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Lecture - 36 

Direct search methods 

Today lecture is a last lecture. In this lecture I am not supposed to tell you something new, 

I am not suppose to tell you something very difficult to advance. As a traditional NPTEL 

lectures, I am supposed to summarize what has been done give you an overview about is 

the subject in sense, and give an idea of what you can probably do with it. It is also 

important that I give you some possibly more home works, or little bit of some examples, 

if possible tell you about what has not been done. What I wanted to do because as you 

know there’s number of lectures which is fixed.  

It is also important to know that whatever I have done here may not be the most important 

things, needed by each and every one of you, who are listening to this lecture because 

there is a lot of things in optimization. And every practitioner needs something out of it. I 

really wanted to tell you something about direct search methods, in the sense that there is a 

heuristic method which takes some point. 
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For example, I am giving a compass search it is got and look at a point x naught and see if 

the gradient is 0 at this point. So, this for different or does not matter even if you have a 



gradient information, you can do it without gradient information. So, about this point is not 

the optimum. So, you check for few points you move along this direction, move along this, 

move along this, move along this east, west, north, south. And see at which point function 

value is decreased take that point, if have not decrease a function value, right? Function 

values remains higher than this, then I have to reduce mine radius of the movement and 

then I again try. 

So, these are called the one of the methods one of the direct search methods, these things 

appeared in the mid 60’s, but they did not have a convergence proof. So, lost their clout 

with a mathematicians and they almost forgot and they later revived, that if you have 

differentialibility information for this sort of cases is going to actually, develop a 

convergence suit. Anyone to do something with that in this course, what this is not a time 

that you can actually do such things in the in the last lecture. You recollect in the course, 

we have started with unconstrained optimization. 
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Of course, unconstrained optimization is a mirror through which all over optimization can 

be viewed. So, the fundamental rule to find here is to find an x naught and then check if is 

positive divinity p d for if you can find an x naught which satisfy, this and this. And such 

an x naught is it will implies the x naught is minimum that is exactly, what is the thing that 

we learned. And of course, we learned through various algorithms how to find not exactly 



the minimum, but find some sort of a good approximation to it because it is very important 

to know except, for toy examples which we give in books like f x equal to x square. 

In actual problems, or even slightly complicated problems a fact which I am a want to 

stress, I am stressing in this course is that you cannot find the actual solution to an 

optimization problem. What you can find some sort of approximate solution, happy 

solution which you may like which you may not like. So, it is up to you. So, x naught is 

the minimum. So, x naught is a minimum here theoretically, but x naught to find to use 

algorithms. So, algorithms give only the approximations this is the fundamental thing you 

must remember, the algorithms give approximations not possible to, not easy or rather 

impossible in most cases an exact solution. 

So, this is the fact that you need to remember, when you want to if you want to advance 

yourself in this subject optimization. Now, the algorithm that we did where is steepest 

descent, we spoke about the Newton’s method, we spoke about conjugate gradient method. 

I want you to recollect these two line search methods. That means, these can be written as 

where d k is a direction of descent and you know what is a direction of descent, here it is 

slightly different here we are talking about conjugate directions. So, this is built upon 

conjugate directions.  

So, there is another non line search algorithm called trust region algorithms, which we 

have not done. So, another important class at this moment a very important part of 

optimization research is trust region algorithms. So, I refer to the book by Stephen Wright 

which because it also an Indian edition, which published by Springer numerical 

optimization (( )), Stephen Wright. So, you can see a very, very good study of fundamental 

issue in trust region algorithms using this.  

We also did another important the variation of the Newton method, which is much more 

useful to solve non convex problems is a quasi Newton method. Of course, you must 

remember that when we do the line search methods, we always have to keep in mind that 

we are expecting this, we want to do this. There is a interesting analogy between trust 

region algorithm, and quasi Newton algorithms because in trust region algorithms, need 

the use of constrained algorithms while, this also means use of constrained optimization to 

understand it to make its update, and this, and this, and this really does not need it. 
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So, now once unconstrained optimization was done, we came to the heart of the matter. 

We came to study the constrained optimization problems, where we studied the Fritz John 

conditions and the Karush Kuhn Tucker conditions. I would like to revise your memory, in 

the sense that a very important thing is to note at whenever, there is a normal multiplier for 

a Fritz John system that is same as studying, the at the Karush Kuhn Tucker conditions 

holds. 

So, every normal multiplier, existence of normal multiplier is telling that Karush Kuhn 

Tucker condition holds. So, there were constrained qualifications like the linear 

independent constrained qualifications L I C Q at the Mangasariean Formuwich, 

Mangasariean Formuwich constrained qualification, which called the M F C Q these two 

always guarantee that if this is satisfied at the solution point, then there cannot be Fritz 

John multiplier, which is abnormal. All the Fritz John multipliers would have lambda (( )), 

I would just remind you the Karush Kuhn-Tucker conditions. So, let me take one 

constraint equality and one constraint inequality. 

So, this is the F J condition, or Fritz John condition. So, what is done here if you observe 

the last seen condition is. A very important thing to note here is that if L I C Q and M F C 

Q is holding as we have said that there cannot be any lambda naught, which is strictly 

bigger than 0 see I have to write this also lambda sorry lambda 1 g 1 x, which is equal to 0, 

this called the complementary Satins conditions. Now, if these two any of two this happen 



then this can never be 0. Actually, in the Fritz John condition what we have is that lambda 

naught, lambda 1 and 0, 1 this is not equal to 0. 

So, lambda naught is either 1, 1 means either greater than 0 or lambda not is equal to 0. So, 

if lambda naught is equal to 0 we can always rescale the multipliers with lambda naught 

that is divided by lambda naught and get this lambda naught to equal to 1. So, I can always 

write as this as. Now, you see this thing is guaranteed to be always strictly greater than this 

either this happens or this happens. This is the weakest condition, which guarantees that all 

the lambda naught are strictly bigger than 0, if this tells then it will be always confirmed 

that lambda naught is strictly bigger than 0, sorry, lambda naught I just want to repeat if 

this M F C Q fails there is always a set of multipliers satisfy this, with lambda naught 

equal to 0 that will there exists an abnormal multiplier. 

So, a very, very important central thing in your learning is this if M F C Q fails, there 

exists an abnormal multiplier, abnormal F John multiplier. So, when M F C Q fails a 

abnormal multiplier is guaranteed. So, if all the conditions that will see in books like 

Arbitic constraint qualifications, INGOT constrained qualifications or the approach of 

routeneous in the recent times, they only do one thing they say that if my M F C Q is 

failed. My problem is an abnormal problem with an abnormal multiplier, but then does 

there exists a set of multipliers, which is normal that is lambda naught strictly bigger than 

0. The answer surprising it to be is yes. So, this conditions guarantee that hold be at least 

one multiplier set with lambda naught strictly greater than 0. 

So, the KKT condition would be satisfied that is why is or this things which are weaker 

than MFCQ are called constraint qualifications because is a constraint qualify, the 

condition then KKT condition is guaranteed. A very, very central issue is in linear 

programming. For a linear programming problem there is always exits a Karush Kuhn 

Tucker point or there without any constraint qualification. So, this a very, very important 

result. 

For an LP, this is called an LP an LP for an LP rather for a LP we can always guarantee, 

always guarantee the existence of a normal John multiplier, interesting part is if I take it 

this to be of any other function f x. So, differential function non convex also then if this 

constraints are linear, you can still write down the Karush Kuhn Tucker condition without 

any use of constraint qualifications that if actually, you have linear or a fine constraints 



then the existence of at least one normal Fritz John multiplier is guaranteed, this is a 

central thing a very, very important result.  

The interior point methods which not the kermocost one, which is accord after that 

especially through the work of any got the use of Newton’s method for solving, the use of 

Newton’s method for solving this problem, this linear programming problem comes out of 

this very fact that the Karush Kuhn-Tucker condition always exists, there is always one set 

of multipliers which is normal. So, the KKT condition is always holding then we can solve 

the KKT system, very cleverly using the Newton’s method, which we do not discussed 

here, but discussed in slight details in another course some convex optimization in 

NPTEL.  

So, this a very, very important very, very central fact and this cannot be ignored. This is a 

very, very important fact possibly in the Karush Kuhn Tucker theory, this is the central 

fact I would say. Now, we also discussed something about and we have done some lot of 

examples, another book that I want to show you, which is a Springer text in statistic series 

book. This is a optimization make in available in Indian edition, but the usefulness of this 

is that not only the Indian edition because this book is written by statistician, who use an 

optimization work.  

So, here you can see a lot of good examples from statistics and that is really a source of 

fun. Even for the optimizer to read this book it is really a big fun I would say. As a way a 

different way of looking Karush Kuhn Tucker theory. So, the thing I want to read at read 

it. So, let me just try to give you a type of problems that is useful in statistics and maybe 

you should be able to find the x in the solution. 
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So, you are let me want to minimize f x. Now, here you observe the this is only the defined 

if x I is strictly bigger than 0 and x i not equal to 0 and other not bigger than 0, and I have 

and upper house space is constant. So, is gone a minimum of the linear reciprocal function, 

x i cannot be equal to 0 noise. See once x i is not equal to 0 this is a differentiable function. 

So, now find the KKT point and check if that is a minimum. 

So, here is an example where you have to use the Lagrangian theory. Now, if you look at 

this problem I remind you again that once you have this KKT point, how do you check 

that is a minimum then you can always check the second order condition. First remember 

the second order condition that we have discussed, then you can check the second order 

condition here and see what you get out of it, or whether you can argue in some other way 

that is actually minimum that would be much more fun. 

So, there many, many things that we have studied for example, we have studied penalty 

methods, penalty approach and spoken about exact penalty, we have spoken about the 

projected gradient method and projected sub gradient method. We have spoken about the 

projected gradient method and projected sub gradient method and we also studied in quite 

detail about Lagrangian duality.  

Now, I will just write to you as a home work about ones problem, which you will see that 

Lagrangian dual, starting the Lagrangian dual of such a problem is actually very helpful. 

These are called problems, which can be decomposed or decomposable problems and. So, 



let me write down a problem let me write down its structure and you will see that 

Lagrangian, starting the Lagrangian dual of such a problem is more useful or simpler in for 

computation in the actual problem. 

(Refer Slide Time: 25:01) 

 

So, here you have to minimize the function f x and that f x is given as. So, it is x. So, there 

are. So, means this x variable is partitioned now into x 1 x 2 x k right and x k belongs to R 

of n k and n 1 n k is capital N. Basically, I am partitioning this vector into several blocks, 

each block here is a vector. So, this is a R n 1 and this R n capital K, this capital K. 

So, once this is known let me now just write down the inequality constraints. ((No Audio 

26:30 to 27:00)) So, this is a problem in a decomposed form. Now, once you have a this in 

a decomposed form then what is a Lagrangian, maybe I can put this be 0 here it is 0. So, 

this is where you will see a very good usefulness of Lagrangian duality. So, what would be 

a Lagrangian here, a Lagrangian would be ((No Audio 27:43 to 28:20)) this would be a 

Lagrangian. Now, you want to find the theta lambda ((No Audio 28:25 to 29:00)) this can 

be now written as minimum x h. Now, you see here I have now got to solve some smaller 

simpler optimization problems, but if I solved one of this optimization problems, the 

structure of the other is clear what would be the solution. 

So, I have to solve a very simple optimization problem at a much lower dimension then n 

and if it is just a unconstrained problem now, again just for a fixed lambda I can actually 

solve this problem much easily. So, here you see there is a use of actually looking at the 



Lagrangian dual, the computation of theta lambda is quite simple. I would give you the 

home work as to what would happen if I put b I here. So, if I put a b I here instead of 0. 

So, how what would be the writing.  

So, here also you will have you will have the additional term minus b lambda, you do this 

and then whole thing you subtract minus b lambda, but let me just give you a problem. A 

problem in a decomposed form which is specially, used in the study power supply in 

electrical engineering, this problem actually comes out study of power demand in the 

sense that how can we satisfy the demand of power at minimal cost. So, if x j is the 

amount of power the j th power plant is. So, the n th power plants 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

if the j th power plant what should be the output of the j power plant. So, that the demand 

is met.  

So, the demand is b say then the total amount of output of all the n power plants should be 

excess of b, that is the meaning that the demand is satisfied. So, suppose the cost of 

generating the electricity at the j th power plant, it does not matter if we put this at that just 

here. So, this is the cost it is the quadratic cost and b is the total demand. So, if x j is the 

output of the to have an output x j in the j th plant, this the total cost that you have to incur.  

So, here it is strictly convex of course, suppose I would say that they can make x j is free 

any amount of j they can put theoretically, actually x j should have a bound and this 

problem is to minimize summation f j, x j and if b is the total demand then summation j 

equal to 1 to h that is what it should be. So, it is again a problem in the decomposed form, 

for which you can actually use a Lagrangian duality to get something. 

It is very, very important to note that optimization is a very, very vast field, it is not that 

what we have done is abroad gamete optimization is just a mini scale gamete possibly. 

Optimization is not about what we have done is called continuous optimization, we have 

not spoken about variables about that could be discrete that is for example, you could 

minimize a objective function f x where x i, i at takes the value 0 or 1. So, for example, I 

just give you a simple problem like this I will just a linear programming problem. 

So, x i takes up the value either 0 or 1. So, these are the problems called integer 

programming problems and we have not discuss them at all here, our x is always here R n 

rather than x b in the Cartesian product term. So, here x would b in the Cartesian product 



of n fold Cartesian product or 0, 1. So, 0, 1, 2 which is customarily written as. So, it is a 

sort of hyper que. 

So, if you are if you are in 2 D then 0, 1, 0, 1. So, it is this point this point this point a grid 

basically, then these are the 4 points over which you need to compute the function values 

and list down the minimum. If it is only a 4 points like this right that is n equal to 2 then it 

is very simple just calculate the 4 points and get it, machine will give you the answer in 

blink of an eye. The problem is that what happens when n is very, very large and when n is 

very large things can be very difficult, you cannot make a total enumeration. 

So, because you cannot make a total enumeration you must have clever ways to know 

which among this huge number of finite points is a actually, giving is the minimum that 

gives rise to a subject called interior programming or combinatorial optimization, here it 

uses methods from combinatoral and its approaches is completely different from the 

approach that we have taken in this course, and an approach of continuous optimization.  

I want to assert a part of this department IIT, Mumbai the course that I have absolutely 

different (( )) of course, an algebra here we spoken about problems here you can sense that 

what sort of distribution that noise might fall and once, you may use techniques that are 

now which will you have listen in the two lectures, but can… the two lectures. 


