the idea the Hessian matrix. If there is twice continuously differentiable convex 

function whose Hessian matrix if it is strongly convex then its Hessian matrix is always 

positive definite, and if the Hessian matrix is positive definite we can say clearly that it is 

strongly; it is definitely it will be strictly convex in this case, and about also be strongly 

convex that it will satisfy this. 
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In fact if f is differentiable, then you will have a strong convex function this is to be true 

for any pair x y, one can take rho by 2 also it does not matter. So, this is what we get. So, 

grad f x equal to 0 would imply or grad x by 0 would imply x is a strict global minimum. 

So, if I want to find the minimum of this problem. So, how do I find the minimum of this 

problem? 
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So, here because it is a strongly convex quadratic optimization problem minimum which 

would be unique in this case, and also for any strongly convex function it will be unique 

and it will be a strict global minimum. So, in this case if I take grad of f x if I want to find 

the solution, see here that grad f x bar equals to 0 would give me the solution since these 

are convex function. So, for a convex function every critical point is a global minimum, I 

think which we have told few classes back and so here you have this which means you 

have Q of x bar plus b equal to 0. So, minus b equal to 0 or Q x bar is equal to b, but since 

Q is positive definite it is also invertible and that would imply that x bar is equal to Q 

inverse b and that is the solution to this problem. 

Of course, then why I am going to use steepest descent method to solve such a simple 

looking problem, but though it is a simple looking from the mathematical point of view, 

but there are lot of computational issues which can make taking the inverse of a matrix 

very computationally intensive, and also computational expensive, because lot of data has 

to be stored. And so we cannot always use this direct techniques to get an answer or the 

solution to a problem of this sort and that is why we have to resort to iterative methods by 

which in several steps we can solve the problem, and thus we will start with studying the 

case where we are looking for the function phi alpha. 
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So, we are now looking at the quadratic case. Now what happens here? Here this is 

nothing but because you are using the steepest descent. Now how do I find a step length? 

To find a step length we first put phi dash alpha is equal to 0; once I put phi dash alpha 

equal to 0 in this particular case, we may now write down the function value phi alpha 

particular case is written as half of. 

Now, you have this minus, your job here is to compute phi dash alpha equal to 0 and this 

would implies some alpha star solution of this which I will leave as homework is given 

as. So, here because the function is convex quadratic any critical point is a global 

minimum because the function is strongly convex, the global minimum must be unique. 

So, unique the critical point that you get is your unique global minimum. So, this is my 

exact line search. Here actually I have to put alpha k this is alpha k is now computed in 

this form. So, alpha star is my alpha k. So, this is my required step length. Hence my 

iterative scheme now would look like this. 
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So, I am replacing the alpha. So, this is my iterative scheme for solving the strongly 

convex quadratic optimization problem. So, instead of see what I have done; I have now 

avoided the computation of the minimum. I have now avoided the computation of the 

minimum. Why using this, sorry, not the minimum the inverse. I have avoided the 

complete computation of the inverse of Q by taking iteration in this form. In fact, let us 

introduce what is called the Q norm of x or the elliptic norm. So, if Q is a PD matrix Q is 

a positive definite matrix, then we define the elliptic norm or the Q norm. This is what 

you have. Now, because you know that if x star is my actual solution, then Q x star is 

equal to b if x star is the actual solution then one can show half of. So, this is what you 

observe. So, this norm you see is measuring the difference between current value say x k 

and the x. 

So, this difference this particular norm is measuring how far is the current objective value 

from the actual optimal objective value and that is measured by this Q norm of the current 

objective current iterate minus the solution which we really do not know because the 

solution is actually Q inverse b and we not know we do not want to find it by taking the 

inverse. As I told you it is very important to know the ratio of the distance between x k 

plus 1 and x star divided by x the distance of x k with x star. What one can prove this will 

be this proof of this will be given in your FAQ; at the end of the course the template will 

be attached to the course file and that you can see later on where the detail proof of this 

whole thing will be given because this depends on an inequality called conquer of 



inequality and our course means beyond the scope of our class to really go on proving 

such things though I would be happy to do. 

This distance that is distance in terms of this elliptic norm the distance of x k plus 1 from 

x star is this is what you have. Now this lambda 1 is a positive definite matrix are Eigen 

values of Q. So, here we have a quadratic norm quadratic convergence with respect to the 

Q norm. Sorry not a quadratic convergence, I would say linear convergence with respect 

to the Q norm because what would we have is now x k plus 1 minus x star divided by x k 

minus x star is less than equal to lambda n minus lambda 1 by lambda n plus lambda 1 

and this would be anyways strictly less than 1. So, here this by this has the constant which 

is strictly less than 1 then we at least in the Q norm. So, this called Q linear rate of 

convergence and this rate of convergence is very slow. 

So, for the quadratic optimization problem what we have is called the Q linear rate of 

convergence. I had just told you that here I have told you that if this constant is strictly 

less than one then this is called this then x k this sequence is going towards x k x star at a 

linear rate. So, what you have shown for the quadratic case that we are going towards x 

star we are going towards the solution at a linear rate, but it is called Q linear convergence 

or Q we can call it Q linear we call or just call it the linear rate of convergence with 

respect to the ellipsoidal norm. So, with this idea we stop here and we would continue 

doing this studying these basic algorithms by doing the Newton’s method. But let us go 

back for a minute to the Rosenbrock function that I had given you from the book of 

Nocedal and right and let me see to what extent one can discuss about it. 
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So, yesterday we gave an assignment where we are considering a function of this form. 

So, if you take the gradient of this one if you take the del f del x 1. So, it is 200 x 2 minus 

x 1 square into minus 2 x 1; this is one thing and del f del x 2 is plus 2 into 1 minus x 1. 

So, this is your del f del x 1 and del f del x 2 is nothing but here this is. So, if you put both 

equal to 0 what would happen? You see if I put both x 2 and x 1 equal to 1 both are equal 

to 0. So, x 2 equal to 1 1 is the only possible solution of this. So, I am asking you again to 

solve this at home which I will not solve. So, x bar equal to 1 1 is the only solution of this 

problem. Now it is the only critical minimum. So, here if you try to solve this, this will be 

equal to if you try to solve this thing you see 1 1 is a solution and this 1 1 is the only local 

minimizer. 

You can calculate the Hessian at this point and the Hessian matrix will be positive 

definite at that point and it is not a global minimizer that you have to check out that this is 

a local minimizer and not a global minimizer. So, you calculate out and check if I put this 

one. So, I have x 2 equal to x 1 square. So, if I put x 2 equal to x 1 square this will 

become 0. So, from here I will get x 1 equal to 1. So, once I get x 1 equal to 1 I will also 

get x 2 equal to 1. So, 1 1 is the only solution of this thing and but still the critical point 

that we get is not a global minimum it is a local minimum. It is very important to know 

that this function is not a convex function; it is a non-convex function. It is differentiable, 

but this Rosenbrock function is a non-convex function. So, I would like you to try this at 

home. 



So, for example if I put 1 1 here if I put 1 1 then x 2 is 1 and x 1 is 1 then I get 0. Of 

course, this is a non-negative function; this value is always non-negative for any x 1 and x 

2. So, 0 is the minimum and that 0 value is at in 1 1. So, this is whole square this is whole 

square. So, 1 1 is where you are obtaining 0. Now the question is whether that is a global 

minimum. So, if you find. So, now if you put x 2 equal to 1 x 1 equal to 1, then now if 

you put x everything is equal to 0 you get 1. Sorry, it is not only a local minimize, I think 

I made a mistake. x 1 1 is not a local minimize; it is in fact because the Hessian is positive 

definite, you can definitely conclude that it is a strict local minimizer, but because you see 

that this function for any x 1 and x 2 f of x 1 x 2 is greater than equal to 0. 

So, what if I would have x 1 equal to 1 and x 2 equal to 1 the function value is becoming 

0. So, which means that this is a not just a local minimizer, it is a global minimizer and it 

is a strict global minimize; sorry, I made a mistake I think I was thinking this as minus 1. 

So, here is an interesting example of non-convex function for which you can attain a 

global minimizer at this point 1 1 and the steepest descent method on this would become 

very slow. There are lots of all the text books usually give examples where the steepest 

descent method on this class of functions works very, very slowly. So, with this I will end 

the talk today and tomorrow we will start discussing Newton’s method. 

Thank you very much. 


