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Welcome once again to this discussion on very fundamental issues about optimization. 

Now, we learnt about what is the descent direction in the last lecture, and we found that 

if this sort of condition this criteria, this grad f x bar into d is strictly less than 0 and this 

d becomes a descent direction. 
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So, for us to find the direction of descent we have to find a d, small d such that at some x 

delta where grad f x bar delta is not equal to 0. We have to remember that in our setup 

grad f x bar is not equal to the function f is assumed to be differentiable not only 

differentiable, we can assume it to be continuously differentiable. So, for all purposes I 

again want to state that f will be assumed to be continuously differentiable; is not only 

the function is differentiable all the partial derivatives that you have of this function, they 

are also differentiable as functions of x, 1 x to dot dot dot x n. Now let us give some 

examples of directions of descent. Suppose I choose d is equal to minus grad f at x hat. 

So, then your grad f of x at is not 0 then putting this. So grad f x, what d is now this. So, 

this is equal to minus of grad f of x hat into grad f of x hat, not into in a product. 

This is nothing but norm of, norm you know with a positive quantity in this case because 

grad f x bar is not equal to 0. So, this is strictly less than 0. So, this direction d is called 

the direction of steepest descent. We will come very soon to study the problem of 

solving an optimization problem unconstant optimization problem by using the method 

of steepest descent, but for the moment just know that it is called the method of steepest 

descent and we will actually explain why it is called the method of steepest descent or 

the direction of steepest descent. Another one could be like this for example, if you take 

d to be minus B time where B is symmetric and positive definite where B is symmetric 

and positive definite. So, let us see what would happen with grad f x delta into d. 



Now you see this vector d which is the direction of steepest descent d cannot be equal to 

0 because if d is equal to 0 it cannot be direction of steepest descent and we do not want 

0 vectors because we actually in some point where you know the optimized is not 

achieved or local minimum is not even achieved. Then you want to move away from that 

point; you want to move to a point where the function value decreases sufficiently 

decreases. So, you move certain distances away from the point. So, if you put d is equal 

to 0 then of course that has no meaning. So, in this particular case we will have nothing 

but. Now grad of f x delta is not equal to 0 that is the basic assumption but B in positive 

definite this would mean that this whole thing is strictly less than 0, because this part is 

strictly greater than 0 this part, and so this is strictly less than 0. 

So, this is also a direction of descent; one of the important directions of descent is to 

have something like this at f x bar take the Hessian matrix, we have already known what 

Hessian matrix is. So in place of B, I have put this matrix. So, here this is a particular 

case with B equal to the inverse of the Hessian matrix. Now this is B is positive 

symmetric definite. So, we had this. But it might if say the Hessian matrix itself is 

positive semidefinite at x hat, then B itself is also the inverse is also positive 

semidefinite. So, when d is taken in this way this is called the Newton iteration. Newton 

iteration would lead to Newton’s method which is a very, very important class of 

methods; we shall study in detail. So, we have this very basic studying information; now 

see what we can do. 
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So, now what we know is that if this is my x k at the present moment. So, x k is the 

current iterate; so it is the k th iteration and you know the grad of f x k is not equal to 0 

and suppose this is my direction of descent. So, I want to move from x k in this direction. 

So, I move a distance I come to a point x k plus some alpha k d k, and what I want to 

have is at that point f of x k plus alpha k or you can say this is d k that is a descent 

direction chosen for x k to move from x k; this one must be strictly less than. 

So, now you once you know the descent direction its fine, but you cannot move very 

little from x k. Then your movement is not very good even if your function value 

decreases you have not moved away quite a good distance because if you do not move 

away quite a good distance, then you are not improving your algorithm; you are not 

going quite faster towards the minimum. The goal of optimization algorithms is to make 

you start from the starting point and reach the optimum solution as fast as possible but 

that has not been possible here. 
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So, maybe I will use a chalk for a while; see what happens here is the following. Now 

here you have the x k and your actual optima are here your x bar. So, now here you have 

a descent direction. Now here you are moving; in the direction d k if you move then your 

function value decreases, but you cannot move long for a long while because you know 

that there is threshold alpha not beyond which this is all possible. 



Now you have to move as far as possible from x k, because then you will have this new 

point x k plus alpha k d k. So, this new point you have to move in such a way so that my 

function value decreases as much as possible because I want to minimize. Because from 

here the new point, say, you need to go to some direction may be it is decreasing in this 

direction from there you need to go this direction and this direction and so on. Maybe it 

will come to this direction, this direction and this direction. 

So, now what we are essentially doing; so you are moving along a line and then 

searching how much we have to move along that direction d k. So, this would be. So, we 

will decrease the function value. Our objective here is of course that you should have, 

but if I move alpha k very less if I come here, then my decrease is also very less. I am 

making a very less decrease which is not very, very good. So, the idea is that you cannot 

make such a small decrease, you cannot just come here. So, you have to make a 

sufficient decrease. So, how much is that sufficient decrease would be the question. Now 

what is this alpha k? This alpha k is called a step length at k and this alpha k the step 

length at k; this plays a fundamentally crucial role. So, this is something you need to take 

care. 
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Here we can call alpha k. Now the question is how to determine the step length? So, 

whatever be your descent direction it does not matter; our point of concern would be how 



to determine the step length and for that I would again go and do certain explanations in 

the board. 
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So, what you have here in this function phi alpha. So, once I know my x k. So, for a 

fixed given k, k th iteration. So, I have actually fixed. So, this x k and your d k these are 

now fixed vectors. So now, once this are fixed vectors let me construct this function phi 

alpha. Now you see this is the function value of f along this line, points on this line, 

alpha could be any number strictly bigger than 0. 

Now I have to know to what extent I can keep on decreasing the value of f because d is a 

descent direction. I know that there exist an alpha not beyond which for every alpha this 

function value is strictly less than f x k, but to what extent I will get the maximum 

decrease. The natural thing is to find an alpha for which along this line along with 

direction d k this function value is minimized.  

Then I am basically trying to find or more specifically this is the same as writing. Now 

suppose I find a minimum of this problem that is alpha k, then the function value at alpha 

k that is. So, phi of alpha k is less than equal to phi alpha for all alpha greater than 0; step 

length is always positive. So, now what you see is that this alpha k should be ideally my 

choice of step length. So, alpha k is ideal choice of step length. The question is can we 

keep on doing this in practice. So, we have seen on the board as to what is what should 

be the ideal step length. The ideal step length would be to find the minimizer, but the 



question is that can we really go on doing that; that is can we really find the ideal, can we 

really find the minimizer. 

So, you see here the problem becomes difficult; difficult in the sense is that we want to 

minimize function phi alpha over alpha greater than equal to 0 where phi is a function 

from R or R plus to R; R plus is a set of all nonnegative real numbers. Now here this 

problem is a constraint optimization problem because you have an additional constraint 

that alpha is restricted to the nonnegative part of R. It is the constrained optimization 

problem. So, what we are having that. So, we have an unconstrained problem in a higher 

dimension. So, an unconstrained problem in R n needs the help of a constrained problem 

in R. So, this is a quite an important issue, but there are lot of methods of how to solve 

such a problem by bisection method, this method, that method. So, but we are not going 

to get into the details of this. So, the trick here is the following question as how to 

determine the step length. 
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But the more important question would be how to determine the step length in an exact 

fashion; that is you need not find the exact alpha which minimizes this problem, but you 

can find an alpha which makes a sufficient decrease. So, what is this sufficient decrease 

called? 
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So, let us define what we would like to have meant by sufficient decrease. What we are 

doing now is essentially the fundamentals of line search method. So, we are going to 

write down something, but what we are doing here or thing is called line search method. 

There is something called trust region method we will come later on. Now what do you 

mean by sufficient decrease. So, what should be the alpha? So, choose an alpha greater 

than 0 such that f of x k plus alpha times d k is less than equal to f of x k plus c 1 times 

alpha times grad of f of x k into d k where d k is the direction of descent. So, let us 

remove this little part here because we have already started this in exact business. So, let 

us see what does this statement means, the sufficient decrease condition actually means. 

So, now of course you have to choose c 1 where is c 1 from; c 1 some number chosen 

between 0 and 1 excluding 0 and 1. So, what we have done is the following. 
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So, we have to find an alpha such that f of x k. Now because d k is the direction of 

descent we have this to be strictly less than 0, but alpha is strictly bigger than 0, c 1 is 

strictly bigger than 0. So, this would imply that for such an alpha, it would imply that for 

such an alpha, this is a negative quantity. So, f of x k plus a negative quantity is 

obviously strictly less than f of x k; this is a strictly negative quantity. So, f of x k plus 

alpha because this part become completely negative; you can see the interesting part is 

this but we are not only expecting this to be true, but we are expecting that this is lesser 

than some quantity which is quite less than this quantity. 
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Essentially what we have done is that we want to have x k and alpha which has this 

property. So this if you can find such an alpha, if we find such an alpha we put alpha is 

equal to alpha k. We can now put x k plus 1 is equal to x k that is the k plus 1 iteration 

value that is this is my k plus 1 th chosen point; it could be a solution it could not be a 

solution alpha k d k . 
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What we have done if you can find such an alpha here then we put x of k plus 1 is x k 

plus alpha times d k. So, this is what is called a line search iteration criteria or this is 

called line search. Direction of steepest descent it is sometimes called the Armijo 

condition; this is called the Armijo. This condition this steepest this sort of condition is 

just called the Armijo condition. 
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Now there has been an issue which comes up here is that you know even if you choose c 

1 which is the fraction of this thing even to get this alpha, this alpha could be very, very 

small. This alpha will have to be very, very small, but if this alpha is becoming very, 

very small then you have not made much movement from x k; if alpha is very, very 

small then you are here. Then actually possibly you should be here for which you have 

the actual alpha which minimizes the function phi alpha. So, the whole thing is that then 

how do you stop such short step lengths. If you have a very short step length then you do 

not make much progress from x k and that is not desired when you are running an 

optimization algorithm. 
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So, the question is how to avoid short step lengths? To avoid short step lengths you have 

to consider another criteria called the curvature condition. 
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So, we have to now consider what is called the curvature condition. So, what does the 

curvature conditions tells us? Curvature condition tells us find an alpha such that you 

would have this. So, such that the gradient at f of x k plus 1 basically. See what happens 

is the following. Let us try to understand the sufficient decrease condition Armijo 



condition in a more geometric fashion. So, let us use this diagram here; we will just 

make certain changes. Let us try to understand this in a better way. 
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So, let us consider this part as alpha and this is my phi alpha. When alpha is 0 then it is f 

of x k basically. So, phi alpha is f of x k some value here. Now as alpha is changing this 

is say phi alpha, this is say the graph of phi alpha. This is the graph of phi alpha. 
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Now what happens? Look at this expression here; let me call this as l alpha. Let we write 

l alpha is f of x k plus c 1 times alpha into grad f x k d k. Now at alpha equal to 0 this is f 



of x k; this is your f of x k. Now let me take the derivative of l alpha. So, the slope of the 

line l alpha; so l alpha given an alpha this is y equals m x plus c form. So, l alpha is 

straight line, but how is it slope in which direction it is moving. So, its slope l alpha at 

direction f dash x at alpha is nothing but c 1 into grad f x k d k. 

So, it is strictly less than 0. So, now l alpha is some line like this. So, this is my l alpha. I 

am going to accept that alpha for which this value or phi of alpha. So what I want to, I 

want to accept alpha. So, my idea is simple; accept alpha if phi of alpha is less than l of 

alpha. So, you see there is a negative slope. The angle at which it will hit the x axis is 

obtuse. 

So, let us see what happens here is that you see here phi of alpha is bigger than l alpha. 

So, I do not accept that alpha; here it is less. So, this is the acceptable zone, accept alpha. 

So, these alphas are acceptable, but these alphas are not, these alphas are not, this alpha 

is again acceptable while this is not, again this alpha is acceptable; right. So, this is 

accept. You need not move away so much, right; may be it is usually something like this, 

like this; I am just changing the drawing a bit because you cannot have all alphas 

acceptable. 

So, you see that. So, these are the regions of acceptance. So, these are the alphas you 

would accept as your choice, but once you have this curvature, but now here you see that 

there is no problem, but it could be slightly problematic if we had this. Now let me 

change the diagram a little bit and let me look into this situation. If I look into this 

situation where you have say phi alpha in this fashion.  

So, this is my phi alpha and this alpha. So, this is my l alpha. So, you see this is my 

acceptable zone, this is accept zone, accept alpha zone. So, this is my accept alpha. Now 

here I could choose an alpha which is very, very small. So, I have not moved sufficiently 

off from x k. So, in order to avoid that I need to have the curvature condition which tells 

me that too much short step lengths cannot be taken which condition is nothing but as we 

have written in the other format. We need to find an alpha which now you are asking 

something to be bigger. 

Now this quantity is negative where c 2 is of course taken between c 1 and 1. This 

quantity is negative, but this quantity could be positive also or this quantity could be 0 

also or this quantity is negative also. Of course, positive would not give me any 



information then d k would not be the descent direction at; of course, it will be positive 

because there is no guarantee that d k is the descent direction at x k at this point. So, this 

is called the curvature condition which we have written down. 
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So, this is to avoid too short lengths. So, sometimes in algorithms people use Armijo in 

jointly with the curvature condition. So, what I want to say is the following that you can 

combine these two conditions, but there has been a result by the famous optimization 

theorist Wolfe. This is sometimes when you combine these two things Armijo conditions 

with the curvature conditions it called the weak Wolfe condition. So, you could also 

define the strong Wolfe condition. The strong Wolfe condition is Armijo plus this fact 

rife on to have the alpha satisfying the Armijo plus also having the alpha satisfying not 

just this. So, alpha has to satisfy both of the things. 

So, Armijo this is called the strong Wolfe condition, another is called Wolfe condition. 

This is Armijo plus this condition that. Now we will show that if we consider the Wolfe 

condition then there exists interval lengths that is you can find intervals of alphas which 

satisfies both this conditions. Now, under a very mild condition that you will always find 

alpha; the very important thing is that if you are telling that I would take this condition 

and that condition I want to find an alpha; before you really do the numerical algorithms 

you need to really confirm that, yes I can actually go ahead and find an alpha. So, how 

do we find that alpha that, yeah, we can guarantee that such an alpha which satisfies the 



Wolfe condition or may be the strong Wolfe condition we will not bother about the 

strong Wolfe condition at all here. 

(Refer Slide Time: 36:39) 

 

So, my next question would be following. Can we find an alpha greater than 0 such that 

the Wolfe’s condition is satisfied. So, tomorrow’s lecture would begin with the study of 

this fact that, okay, yes, I will show that under a very, very mild condition which is 

nothing but which is assuming that the f is actually bounded below on this line. 
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That is if f is bounded below on this line at x k and here is again your line. This is the ray 

x k plus alpha d k where d k is the direction of descent, then d k is the direction of 

descent if along this line or along this ray where alpha is strictly greater than 0 greater 

than or equal to. If the function f is bounded below on this, then you are always sure to 

find an alpha which will satisfy the Wolfe condition or the strong Wolfe condition. So, 

this is a very, very important result. So, it says that that is what we are going to prove 

tomorrow. If f is bounded below on d k then there exist alpha greater than 0 such that the 

Wolfe condition holds. I have not written directly; that is Wolfe condition holds with, 

that is what happens. 

So, this is what we will discuss tomorrow first we will prove this fact. Once we have 

proven this fact we would like to show how to use the Armijo condition; that is we do 

not use the Wolfe condition. In real practice we can actually use the Armijo condition 

and that is called the backtracking line search. So, we will see how we can us the 

backtracking line search and go ahead and do the algorithm and then we will really talk 

about a particular type of method called the steepest descent method. We will then talk 

about the convergence and the rate of convergence and all this fundamental issues related 

to algorithms. 

So, when we run an algorithm we have generate those iterates but how do I assure that 

this iterates this sequence of iterates would converge in the mathematical sense of 

convergence of a sequence to a point which is at least a critical point of the function; that 

is at least a point where grad over x k is 0; more happily it would be if it goes to a point 

which is minimum. But we cannot guarantee that it will go to a minimum for just any 

function but for certain types of function it does. So, that is what we will do. So, we will 

stop here today. 

Thank you very much. 


