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Let us continue our discussion on duality. We will try to wrap it up today or maybe in the 

next lecture. 

(Refer Slide Time: 00:33) 

 

We were talking about the fact, there is a dual function… This is a concave function in 

lambda mu; jointly, in lambda mu, it is concave. So, we need to now look into the dual 

properties of this function. If it is concave, then it is negative; if it is convex, then can I 

find a subdifferential and all those things? And, when it is differentiable? That is also a 

question. 
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We will start with one example from the text by Andreasson, Evgrafov and Michael 

Patricksson. This text is called An Introduction to Continuous Optimization. This is 

available in India. And, in fact, it is an Indian print that I am trying to show you – An 

Introduction to Continuous Optimization. It is published by Overseas Press in India. And, 

it is by Michael Andreasson, Evgrafov and Michael Patricksson; Michael Patricksson is a 

very renowned optimization researcher. And, let us tell you something before I actually 

give that example from that book that, showing that, there can be a situation, where theta 

lambda is actually differentiable, not just non-differentiable. 
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The interesting part that I want to tell you that if I make the problem slightly more 

complex, we add an additional constraints. So, these constraints are hard constraints like 

bounce on the variables. So, in this particular, if this is the situation, then the Lagrangian 

is lagrangian only consists of the functional constraint; and, this is a non-functional 

constraint as such as it is represented. Of course, if you have x i between say retaining all 

the x i’s there between minus 1 and plus 1; then, of course, you can write (( )) them as 

inequality constraints. But you basically would increase the number of constraints. See in 

order… And, you make the Lagrangian look quiet complex. See in order not to do that, 

one can put it in this form and then you can again write the Lagrangian as the same 

Lagrangian. But, in this particular case, when you write a dual function, the infimum of x 

over x is no longer over R n, but would be restricted to this particular set X. 
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Now, let me provide this example. The problem is to minimize… So, this is a convex 

function – x 1 square plus x 2 square. So, x 1 and x 2 are in R. So, this is a problem in R 

2. Basically, I should write x is in R 2. So, I am minimizing over R 2 subject to a linear 

constraint, which is x 1 plus x 2 greater than equal to 4. And, x 1 is greater than equal to 0 

and x 2 is greater than equal to 0. Now, these constraints are hard constraints; means even 

if you in real application, means, when you are actually applying the algorithm, if there is 

even a slight violation of this, this might not be of so big harm to the problem. But, any 

violation of this would actually change the problem; this cannot be violated. This is called 

a soft constraint and this is called a hard constraint. I told you quiet often. So, this I can 



write minimum of… I can write this as… So, there is one inequality constraint. And I can 

write x x variable, which is x 1, x 2; that is like this, is in R 2 plus; that is the non-

negative orthant. So, that is essentially the problem. I should… I made a mistake in 

writing this; I should have written it like this, instead of putting it like that. I can write it 

as 4 minus x 1 minus x 2. 

Now, if I found the Lagrangian function, I will only club these two in the Lagrangian; I 

will not keep that in the Lagrangian. So, here I have one constraint say L x, lambda, 

would be... Now, theta lambda may be known; not mu, there is a mistake; should be 

lambda. Now, 4 lambda is a constant, because I am fixing a lambda and then minimizing. 

So, theta lambda in this particular case is to minimize for x element of R 2 plus. So, here I 

am restricted of these Lagrangian function. Now, observe that, here I have made this 

restriction quiet similar to the one here.  

Now, once that is done, here you see lambda is fixed. So, 4 lambda is something which I 

can take out. So, if I want to now find theta lambda, basically, I am calling for the 

minimization of… Let me now write the thing in a proper way. So, 4 lambda is something 

I need not bother and even take it outside the minimization; plus… So, you see these 

variables have got decoupled from each other. So, when you want to minimize such a 

decoupled function, that is… Please remember this very simple formula, which you can 

prove. See you want to minimize this over x, y. And, this is simply nothing but inf of f x 

over x plus inf of g y over y. 

So, now, if you want to do this, this and this… These are decoupled. So, this is acting like 

f x and this (( )) like some g y. So, 4 lambda can be taken out. So, I can write this as 

minimum over x 1 greater than equal to 0 x 1 square minus lambda x 1 plus minimum… 

Infimum actually, but you can actually figure out the minimum of this – x 2 square minus 

lambda x 2. Now, let me tell you that, the minimum of this is obviously depending on 

lambda; and, that is given by lambda by 2 and this one is as same as that. So, that is, it 

looks just the variables are different; instead of x 1, x 2, it is same as lambda by 2. And, 

theta lambda you can calculate up to with this. So, usually, this is a differentiable 

function. Now, do not tell me how to calculate; ask me how to calculate the minimum of 

this one, because this is a real variable thing; you can just figure out by yourself. 
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Now, the question would be, if it is not differentiable, if it is concave; its negative is 

convex, can you find the subdifferential? Can you compute the subdifferential? These are 

very important thing that one has to know that… Suppose I now take a problem this one, 

but I cancel the equality constraint and cancel this one. I just keep inequality constraint. 

In that case, the Lagrangian would look like… It will look like this; it will absolutely be 

of that form. Now, theta lambda is inf of f x plus… Now, depending on the lambda, the 

solution set will change; of course, I am just in (( )) whole x, all the x. Now, the question 

is I really do not know whether a minimizer of this exists or not. If a minimizer of this 

does not exist, you cannot tell… you can compute the subdifferential, but it would be too 

too complicated; it will be extremely extremely complicated. Now, if I know about the 

minimum set, that is, given a lambda, I have an x hat, which is in the solution set. Then, I 

can tell something about the subdifferential set; hat at given lambda. So, let me just take 

this part and describe you this fact. 



(Refer Slide Time: 12:06) 

 

Now, let me look into this simple fact. Now, say S lambda is a argmin set; that is, any… 

This consists of all x hat such that theta lambda is equal to f of x hat plus summation 

lambda i g i x hat. That is what it means; as a set of minimizers of this problem; that is all. 

Now suppose S lambda – let us take S lambda bar is not… phi. And let us take x bar is 

element of S lambda bar. So, let me just have this information. Once I have this 

information, what can I do? Let me take any other lambda, other than lambda bar. And 

then, let me now try to deduce something. So, take some lambda; not lambda bar, take 

theta lambda. Now, theta lambda is that inf of f x. Now, this one is less than obviously, 

because (( )) particular choice x bar, this infimum is less than equal to this. So, what I 

now do is, I add and subtract from each of these lambda i bar g i x bar. So, this will give 

me a simple algebraic manipulation. 

Now, this simple algebraic manipulation will immediately show you what you actually 

want. So, this… I can combine this to write this as theta lambda bar, because x bar is 

element of S lambda bar. So, theta lambda bar is exactly f of x bar plus lambda bar g i x 

bar. Now, these two combines to give me theta lambda bar. And, here I can write it more 

in a compact fashion. I am writing this as lambda minus lambda bar; where g x is the 

vector g 1, g 2 dot dot dot g m x. Now, what does this show me? This show me that, if I 

take a minus sign, because then I will have minus theta lambda minus theta lambda bar, 

because this minus will be greater; minus of minus theta lambda bar plus theta lambda bar 

basically; I will take it to the other side. This will become minus here and then go to the 



other side. It is greater than equal to minus g of x bar lambda minus lambda bar. So, what 

does it show? This immediately shows me that, minus of g x bar is a subset of the 

subdifferential of theta at lambda bar. This is what you have. This is this. 

Now, say for any x bar, which is here, this is in the subdifferential. So, I can write finally, 

because this is a convex compact set. Finally, I can write that, the convex hull of minus g 

x bar is where x bar belongs to S lambda bar is a subset of the subdifferential of minus 

theta at lambda bar. But now, I will give you as a homework for those who have taken a 

look at the separation theorems from the books just knowing the statement will do. So, if 

you know about the separation theorem… This is a homework. Now, apply separation 

theorem to show that, del of minus theta lambda bar is convex hull of minus g x such that 

g x bar such that x bar is element of S of lambda bar is actually there is an equality. So, 

these are very very fundamental formula. Now, if I say that, instead of R n here, I have 

capital X; and, if that X is compact, then such a thing is anyway guaranteed. So, that S 

lambda bar is nonempty. So, here the formula that you see is computed only under the 

assumption that, this is nonempty; which is not always easy to guarantee. But, in many 

cases, yes. 

Now, for example, here whatever we have lambda, these are the solution. So, theta 

lambda is always this. I know a set x’s solutions. Now, what I am trying to tell you is the 

following. We have discussed about the differentiability property of the dual function. We 

have also spoken earlier about something called weak duality, which says that, the 

minimum value of the primal problem is always bigger than the maximum value of the 

dual problem. So, the dual problem provides a lower bound to the optimal value of the 

upper to the other primal problem. Now, the question does not lie like this. The question 

is the following. When are these two equal? That is, when strong duality will hold? And, 

that is exactly what we are going to discuss at this moment. 
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We will now talk about strong duality as we had spoken. Strong duality – that is, the 

equality of the primal value and the primal optimal value and the dual optimal value. So, 

what does strong duality tell us? And how do we prove strong duality? Now, here let me 

tell you that, strong duality is always guaranteed for a linear programming problem. 

Strong duality is not always guaranteed for a convex programming problem. And, for a 

non-convex problem, it is never guaranteed. Under some conditions for a convex problem 

(( )) simple conditions. You can always be sure that the strong duality holds. So, the 

problem we had spoken of is as the projection problem; we showed that, the 

geometrically strong duality holds is a case, where all the conditions are satisfied. 

Now, let me tell you following thing. Suppose I have a differentiable convex optimization 

problem. Just we need inequality constraints. So, this is convex. So, when strong duality 

comes, we are actually in the fold of convex programming. Assume that, these functions 

are also differentiable. Assume that, this n plus 1 differentiable convex function. Now, 

once I know that, I would… Let me assume an important condition – a constant 

qualification called the slater condition of which you already know; that is, there exists x 

hat such that… 

Now, once you have that and if x bar is a local minimum – not a local minimum, it is a 

global minimum convexity; there is no local minimality. If x bar is a global min of this 

problem, which I can call for the time being CP; we prefer convex programming; then… 



So, if this holds, if problem bar is a global min… then, if slater holds – slater condition 

holds, we know that the Karush-Kuhn-Tucker condition holds; the KKT conditions hold; 

that is, there exists lambda bar element of R m plus such that… 
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f of x bar plus summation lambda i bar – gradient – gradient of g i x bar – this is 0. And, 

number 2 comes the complimentary slackness condition, which we have mentioned many 

many times. This is 0. Now, look at the first equation. What does the first equation say? 

The first equation says that, if I fix the lambda bar, then this is 0 and the derivative been 

taken over x. The partial derivative is only over x; which means… But the Lagrangian 

function f x plus summation lambda i g i x bar is a convex function now for a fixed 

lambda; lambda positive, non-negative. 

So, obviously, this lambda is non-negative. And, the convex function x bar is a critical 

point of that convex function; which means L x bar, lambda bar – this is unconstraint 

problem, is the minimum of L x, lambda over all x element of R n. And this immediately 

tells me L x bar, lambda bar. So, you see we have recovered one side of the saddle point 

conditions from the Karush-Kuhn-Tucker conditions such that reverse we are looking at 

the thing. 

Now, if you look at this, if I break it up knowing that, lambda bar g i x bar is 0; I will 

simply have here is f of x bar, which is now, is the minimum value of the (( )) problem of 

the primal problem, is less than L x, lambda bar for all x in R n. Now, this is the fixed 



quantity. Here for whatever x you choose, this would be bigger. So, this would imply that, 

f of x bar is less than equal to infimum of L x bar. And, this is nothing but theta lambda 

bar. 

So, what we have obtained from there is f x bar is less than equal to theta lambda bar. 

But, if I go back and look at the weak duality, then I would have theta lambda bar to be 

less than f x bar, because x bar is feasible to the primal and lambda bar is feasible to the 

dual; lambda bar is assessed to be greater than equal to 0. That is a dual feasibility 

condition. Dual feasible set is always nonempty in this particular case of Lagrangian 

duality; which means that, f of x bar is equal to theta of lambda bar. 

Now, if you take any other lambda, which is feasible to the dual; that is, lambda bigger 

than 0; then, by weak duality, again you will have this; which means lambda bar 

maximizes theta; which now means… So, lambda bar maximizes theta. And, at the same 

time, we also have f x bar is theta lambda bar. You also have f x bar is theta lambda bar. 

So, what does it say? It says the maximum value of the dual problem is same as the 

minimum (( )) is equal to the minimum value of the primal problem. And, this is exactly 

what is strong duality. This is exactly what is strong duality. 

Now, there is an interesting thing, which I would not analyse here, because it will be 

beyond the scope of the class, beyond the scope of this set of very basic lectures, is that, if 

I do not know about what is the x bar, which minimizes the problem; I only know that, 

this problem has a lower bound; then, I can still show that, the dual maximum is achieved 

at some lambda bar and the lower infimum of the primal problem is same as the 

maximum of the dual problem. But, that we will not discuss here at all. What I will tell 

you is that, that is, show you now is that, this slater condition is a very important 

condition. If I take off a slater condition; if I have a convex programming problem at the 

slater condition fails, this strong duality will fail to hold; that is, f x bar would be strictly 

bigger than theta lambda bar. 
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And, that is what we are going to now discuss through what is called Duffin’s duality gap. 

It is the very famous reserve examplity to Richard Duffin. Now, what I will do is the 

following. I will write down this very famous problem. Problem is to minimize subject 

to… The first thing that you have to observe that, when I write root over x 1 square plus x 

2 square is less than equal to x 1, it simply means x 1 square plus x 2 square is less than 

equal to x 1 square; which means x 2 is equal to 0. See if I put x 2 is equal to 0 and take 

any x 1, then the feasibility is guaranteed. So, the feasible set C in this particular case is 

set of all x 1, 0. Of course, if I have to maintain this one, because here if I even take a 

negative number – if I take minus 2; minus 2 square plus 0 plus 4; root over 4 is equal to 

minus 2. So, minus 2 cannot come here. So, what has to come is R plus; x 1 has to be 

greater than equal to 0. So, I cannot take a number by the very expression – very 

expression on this unequality, I cannot take x 1 to be non-negative. So, that is the feasible 

set. 

Now, let me write down the Lagrangian function, which is… Now, look at the whole 

thing very very carefully. Now, if x 2 is 0, then the primal optimal value – this is a primal 

problem – primal optimal value is equal to 1. Now, let us look at the dual optimal value. 

How do I compute the dual optimal value? Now, theta lambda is equal to… is same as… 

Now, let me look at this whole thing. Now, what I will do, let me fix up a value of x 2 and 

now vary x 1. So, once I fix the value of x 2, this is a function of x 1. So, on this line, for 

a fixed… – this fixed x 2 – on this line, I need to find what is the minimum of this 



function. And then I will vary the x 2. So, basically, I am sweeping this horizontally and 

then sweeping this vertically; means I am covering all of R 2. 

Now, look at this. When x 2 is fixed; as I increase the value of x 1; as I make x 1 go to 

infinity, make it bigger and bigger and bigger and bigger and bigger; this part goes down 

to… The difference between this and this continuously decreases; that is, x 2 gets fixed 

and x 1 becomes so large that it dominates. And, x 1 so the value of this is almost same as 

this. So, there is difference between root over x 1 plus x 2 square and x 1. That 

continuously diminishes. And hence now, on this line, the minimum value of this problem 

– on this particular line for this fixed x 2; say this is x 2. This value is e to the power x 2. 

Now hence now, I try to vary x 2 over this line and see what is the minimum of… So, 

basically, what I am doing? Minimizimg over x 1 and then minimizing over x 2. 

Now, if I vary x 2 along this line; so, as x 2 goes to at minus infinity (( )) x 2 goes to 0. 

So, the theta lambda value is actually 0. So, max of theta lambda when lambda greater 

than equal to 0 is also 0. So, you will see there is a duality gap; optimal value of the dual 

is 0; optimal value of the primal is 1. And so, there is a nonzero duality above 1. So, this 

is a very very famous example.  

And, I think your optimization education, even in the fundamentals, would not be 

complete unless you really understand this example. And, it came out in a very famous 

journal of math programming. And, see again, I would like you to notice how I have done 

it. I have first fixed up x 2 and minimized this function over x 1. So, I have covered this 

part. So, what I know is the minimum value of this function over this line. So, for all such 

lines (( )) have fixed x 2 from here, I go down; I know what is the minimum value. So, 

the minimum value of the function over the whole x 1, x 2 plane is what I get as I make x 

2 go to infinity minus infinity once I know the minimum value over this line when x 2 is 

fixed. And, that is e to the power x 2. And, that is how we obtain our problem. 

So, here we have almost done a lot about duality. We have done various properties of 

duality. I will give you a small example when I begin tomorrow’s lecture as to how I can 

make this duality useful. First of all, you should notice that, how can I actually apply this 

duality, this idea to real problems. Of course, I will give you some homework not to 

really do, but go and try to find in the internet, find in the text; that shows that, if you 

have a linear programming problem, then to get strong duality, you do not require any 



constraint qualification; no slater condition, nothing. And, you will get the same… You 

will always get strong duality.  

Now, just go and find out from the internet. But I will still want you to tell me what is the 

proof. The proof again would be based on the approach that I have taken through Kuhn-

Tucker conditions. So, maybe we will do it tomorrow a bit of duality for half of the class 

and then we will show how can we use… Again, the idea of the projected – not the 

gradient, but projected subgradient method to actually make the dual problem 

computable. Actually, we can do some computation with the dual problem. That is what I 

am going to demonstrate in the next class. So, I think this is almost towards the end of the 

course and we will have… 

After tomorrow’s class, we will have 3-4 more lectures. Of the three lectures, one we will 

be trying to describe to you how to apply Newton’s method to constraint problem. And 

probably, if we have time, we will talk about sequential quadratic problem. And, at the 

end, we will give you a brief idea about a new approaches – not a new approach, a old 

approach now given in a new box, because now, it has revealed a lot more properties 

called the direct search method, because we now have convergence analysis for that.  

See when you do optimization algorithms, it is very very important that you just do not 

bother about writing an algorithm and say whatever I have got is fine; you have to show 

that, whatever you have got is fine and you have to do it mathematically; you have to 

show under what conditions that the sequence at an algorithm would generate would 

either go to critical point or hit the actual solution. So, these are very very important 

aspects that you want to do when you want to design optimizational algorithms. So, thank 

you for listening to me. And we will continue our discussion on duality and bring in some 

subgradient time methods (( )) use of subgradients to solve non-differentiable convex 

function, convex problems in tomorrow’s class. 

But it is very very important for you to realize that, non-differentiability is a very, very 

important thing in optimization, because when you want to use this dual problem for a 

convex problem or any non-convex problem also, the dual function is always a non-

differentiable usually a non-differentiable convex function. So, it is very very important 

to know that non-differentiability is something, which you cannot get away within 

optimization. Though when you had started learning basic maxima, minima, you had 



really bothered only about differentiable functions. So, math optimization is really not 

about differentiability, optimization is essentially about non-differentiability about non-

smoothness. And that is something you have to realize if you want to have your 

foundations quiet strong in this area. 

Thank you very much. 


