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Lecture - 34 

Optimization 

Do not worry about the dissents here and my looks possibly, because I am giving the 

lecture at the end of the day of one particular day, which of course, is a continuation of the 

lectures I was giving. We have just been able to establish at the dual is a possibly a nice 

idea in optimization. In the sense that it can provide at least in the convex case under 

certain constant qualification like the Slater constant qualification essentially, that the 

primal value and the dual value are equal, this is precisely very important linear 

programming. 

Because what happens if the large number of constants in linear programming in the dual 

the number of variables would increase constants would decrease or vice versa. So 

whichever you are comfortable in computing, you just set the problem accordingly. So, 

there is hardly much ever difference in linear programming, whether you are solving the 

dual or you are solving the primal. 
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The question of having the dual horse back to two important issues, one is that it sends 

back sends us back to investigating the question of minimizing effects over x element of 



some convex set x. So, minimizing a convex function may be it we can take a closed 

convex set, but here there is a word of (( )) standard to what we were doing of always 

assuming functions running from R n to R that is taking a function taking of a point in x 

and pushing it on point point on R. 

Let me be very precise that if you look at the structure of the dual problem, which says that 

the minimum, this is my dual problem. And theta lambda sorry sorry max of which I can 

write as this problem can be equivalently posed as so, you can forget the minus sign and 

just consider on this problem. Maximizer of this if it is achieved the minimizer of this if it 

is achieved they, will be achieved at same points. 

So, now this is a convex function minimizing over a closed convex set, but there is a 

cracks here theta is not essentially from R n to R. But theta in the sense, because it can 

take this particular value, because theta lambda would be minus infinity, because you find, 

find it out to minimization. So, minus theta lambda can take plus infinity value. So, 

essentially a general problem here my f has to be but you know that just having plus 

infinity values, we are admitting the fact that the plus infinity values do come like the ones 

here and a you cannot necessarily throw this fact out. 

So, one has to get use in optimization of the fact that extended real valued functions these 

are called extended real valued functions are a reality. So, these are called the extended 

real valued functions and these are a reality and you really need to appreciate these things, 

if you really want to work with optimization. Now, what is important to know about how 

to play with infinity that we may restrict ourselves for certain time the only thing that we 

need to know, if you have a convex function of this form that what is 0 into infinity. 

So, 0 into infinity is usually assumed to be 0 as per the a, as per the structure taken by 

Docofolar and Widch which is possibly on the finest epiphyses on which modern 

optimization is been built. See, we have to remember and I would also like to tell the 

engineers who are engineering students who would be watching this course. Then apart 

from learning the fundamentals of algorithms, one has to appreciate that optimization that 

you are taught largely in Indian universities largely not everywhere is of the 1960’s being 

teached. 

But. one has to understand like any other part of mathematics optimization also has a life 

of it is own and it has progressed a lot it is answers questions which are pretty important; 



and we would see that actually not ready in 1960’s been treasured but, actually the stuff. 

So, 19 late 40’s early 50’s vintage and in India those things came in 1960’s and the similar 

sort of things are been taught we will hardly find extended a route functions we really 

talked about in graduate courses in optimization if there is any in India. 

So, as a result of this that leads me to actually emphasize that we have to appreciate that 

optimization as a subject has advanced. An advanced quite a bit not quite a bit heavily 

rather and here we do not really have a chance to talk about the advancement that 

optimization has done but, we we are really trying to tell you the glimpses and bits of the 

most interesting things in optimization. Now, the question is if this is my scenario, how do 

I, how do I actually think of discussing the solution of this problem; obviously, the points 

at which x is equal to infinity, you really do not need to bother about that. 

(Refer Slide Time: 07:35) 

 

So, the point of important point for such problems is to know that we can consider our self 

or put ourselves in a set x in a set of all x where the function value is finite. So, for every 

such x in dom f I can define the sub differential f of x as what is the sub differential. So, 

psi belongs to del f x, if and only if f of y minus f of x, now you see f of x is always finite 

if y is a point where f of y is plus infinity, then you really do not bother because because 

infinity minus infinity infinity. 

Infinity minus of finite number sorry not infinity minus infinity, infinity minus infinity is 

still something we do not want to talk about at least in this course. So, infinity minus some 



finite number, so infinity minus a in the axioms of the arithmetic that we do with infinity, 

infinity minus a is infinity where a is a real number. It does not matter whether a is a 

positive number or a negative number basically infinity plus minus a is plus infinity. So, if 

this side is infinite and; obviously, this side is finite and the inequality is valid, if x is not 

in dom f then we define now at every x point of x element of dom f. 

If you have a extended valued functions your dom f need not be empty may be non empty. 

So, if f from R n is a convex function when is, so here we are coming in to very, very, very 

deep questions actually which possibly I have not discussed in such detail in my convex 

optimization course. I had but not there is not much scope, because there also you need to 

cover a lot of, lot of thing linear programming a lot of lot of space had been given to that. 

Now, a very, very important thing to realize at this point is a following now the question is 

how do you define a convex function itself. And you function if you say that the function 

is extended valued of course, you have to go in for you can write down the same definition 

and if you have to go down with the same arithmetic rule that 0 into infinity is 0. So, this 

this is the definition of convex function. 

Suppose f y is infinity and these are non zero from there everything is plus infinity. So, 

this is valid now. So, f x is x is a point where f x is plus infinity and lambda is 0. So, when 

lambda is 0, I just have y. So, lambda into 0 this part will, so this will be f y and this 

lambda into an m zero into infinity is infinity is sorry again I apologize 0 into infinity is 

zero. So, it will just become f y square again the inequality will be valid. So, this is valid 

under the convention here convention is also used in measured theory a lot of thing in 

mathematics is usually about convention. 

If you read this book mathematics very short introduction by Timothy Gowers that is what 

he wants to say lot of things about convention. Now, what I want to emphasize is that there 

is another way of going about defining a convex function from R n to just say f, this f is 

convex if epi f is convex epigraph. Now, epigraph is only defined about the finite part that 

is we can define it about the epigraph infinite part but, it do not make much sense, so epi f 

of a convex function here. 
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You are taking basically x alpha where x is in R n and alpha is in r such that f x is less than 

equal to alpha. So, this value has to be finite, so it essentially it means epigraph sorry it 

means. So, if the epigraphical set is convex, then you know that the function is convex for 

example, if you define a convex function as 0, when x is greater than or equal to 0 is equal 

to plus infinity plus the epigraph this is epigraph as beyond this, this is plus infinity. So, if 

the epigraph is a convex set then the function is a convex function, so this function is a 

convex function. 

If you even, suppose I do a little bit this strike my question as a homework to you is is epi 

f convex. Now, what is very, very important to admit that if I really want to go into a 

depths then I have to talk about the lower semi continuity. And all other issues which 

might be beyond the scope of understanding on many people who are watching the this 

course specially from the engineering stream. 

But, in the engineering stream you are also faced with not only on not only on need not 

always bother about the Lagrangian duality you are also faced with the problem of 

minimizing this over this, where f is convex and this is a convex set. But, f is a finite 

valued function this is a very common problem but, it might be that your f now is not 

differentiable. So, I am making the problem not problem slightly simpler. 

So, we are really not going to address and try to solve or write an algorithm of how to 

solve this problem which is of a function of this form, with the same extent valid form 



which has all complications. You will see the in declasses that are coming in and this 

actually needs a training in mathematics to appreciate what is, what is going on here I 

would I would not get into the things. 

But, I would rather refer to you the book of con those who are interested to know more 

about it I would rather refer to you a book of convex analysis by R F Rockefeller it is 

Princeton university press 1970. And is a landmark book it was reissued in 1974 I guess 

that is Princeton landmarks in mathematics 1970. So, this is a book; obviously, this book 

cannot be read from cover to cover what wherever you need some information of a convex 

analysis. You just need to go and look at this book every researcher what is solved in 

optimization needs this book. 
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So in rather than scaring you we will now, like to talk about how I can develop an 

algorithm for solving this problem at this is f is R n to r and convex x is closed and 

convex. And we will assume that a aargmin means the solution set it is usually denoted 

like this, this set which let us denote this by x star this is not equal to phi let it as a solution 

at least from the solution, so the minimizer exist. 

Now, the question would be how to find a minimizer how would you go about doing this 

now you see here we have not mentioned. What is the differentiability aspect of this 

function we have not mentioned anything about differentiability the function may not be 



differentiable. And usually non differentiability would be exactly at the usually at the 

solution points now this require a generic property of convex function. 

Now, once that is done then it seems that we can do something which even engineering 

students can appreciate and actually implement them in their work. Now, this would again 

bring forth the usefulness of the projection operated the projection mapping. So, which we 

will now write down which will call the projected sub gradient method and we will try to 

talk about the projected sub gradient method first write down what should be the projected 

sub gradient method and then I will start analyzing it. 
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So, we do not have gradient we have already talked about gradient projected gradient 

method now we are talking about projected sub gradient method and you have you already 

know, what is a sub gradient? See only knowing the very basic definition you could 

understand the quiet involved things, now if the problem is not differentiable then x star. 

So, I will call this problem c p again, so x star is an element of x star that is a solution set if 

and only if. 

So, this is a Rockefeller (( )) condition we have already discussed about the normal cone it 

is called the Rockefeller (( )) condition. So, this is true we had also discussed about this 

and this fact is true. So, we had discussed in a quiet a wage, way the problem is that the 

analysis of this is quiet involved and we have to use separation theorem and all those 

details have not been a part of this course in, so much of detail it. You need to have a 



graduate course in optimization to go through all this, because this is largely a course 

where you mix up some undergrad stuff largely undergrad stuff with some grad stuff. 

So, basically you are bringing in undergrad students to the grad level and you could 

possibly now try to do some analysis out of this condition. So, what does this mean, this 

means the two sets and zero must belong to their Minkowski addition. So, these are these 

any element of this particular set the sum of these two sets is that you take an element of 

vector from here and a vector from here and you add those two vectors, say make all such 

possible combinations to form the set. 

So, basically if you if you are still not comfortable with this writing but, I am still may 

writing this for you also those who are just opt into the program late is that this is this 

consists of all z given in the form of u plus v is at u. So, if 0 belongs to the set, so which 

means there exist if, so this is true if this is true then since zero is a element of Minkowski 

addition on this two sets. See, today we are doing some advanced task as I told you we 

have made maximum grad stuff graduate stuff is now undergraduate stuff a last part of the 

course was essentially undergrad but, this part is grad. 

Once this projected sub gradient method ends we will basically do pot (()) of the or have 

the last two lectures as miscellaneous. So, we would talk about a lot of things in 

optimization giving a very brief idea on which you actually go on and expand. So, now 

you see this is what you have, so which means is implies such from these definition there 

exist for ze your 0 is now the z there exist u star element of del f x star and v star element 

of n c x star such that u star plus v star equals to 0. 

Now, once you know that you immediately know that minus of u star is equal to v star 

where v star is itself an element of the normal cone to s s x at x star. So, I am inputting c 

oh sorry I think, I made a mistake it should be all x I am sure you can correct me on this, 

because we have taken x element of x. Possibly I am, so habitually writing c I will just put 

an x does not matter if you put. Now, once this is done what, what does this mean which 

means minus u star is element of N x x star now take any alpha which is positive and by 

very definition of the cone, the alpha gets absorbed in the cone. So, minus alpha, alpha 

minus u star is also an element of this by the very definition where alpha is bigger than 0. 

Now, what does it say, it says by the idea of projection it says that there exists some y in R 



n, such that y minus x star is equal to minus alpha u star, where the projection of y on x is 

nothing but x star and projection.  

So, normal cone this is the nor nor this is the meaning of the normal cone. So, from x star 

and there is a point outside you have drawn the normal. So, projection of y on x is the 

point x star go back to your you can go back to the lectures that I have spoken about 

projection. So, y is nothing but, x star minus alpha u star, so again it means projection of x 

of y is equal to projection of x of x star minus alpha u star but, what is projection of y, 

projection of y is nothing but, x star. 

So, the Schenychle Rockefeller condition can be now put into the form, put in terms of the 

projection mapping and that is why we use algorithm mentally. You might ask x can have 

various forms and how do I compute the projection map, there is a very simple ways of 

computing the projection map, because computing a projection as you know is again 

computing a small optimization problem involving the distant function or square of the 

distant. But we would show that for very certain standard class of sets you can have here 

computation of the projection right of the shelf you can just it is, it is it is known. So, we 

will just tell you that tomorrow or later at not today and some of it can be homework. So, 

now what we have done, what we have, what we have proved is the following. 
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So, now we I have rewritten Rockefeller pshenychne conditioning as follows x star is 

element of x star, I am only proving one direction you can prove the other one. If and only 



if that it look right no. you cannot just write this you have to add something more and what 

is that something more. You have to understand that this story is not true for every u star it 

is only true for this u star for which u star plus v star is equal to 0. 
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So, what you can say x star is an element of x star if, if and only if there exist u star 

element of del f x star, such that x star is equal to projection of x, x star minus alpha u star 

for any alpha greater than 0. So, now the Rockefeller pshenychne condition can be written 

in the, in this particular format, so this is the way Rockefeller pshenychne condition can be 

posed. Now, does it ring a bell if you go back and look at the differentiable situation where 

we have spoken about the projected gradient method does it give you a clue that how 

could I write down the projected sub gradient method. You see there is no way you can 

use the negative of a sub gradient to say that that is a direction of descent it is not possible, 

there are several other approaches one of them is a bundle method. We will not speak 

about them at all but, may we give you a hint while we are doing that miscellanea 

optimization in next few classes in few lectures. 

So, just look at it the projected sub gradient method now has to include this because there 

is no gradient but, if there is a gradient if the function is differentiable then your u star is 

nothing but, grad f x star there is no other u star. So, the only possible u star is this. So, 

that will be the projected gradient, let me write down the scheme. So, projected sub 



gradient g k is one of the traditional ways where in optimization liter the algorithm 

literature the sub gradient had been always referred to. 

So, g k is a vector x k where x k is k either it and k plus one either it is a projection on x of 

x k minus alpha k g k. Remember when alpha is when the when we are writing sequences 

of real numbers we are writing the subscript below, when we are writing sequences of 

vectors, we are writing the sequence, so sequence notation above as a superscript. 

So, this is what is called the projected sub gradient method. So, this is this is what is called 

the projected sub gradient iteration method, projected sub gradient method. But, here there 

is a whole clue the idea is who knows what sort of, so sub gradient would actually satisfies 

those things I do not know. So, I just take a sub gradient and just put in something put in 

an alpha pumping. But, here my choice of alpha would become fundamental that is what 

sort of alpha I have to choose, so that the ideate that is generated from this would actually 

leave me to the solution. So, now there are several ways of choosing that alpha, now this 

was done by Russian school of optimization in the mid 60’s and early 70’s. 
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And they had a huge influence on the development of sub gradient methods for convex 

optimization with professor Noam Shore who has passed away is who was a leading light 

in this and we had Boris Polyak one of the two major players in this area. So, we will also 

name some few more. So, these two people developed this projected sub gradient 



algorithm apart from other sub gradient algorithm based on the simplest decision type 

technique, which we will not discuss in this course. 

So, here we would essentially concentrate on the approach finally, which Boris Polyak had 

taken which is a very, very interesting approach. So, how would we choose alpha k. So, 

our algorithm would really depend or behavior of the algorithm will really depend on the 

choice of alpha k. So, we would now tell you the choice of alpha k alpha k is of course, 

positive number that you know may be I should be more eddied and precise rather putting 

alpha k. 

In the first case I would choose alpha k strictly bigger than zero I would want the limit of 

this sequence of alpha k as k goes to infinity to be 0 I would want, at the same time I 

would want the sum of alpha k is sorry is plus infinity then it diverges. So, it is plus 

infinity the second rule says assume. So, this is and this alpha k is again called the step 

plain, alpha k in the same way what we have done in the line search method for un 

constant case. See, here we are talking about constant case and the projection is taking care 

of the constants, because the projections on x will always give you a point in x. So, that is 

taking care of the constants and that is very, very important to note. 

So, assume one that is assume all this and then assume one to infinity or zero to infinity 

does not matter this is finite. So, this infinite series does not converge this infinite series 

converges but, here limit alpha k is equal to 0, you can immediately understand what 

sequence alpha k is a model of this, because if I take alpha k to be 1 by k plus 1. See if it is 

started with k equal to 1, then you could have just taken k then it is clear that this is 

holding and it is clear that this is, this some sort of harmonic services part of a a. So, this is 

and also summation 1 by k plus 1 whole square will go like that k k plus one whole square 

every time you take the square now k then k plus 2 and so and so; k is here 1 my k plus 

next 1 would be k plus 1 k is 1 then it is k plus 2. 

So, instead of having the sequence one by k I am having the sequence 1 by k plus 1. So, if 

you look at this sequence this one satisfies both 1 and 2, the third one. So, this is this are 

very im these are you see the type of strange assumptions you you might feel it absolutely 

strange to assume such a thing keeping one by n as 1 by k as a model at this. So, surprising 

of sort of step length choice actually leads you to the solution and that that is what we are 

going to understand assumptions but, the most important choice was given by this.  



Where you have chosen some sigma 1 and sigma 2 and so, you choose theta can like this 

that is fine you can choose sigma 1 and sigma 2. But, though theoretically this is very, 

very powerful you see what happen the see, the problem is that once you make a jump 

from smooth to non smooth there is a huge paradise shift. Here you are assuming f star 

because you are assuming that the problem has a solution but, in reality if you because the 

problem has a solution theoretically I know f star but, actually I do not know f star I am 

trying to find that f star actually I will never find. 

Then how would I actually calculate alpha k what would be my f star that that is is a major 

question. So, this is a very, very important thing that this will show this humid as a whole 

we do not know the f star what I am trying to what sort of alpha k you are producing. See, 

instead of f star you can replace it by some lower bound you can make some guess work of 

the loser bound by nature of the problem etcetera. And then put f star but, what it shows 

theoretically is that as we will show tomorrow we will start discussing convergence 

analysis. 

We will show tomorrow that the sequence of iterates move towards the global minima not 

based on the fact that we have to reduce the function value just like in other algorithms it 

would decrease the function value. But rather than it is based on the fact that we have to 

decrease the distance of the iterates from the objective value that if this statement is 

followed. Then the distance of x k from x k plus one from the actual solution from a 

solution x star is strictly less than it is distance, distance of x star from x k. 

So, it is something like that this is this is something that will happen. So, if you follow the 

Boris as Boris Polyak step length this is what is going to happen now what happens if you 

assume this is what we will prove. Now, what happens if we assume this what happens if 

we assume this and what happens if we assume this, if we assume this then we have to 

assume. 

Suppose we assume one assume the step length choice one then if this sequence of g k in 

that that is bounded and x star is compact then the distance function you take x k. And try 

to find it is distance from x star this would go to 0 as k tends to infinity. Now, what would 

happen if I choose step length two where is my assume two, if I assume 2 I think which 

you will prove. And then if g k is bounded then x k goes to x star element of x star and f of 

x k goes to f x f star f star is nothing but, the solution f star is the solution of at the value of 



the problem this optimal value of the problem. And if you choose the Boris Polyak step 

length then you do not have to take this, if you assume 3 then this will happen. But, 

remember the Boris Polyak step length is essentially a theoretical guide but, these are 

implementable step lengths. 

So, once you have implementable step lengths the second is a better one which has choice 

like this you have to make a now how do you know it this is bounded how do you know 

that g k is bounded. So, g k is belonging to del f x k and there is a notion of local 

boundedness. So, this is actually required when you are talking about these sort of 

functions but, when you are talking about extended this functions the finite valued 

function then these thing that g k is bounded comes out of the fact that the sub differential 

map is locally bounded. 

So, I have not told you locally bounded. So, you need not bother about it let us assume that 

this this is true and tomorrow we will start by proving this and then writing down this 

Boris Polyak’s result then get into details first we will prove this and then we will prove 

this. So, tomorrow’s class would be the proof of these two and which will be one of the 

most advanced lectures given in this course and as a result of which you know you will see 

the issues that come up the art of optimization algorithm. Say if optimization algorithm is 

a spring optimization algorithm is as a art see you cannot just write down something. 

And so just compute and this is the solution this will give you the solution no you cannot 

do that you have to say what I have what you have whatever you have written. Whatever 

tampering you might have done this would ultimately lead me to the solution or 

somewhere some, some at least the values would lead me to the objective optimal value 

some are it should take me which is meaningful where makes it meaningful.  

So, that is the art the convergence analysis is the art of optimization algorithms. So, it is 

very important in this class that we have done something with the Newton’s case, 

Newton’s where if un constant case but, for the constant case in the convex situation, it is 

also important that we do thorough analysis at least one of them, so I will just do this. 

Thank you very much. 


