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Hello everyone; so last time we talked about various model formulations, and we saw 

how to formulate some interesting models as integer programming problems. We also 

lived that you know there are problems, where discrete variables are not part of the input, 

but in order to model this problems effectively, we do need to use these discrete or 

mainly 0, 1 type of variables and we saw a couple of examples of that. So, today we are 

going to switch kiers, and we are going to study the structure of mixed integer 

programming problem. So, suppose we want to solve a particular mixed integer 

programming problem, then we need to know, how the solutions look like; so hopefully 

this lecture will help in deciding or determining the structure. 
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So, let us consider mixed integer programming problem of the following kind. So, I have 

I want to let say minimize some objective function. So, the objective function, I am 

going to call it c transpose x plus d transpose y subject to A x plus G y less than or equal 

to b x integer. So, this is a generic mixed integer programming problem. Now, what we 

will be concerned today is we would not be concerned about the objective value at all, 



what we are going to look at is we are going to look at the feasible region, and we are 

going to study properties of the feasible region.  

So, let us, let us introduce some notation just so, that everything is going to be fairly 

straight forward. So, I am going to denote by capital S is the set of all x comma y where 

x is integer and y is continuous such that, A x plus G y is less than or equal to b and I am 

also going to introduce another object, which I am calling P which is nothing but the set 

of all x comma y in R n plus m such that, A x plus G y less than or equal to b. 

So, here I am not specifying what are the dimensions of A, G and b and we can sort of 

assume that there of appropriate dimension. So, that is understood and P is P has a name 

P is called the linear programming relaxation of S that is what I have done, what is the 

only difference between S and P is that in P, I do not require x variables to be integer x 

can be continuous. Where as in S, I require x to be integers. So, therefore the feasibility 

region of P is larger feasibility region, and clearly P is a polyhedron. So, it satisfies I 

mean optimizing over P is something, which is, which is very easy. 

So, now our question. So, again we have not stated our formulae what the question is. 

So, what is the question? So, question we want to answer, question that we want to 

answer is the following what is or what does the set convex all of S look like right. So, 

this is what we want to answer. So, the main question is what does the convex all of S. 

Now, in order to answer this question we will making few assumptions I mean one major 

assumption. So, the major assumption that we are going to make that we are going to 

make is that A, G and b are all rational right. So, we are going to assume that the entries 

of all the matrices A and G, and as well as the vector b are all rational quantities. 

Now, first of all it may seem like restrict able assumption, but in reality it is not because 

if you want to solve an integer programming problem using a computer, you need to be 

able to represent a number some sort of input, and you can only represent rational 

numbers in general. Second is that we will see that if some of these turn out to be 

irrational then they can be a problem. So, we will see at the end using examples, that 

they complete problems if some of the data is not rational. So, this is what is the setting. 

So, now under this setting when A, G and b are all rational, we can answer the question. 

So, so we can answer the question satisfactorily and the answer is as follows. So, we can 

state it as a following result. So, if I call it star then I can say that. So, under this 



assumption the convex all of S is a rational polyhedron. So, this says that well if all data 

is rational you can always find a rational polyhedron such that, the convex all of S is 

equal to this that the rational polyhedron. 

So, essentially in theory it is one can solve integer programming problems, if you know 

how to solve linear programming problems because in theory, all you have to do is that 

find the convex all of S, and once you have that it is a polyhedron and optimizing a linear 

function over it is just linear programming. So, this is very useful result and this was 

proved by this result is due to Meyer in 1974. So, this is the result and most of today’s 

classes you spend in trying to prove this theorem. So, let us see how the proof works. So, 

first you need to rule out a trivial case. 

So, the trivial case being S being the empty set; so if S is empty then clearly the convex 

all of S is also empty and this is a polyhedron, empty set is a polyhedron. So, which is a 

polyhedron, which is a rational polyhedron. So, now, we are going to assume that S is 

non empty. So, under this assumption let us see how we can prove that convex all of S is 

indeed a rational polyhedron. 
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So, here we continued, we know that S is a rational poly no we know S is not empty and 

we know that P is a rational polyhedron. Now, this is a famous result due to Minkowski 

and Weyl. So, this is a result due to Minkowski and Weyl which implies that I can since, 

P is a polyhedron I can write P as the convex all of some finitly mini points v 1 dot, dot, 



dot up to v small P plus the cone generated by r 1 up to r k. So, this is guaranteed by the 

Minkowski Weyl theorem, what we will do is we will see why this we will first assume 

the Minkowski Weyl theorem, and prove Meyer’s theorem and then we will go back if 

we have time to see why the Minkowski Weyl theorem is true. 

Now, I can write P as a convex all of a finite number of points plus the cone generated 

by and the finite number of points, and these are all. 

(( ))  

Yes. So, all these are rational numbers now, what we are going to do is. So, clearly what 

we are going to assume is that all these g i’s are rational numbers Q n plus m and now 

since, it is a cone scaling does not affect anything. So, I am going to assume that the r’s 

are all integer because I can scale because it is a cone fine. So, this is, so we are assume 

that the extreme points are rational and the extreme rays are integer. So, that is that is 

fairly straight forward. 

Now, what we will do is somehow we will do we need to write convex all of S, as the 

finite number of points plus cone generated by finite number of rational vectors. So, that 

is the whole idea behind this proof. So, in order to do that, we need to specify how we 

are going to construct, this points as well as directions. So, for that let us do the 

following let see that let capital T be the following set. So, it is it is the set of all points x 

comma y such that I can write my x, y as the following way. 

The sum i going from 1 to P lambda i v i plus sum j going from 1 to Q mu j r j, where 

lambda i’s are greater than or equal to 0, summation lambda i is equal to 1. So, 

essentially lambda i lambda i’s form a convex combination and 0 less than or equal to 

mu j less than or equal to 1. So, instead of allowing all possible mu j’s greater than or 

equal to 0, I am restricting mu j’s to be less than or equal to 1. So, that is that is why I am 

going to call this set T. Now, first of all you can convince yourself that since this is the 

convex all of the v’s plus the bounded combination of the r, r, r j’s, T is a compact set. 

So, for example, suppose if we have the following polyhedron. So, let see the following 

polyhedron this is P, what a set T is going to be I have these three extreme points and 

these are my r’s. So, my T is going to be something like this is my T. So T is a compact 

set and you will agree that T is a rational polyhedron, it is also easy to see that T is a 



polyhedron because all this is polyhedron and I am projecting it to the variables x comma 

y. So, this is essentially polyhedron. So, T is a rational polytope. 

Now, what I am going to do is I am going to pick. So, I am going to show that, I can find 

all the extreme points of the convex all of S, lie inside T that is what I am going to show. 

So, for that what I am going to do is I am going to define let T sub I be the following set. 

So, T sub I is a set of all x comma y in T where x is an integer right. So, this is T sub I 

and now, I am going to claim that I am going to claim that the convex all of T sub I is a 

rational polytope. 

Now, again from a picture this should be fair always, but we need a formal proof right. 

So, here we have some points, which are some mixed integer points and what we need to 

show is that you know, the convex all of that is a rational point I think the figure will be 

useful for this. So, let us look at the following figure. So, this is x and y. So, this is this is 

a simplest possible case, when there is one integer variable and one continuous variable. 

And suppose, the T is something like this so, this is our T, what are we looking at how 

do the mixed integer points look like. 

Now, x has to be integers and y can be anything. So, the mixed integer points inside the 

set look something like this. So, green points here make the T I right and it is fairly easy 

to see here at least from this picture that the convex all of T I is a another polytope. Now, 

let us see y is too formerly, what I am going to do is, what I am going to do is look at 

each of these x values here this 1, 2, 3, 4, 5, 6. 6 different x values I am going to look at 

each of these 6 x values. So, let us see let x, capital X be the set of all small x such that 

small x comma y belongs to T I for some y. So, it is the lift of x whatever that you would 

like to call it into T I. 

Now, this is a finite set because t is a bounded polyhedron t is bounded. So, this is finite. 

So, capital X is a finite set now, let us take a, let us take a particular x bar in capital X. 

Let us take a particular x bar in capital X and. So, suppose x bar is this gale here. So, 

what I am going to look at is this corresponding green vertical line segment, vertical line 

segment corresponding to x bar. So, T x bar is the corresponding vertical line segment, x 

bar comma y such that x bar comma y belongs to T I. Now, it is clear that T x bar is a 

rational polytope and because I am fixing x bar, I am taking some I am taking this my 



rational polytope T and I am fixing my x. So, it is intersection of two rational polytope 

with the polyhedron. So, it is a rational polytope.  

So, T x bar is a rational polytope is a rational polytope. Which means, that I can write T 

x bar as the convex all of some finite set of points. So, let me call those finite set of 

points V x bar right because it is a rational point. Now, what I am going to do is I am 

going to take x bar is a left most integer point, look at the v the corresponding v. So, I am 

going to take all the v’s. Now, there are finitely mini x’s each mini’s is finite. So, the 

union of that is a finite set and I can say that the convex all of T I is nothing but the 

convex all of the union, of all this v x. Now, this entire thing inside the union is a finite 

set. So, which means that this is a polytope. 

So, here, we are done with the claim, the claim. So, watching setup to show that the 

convex all of T I is a rational polytope that, that is start. Now, what are we going to do 

we are going to use this T I, and show that all the extreme points of the convex all of S 

the convex all of all integer, mixed integer points in P lies in this set T I. So, so that will 

help us or that will be the result essential result that we are looking for. Now, let us look 

at any point. So, now we are back to the proof of the theorem. 
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So, for any x bar y bar in S or rather, let me rephrase this x bar y bar belongs to S if and 

only if what are the conditions x bar must be integer, and x bar comma y bar must lie in 

P or in other words, from our notation I should be able to write x bar, y bar as summation 



i going from 1 to P lambda i v i plus summation j going from 1 to q mu j r j right. So, if 

and only if x bar lies in z n and there exist some vector in the in dimensional simplex, 

and mu’s are positive right.  

So, this is this is just from definition now what I am going to do is I am going to do a 

really simple thing, I am going to rewrite this as summation i going from 1 to P, lambda i 

v i plus summation j going from 1 to q. Now, I am going to rewrite mu j as mu j minus 

mu j round on r j plus summation j going from 1 to q mu j round on r j right, I am just 

separating the integer and fraction part of this mess. 

Now, you will quickly see why that is a case. Now, if you look at the first two terms, I 

am writing this as the convex combination of the v i’s plus a non negative combination 

of the r j’s such that the multiplier is between 0 and 1. So, by definition this so, this thing 

I can call, let me call this as equal to some x cap, y cap which belongs to my set T, 

capital T right because I define capital T. I define capital t as the convex combination of 

the v i’s plus non negative linear combination of r j’s, where the multipliers are less than 

or equal to 1. So, now this is in my capital T. 

Now, let us do a rearrangement I am going to write my x cap, y cap as x bar, y bar minus 

summation j going from 1 to q mu j r j right, there’s nothing I have just rearranged it. 

Now, here let us look at what is happening here x bar is an integer, this whole thing is 

integer assume by scaling that r j’s are integer and mu j round on is integer. So, this 

whole thing is integer. So, I can see that this. So, this x bar is integer and this whole thing 

belongs to the integer, the set of integers in R n plus m so that means, that my point x hat 

must also be integer right. So, clearly now x hat y hat belongs to T and x hat is integer 

which means that x hat, y hat belongs to T I. 

So, from what we have gathered now what we did was we have took arbitrary x, y in S 

and I am written it as some point in T I plus some non negative integer multiply 

multiples of r j. So, essentially what I have done is I have is that my conclusion is that I 

can write S as T I plus I am going to write it as Z n plus m plus. So, just to denote that it 

is a set of all integer non negative combinations. Now, all you need to do is to take 

convex all on both sides and once, you take once you do convexity on convex it is a 

simple exercise to show that, the convex all of S is nothing but the convex all of T I plus 



the cone generated by r j and because of this is a polytope a polyhedron sorry. And it is 

also rational.  

So, that is Meyers theorem which says that if I start with the rational data, the convex all 

of all mixed integer points in my polyhedron is also a rational polyhedron. So, this is, 

this is Meyers theorem. Now, let us look at what happens can we relax this assumptions 

a little bit. So, can we relax the rationality assumptions or is rationality crucial. Now, one 

thing is from the proof rationality looks crucial right because we need to assume that, 

this mu j round on multiplied by r j are integer. So, so this rationality looks crucial we 

are we are in fact, using rationality here otherwise we cannot assume that this can be 

scaled to an integer point 

Now, this both the mu j itself is an integer. 

From mu j it is integer, but we need r j to be rational. Otherwise we need not be able to 

scale it to an integer vector. So, the extreme directions need to be rational. So, there are 

very interesting examples when you know. 

So, mu j is a rational point.  

Yes, yes what I mean is all rational coefficients here. So, so let us look into couple of 

examples where we do not have this luxury and see what happens here. So, first example 

where rationality does not hold is. 
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So, what I can do is I can look at my let say S 1 is the set of all. So, now there are only 

integer points is the simple example such that, or rather non negative integers such that x 

1 is greater than or equal to square root 2, x 2. So, this is my first example. So, here is x 

1, x 2 and this is my, it is straight. What is the convex all of S 1. So, what is the convex 

all of integer points inside this region that part except the blue line, blue, blue. 

(()) 

So, this is S 1 minus the blue line. 

Blue.  

Well the origin is included. 

Now, blue line where points where in x point x plus to be external. 

They cannot be integer cannot be integer.  

So, now, we are everything other than the blue line including 0. 

So, I will just to make it just to make it clear I will also say. So, the convex all is not a 

closed set in this case. So, it cannot be a rational polyhedron clearly, it cannot be a 

polyhedron even. So, it is not a closed set. So, that is the first example, second example 

is a slight modification of this set. So, S 2 is the set again x in z 2 plus such that x 1 is 

greater than or equal to root 2 x 2 and x 1 is greater than or equal to 1. So, I have x 1, x 2 

same this constrained and I also have this constrained. So, this is my feasible region. So, 

this is S 2, S 1. Now, here what I have done is I have purposely cut off the origin. 

Now, what you can see is that a well interestingly S 2 is a closed set, you can actually 

compute that S 2 the convex all of S 2 is a closed set. So, that in S 1 the problem with 

closure comes because I mean in each of these case. 

Where are the blue ray is not there. 

Blue ray is not there that is fine, but what happens is that there are, there are integer 

points arbitrary close to the blue ray. So, in the first case since the origin is there, the 

blue ray is. In fact, in the closure of the convex all of S 1, but the blue ray is not there in 

the closure of the convex all of S 1. 



 (( )) because I can still take, if I take a point on a blue line. 

Yes. 

And take a neigh neighborhood around it. 

Yes. 

There will be at least one point of the convex all of S 2. 

No, no, not for arbitrary small neighbor you can always find a neighborhood where. 

Arbitrary is small neighbor arbitrary is a small neighbor it is a bounded point it looks like 

at least not bounded. 

No, see here is a problem what happens is in the in the first case is the origin is the part 

of the convex all I have. 

Wait, wait I have here we have look into the part that day or no x is a element of z 2 plus. 

Yes.  

That is a important issue. 

Yes. I have integer points, which are, which are that is arbitrary closed. What is that? 

Those who are not integer points and I have. 

I have integer points arbitrarily closed to this blue, blue ray, but I do not know where 

they are they could be arbitrarily far away, they could be arbitrarily far away. 

From where integer point. 

From 0, so they could be anywhere on this ray that ray there would not be integer points, 

but there will be because of there is slight approximation there will be integer points, 

which will be arbitrarily closed. So, I can take the convex combination of the origin and 

those points. And then show that this blue ray is going to be in the closure of that for the 

first example, but for the sorry, but for the second one you cannot, you cannot use that 

argument. In fact, I should say that it is not obviously, show that it is closure. You mean, 



you need some additional result. I mean I do not know what is an obvious way to prove it 

I can give you reference of how to show that in fact, a closed asset. 

I mean. So, you do not take any points on the blue line. 

But you are taking whatever I m must send if there could be there could be integers of S 

k as close as I want but. 

But what we, but what we cannot guarantee. 

Not guarantee as integers cannot be as closed, but why not integer closed. 

Because of the result approximation here approximating irrationals by rational which is P 

p over q. So, that point P comma q is going to be very closed to the line x 1 root 2 x 1 

equal to x 2. 

P comma q you can have arbitrarily closed this should have lambda or should it would be 

root of z 2 plus 

It is a grad 

It is a grad yes. 

Grad 

Now, if there is a line going through 

Now, I have to really look at the grads 

Yes! 

One with the grads 

Yes, yes. 

The grad distance is fixed. 

That is true, but this line is irrational slope. So, now, you can. So, some now we know 

that you can approximate square root 2 to arbitrary prostrations by rationals. So, let us 

have. 



We have the rational points very near the blue line blue line. 

Very, very near. 

So, there will be rational points of the form P over q, this arbitrary closed to root 2. 

Which means P is arbitrarily closed to root 2 q. So, there is an integer point P comma q. 

Which is arbitrarily closed to the line x 1 equal to root 2 x 2. 

At least for so. 

So, that is that is why. 

But I cannot geometrically see if I look at the grad and you have that line 

Yes! 

Which does not have continual reaction on points 

Yes! 

And it will be not called an integer points. 

Or rational omen it. 

Right! 

It is just going through 

Right! 

Now! 

And you have truncated the 0 part 

So, I cannot see how well I am really looking at the grad points only 

That is right.  

So, then I am trying to take the convex all basically I am joining everything and we are 

doing.  



So, what happens here is if I if I would write let to draw the convex all it is going to. So, 

I mean as I said I mean it is you require a small you require a result to show that, but the 

convex all of this S 2 looks like the following. So, it is obviously, this is part of the 

convex all and then it is going to look something like this. So, these are all really small 

line segments, these are all connecting integers. So, it is going to be a closed set, but not 

a polyhedron. So, what we can what people have shown is that this is closed, but not 

polyhedron. So, this is called a locally polyhedral set. So, it is emphasized with. 

You mean to now say that because I am com combining integer points, but well that will 

be a countable set two plus. 

Yes! 

Countable set. 

And whatever you have under S 2 is countable. 

Yes! 

Now, you basically you are connecting those things this you are making some convex 

combination of this things. 

Yes! 

You are telling that the boundary of this set. 

Yes! 

Would can be as close as I want to line is to. 

Yes! 

There are infinitely mini extreme points, but still it has some properties of polyhedron, it 

is locally polyhedral in the sense there, if I intersect with any polytope then intersection 

is another polytope, but for the first one the convex all of S is not closed, but the closure 

of the convex all of S 1 is a polyhedron. So, what I am saying is that even with this really 

small things make a rationalities, even in the polyhedral there are things which we well I 

mean. Now, it is it is almost settled we really know how irrational the convex all of 

irrational polyhedral integers of a polyhedral look like right now we know. So, that is 



what I wanted to stress and talk about the rational and what is a problem, when data is 

not rational. How much time do I have? 

It is probably 43 minutes you have some 6, 7 other minutes. 

So, in the remaining time I would. 

Here is the start time.  

So, in the remaining time I would like to I would like to use the remaining time to show 

one part of the proof of the Minkowski Weyl theorem, so which we have used in this 

earlier. 
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So, what this results says is that the set P in R n is a polyhedron if and only if I can write 

P if and only if I can write P as the convex all of up to some finite number of points plus 

the cone generated by another finite number set of points. And of course, it can be 

spendable to say that P is a rational polyhedron if and only if I can write it, like this for 

rational points v i’s and r j’s. So, this is what Minkowski Weyl theorem. 

So, what I am going to do is, I am going to show one part, I am going to show that this P 

is a polyhedron then P can be written in this way, that is the main thing that we have 

used and the proof of the converse is also fairly similar to this. So, I will, we will stick 

with one direction. So, suppose that I can say, I can write P as a some polyhedron in the 



form of linear inequalities A x less than or equal to b. What I am going to do is I am 

going to do left of P left of P to a higher dimension and look at the cone that, that 

corresponds to P. So, what do I mean by that? I mean that let C p be the following set. 

We try to have some homogenization of the set. 

It is the homogenization set that is right, yes. So, x comma alpha in R n plus 1 such that 

A x minus b alpha is less than or equal to 0 alpha is not meant right. So, this is the 

homogenization and if C p is this, then p is nothing but the set of all points x. Such that x 

comma 1 belongs to C p this is fairly strict. Now, C p is a polyhedral cone and since, it is 

a polyhedral cone it is also finitely generated. So, this the here is a polyhedral cone 

hence, finitely generated. 

Now, what we can do is a following if you look at each of this finite generators, what is 

the value of alpha, alpha can be either be 0 or positive by scaling I can assume that for 

the positive ones alpha is 1 right. So, for each of these generators, generators alpha is 

either 0 or 1 by scaling. Now, so.  

(( ))  

I can write my C p as the cone generated by the points of the form and I am just 

collecting. 

So, what are you doing you are putting alpha is either 1 or 0. 

So, the ones. 

So, why are you do it if they if I have 1. 

So, alpha can be either 0 or positive for the ones which fair for which alpha is positive, I 

am scaling. 

So, scaling it to one right you can just need that. 

So, I can easily do that. So, I know what is C p now and I know, what is p if I know what 

is C p. So, I can so, if x belongs to p if and only if I can write x comma 1 as. So, I can 

write x comma 1 as summation I going from 1 to P lambda i multiplied by plus 

summation j going from 1 to r mu j r j 0. Now, here if you look the second equation and 



obviously, lambda i mu j’s must also be greater than or equal to 0. So, if you look at this 

second last line of equation. So, I must I see that lambda i’s must in fact, add to 1. So, 

essentially lambda i is not just greater than equal to 0, but lambda i’s form a convex 

combination. So, this implies that x belongs to the convex all plus r k. So, that is the. 

If the lower part is automatically 1, then the upper part is the summation lambda i is 

equal to 1 anyway. Yes, that is right. So, that is that is why this result is true. So, with 

that let us stop it. 


