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Today, we begin by telling, giving a brief idea, what is exact penalty function. And then, 

try to introduce to you a second order sufficient condition for optimality. 
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See what happens is that suppose you have x hat to be a KKT point of the standard 

mathematical programming problem P, which we had given in terms of equality and 

inequality constraints. But how do I know that this x hat is the local minimum of the 

problem? If all the functions are convex and for example, the equality constraints are all 

are fine; then it is guaranteed that such an x hat is not only a local minimum; it is a 

global minimum. The problem that in order to know whether x hat a KKT point is a local 

minimum, you need to find out something called second order sufficiency condition. So, 

this will guarantee you that yes, this x hat is the local minimum – a second order 

sufficiency condition.  

And this second order sufficiency condition is of fundamental importance when we talk 

about exact penalty function. In exact penalty function – when you study except penalty 

function, what we are trying to do is that, we are trying to devise a penalty function, so 



that when I solve the penalty problem for a large value of rho, I will get in most cases, a 

solution to the original problem. So, in this case, the penalty function is… 
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The reason why the other penalty function, where you have squares – here – fails to give 

you an exact solution – to give you a solution to exact or give you a solution to the 

original problem is essentially, because at the solution or at any feasible point, if you 

look at this one, when the original penalty function that we had studied in the last 

lectures; now, this function – if x star is feasible, then grad of… So, any such point does 

not satisfy you the Karush-Kuhn-Tucker condition unless you have grad of f x star equal 

to 0. If grad f x star is equal to 0, then such an x star can be thought of given as the 

Karush-Kuhn-Tucker point. 

But the problem largely is that, if this is not equal to 0; which can be in most cases, 

because you are talking about constant optimization. So, this will never lead to… Such a 

problem would never give me a Karush-Kuhn-Tucker condition, will not satisfy the 

optimality condition. And, hence, we would be in trouble in the sense that… because that 

derivative is 0. So, basically, then if you want to solve it, because this is 0, because 

unless grad f x star is not equal to 0, we cannot say that x star is a solution to the 

panelized problem itself unless I have grad f x star… 

No, grad f x star is not equal to 0; then, x star is not a solution to the panelized problem. 

So, if you have a feasible point; then at that feasible point, this is equal to 0. So, if x star 



has to be a solution to the penalized problem with some rho, then this must be true. So, if 

this is 0; then, unless this is 0, you cannot say that this whole sum would be 0. So, if this 

is not 0 and this is 0, the whole sum is not 0; so, x star cannot be a solution to the 

panelized problem; that is, this x star is not a solution or local minimum to… which is 

not an unconstrained local minimum. So, that was the question I asked you; that means 

there cannot be a solution of the original problem, which is the solution to the panelized 

problem. So, how can we remedy this situation? That, if I have a solution to an original 

problem; then, under certain conditions, I will have a solution to a penalty problem. So, 

if I continue solving a penalty problem for large value of rho, I will come across a 

penalty problem, where whose solution would be actually the solution of the original 

problem. 
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Now, that is done using what is called the exact penalty function, which we will now 

write as phi rho, because this will entertain this property; that if the functions are twice 

continuously differentiable, then if x hat is a local minimum of the original problem; 

then, x hat is also a solution or local minimum to this problem. So, this is very very 

important; that a solution of the original problem is also a solution to the penalized 

problem. So, for rho sufficiently large, if you solve this problem; then, the solution that 

we have got – if it is equal to the original problem, is actually a solution to the original 

problem. So, this thing is called the exact penalty function – exact penalized problem 

rather I would say is to take a mean of this over R n. 



Now, in order to understand how such a thing happens that, how does the original 

solution, original local minimum is also a local minimum of this penalized rho for some 

rho’s sufficiently large. For that, we need to understand what is called the second order 

sufficiency condition or SOSC – second order sufficiency condition. But, this will play a 

very vital role in establishing this fact. So, we are trying to remedy the problem that we 

have for the standard penalty function by using what is called the exact penalty function 

and what the exact panelized problem. 

So, now, we have talked about KKT conditions; we have talked about… See in 

unconstrained case, we know when grad f x equal to 0; if x star is a point, which satisfies 

grad f x equal to 0; and, if the (( )) at x star is positive, definite we assure that x star is a 

local minimum of the problem – straight local minimum rather. Now, what we are trying 

to say is that, in case of the constrained problem, we had never given or made any 

discussion what could be a sufficient condition. Hardly, it is discussed in optimization 

courses. But, I believe that in some way, though it might not be so easily checkable, it is 

very important in understanding of the theory. 
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For example, here in this exact penalized problem, such a condition plays a crucial role. 

So, we would now go and look into the second order sufficiency conditions. Given a 

KKT point, what extra condition the point should satisfy, so that we can guarantee that 

such a point is a local minimum? So, that is what we are trying to do now. Today, our 



job would be to describe you what is the second order sufficiency condition. And then, 

tomorrow, we will discuss about the exact penalty function and move over at the end of 

tomorrow’s lecture to what is called Lagrangian duality, which is also very very 

fundamental thing in optimization. 

Suppose now you have this problem, the one which we were studying – problem P. Now, 

suppose x hat is a KKT point of this problem. But, you know corresponding to the KKT 

point, there could be many multipliers with respect to which x hat is a KKT point. So, 

given a point x bar, this is defined as a set of KKT multipliers. So, this consists of all 

elements lambda, mu – lambda bar mu bar in fact – element of R m plus cross R p such 

that 0 is element of grad of f x bar plus summation i is equal to 1 to m lambda i grad of g 

i x bar plus summation j is equal to 1 to p mu j grad of h x bar and then… And also, I put 

lambda bar. So, lambda bar i g i x bar is equal to 0 for all i. So, this is a set of KKT 

multipliers; that is, at x bar, find all these multipliers lambda bar and mu r, which would 

satisfy the KKT condition, which will make x bar a KKT point. So, we need this set. 

And then, we need what is called the linearization cone associated with this problem. So, 

what is a linearization cone at a given point x bar? If x bar is a feasible point, consider x 

bar to be feasible. So, the linearization cone is given as follows. I will… Or, at L at x bar, 

the linearization cone is a set of all d such that… I am of course, assuming these are all… 

Now, let me assume not only continuous, but twice continuously differentiable. So, 

assumption would be problem data – this data, this function, this function and this 

function. They are twice continuously differentiable; that is, all of them are in C 2 R. So, 

this would consist of the vectors d, which satisfy this one for every i in the index – an 

active index set; and, grad of h x bar d is equal to 0 for all j. So, it is a collection of all 

the d’s, which would satisfy this system of equality and inequality. 

Now, you have to understand that, this linearization cone is a cone. The linearization 

cone – we are telling it as cone. But, the set L x bar is a cone and it is a convex cone. 

Now, let us denote the feasible set of the problem P as C; that is, C feasible set of P; that 

is, a set of all x such that g i x is less than equal to 0 for all i and h x is equal to 0 for all j. 

Now, if you calculate the tangent cone as we have done in the last classes, the tangent 

cone to C at the point x bar is contained in L x bar. So, these information are now read… 

With these information, we are now ready to write down the second order sufficiency 

conditions. But, another important construction that we have already done earlier; but, 



now, we will do it again is the Lagrangian function associated with this problem. So, the 

Lagrangian function l x lambda mu is the function f x plus summation lambda i g i x plus 

summation – here I transform i from 1 to m and here I transform 1 to p. Now, here x is in 

R n; this is in R m plus; and, this is in R p. So, here there is a restriction on lambda. 

Lambda – all the components have to be greater than equal to 0. This is called the 

Lagrangian function. 

(Refer Slide Time 17:51) 

 

Second order sufficiency conditions – what will be important here that you should be 

able to compute the easier matrix of this function. And, that would lead us to develop 

what is called the… So, we will now state the main result. Now, let x hat theorem I 

would say – this is a very important rather. Our idea would be to sketch a proof of this 

fact. Let x hat be a KKT point of P. Now, here we are going to make certain crucial 

requirement; we will take some crucial requirement. 

Let for all S not equal to 0 and s element of L x bar grad of f of x hat S is equal to 0. So, 

all elements of the critical cone – they satisfy this particular condition in terms of the 

objective functions gradient – gradient of the objective function. So, here you remember 

the objective function is also appearing in the description in the very beginning. So, x hat 

is a KKT point. If this is a local minimum and suppose constant qualification satisfy, it 

will be a KKT point. 



Let for all S not equal to 0 with S element of S x, this holds. Now, assume that 

supremum of lambda mu – element of… Now, assume that for every S that you have 

here, you have this condition as a easier matrix at x hat. This matrix – this is strictly 

bigger than 0, where the supremum runs over all the possible lambda mu’s in this. So, 

you are taking those lambda mu’s, constructing those lambdas, those Lagrangian 

functions; and then, checking that for every S of this form, this holds for all such S – for 

all S, which satisfies this. Then, if this happens, my conclusion is that, then, x hat is a 

local minimum. 

Now, how would you go about doing the proof of this? So, let us go about the theorem 

once again. It says that, if x hat is a KKT point, then of course, the KKT point would be 

a set of KKT multipliers, which could be single turn, which could be more than 1, 

whatever depending on the constant qualification. KKT point then… Let for all S, which 

is nonzero and S which belongs to the linearization cone, this cone is called the 

linearization cone. Why? Because it looks at only the linear part of the function. 
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Basically, if you express the functions g i with i element of I x naught; if you make a 

linear approximation of g i's, it will be g i's at… Around x bar, the linear approximation 

of g i is like this. So, this will be some g i of x plus lambda d. And, assume that x plus 

lambda d is a… When I am… Of course, I am not bothering about… So, lambda is here. 

But, if it is feasible, this is less than equal to 0 and this is equal to 0. 



So, basically, then you will have grad g i x bar d is less than equal to 0. So, this is… So, 

basically, replacing the original problem, which is linearized version. So, you are 

replacing the constants with its linearized version, with its linear approximation. Around 

x bar, I can replace the original prob function by this function. Maybe you can forget 

about the lambda. And, replace the original function by this function. Since i is in the i x 

bar, this will be 0. So, this will be less than equal to 0. And, that is exactly what you 

want. So, you want the constant function around x bar to behave in this fashion in terms 

of linear function in d. So, that is why it is called linearized cone. So, what it says that, if 

you take any nonzero element from the linearized cone, 0 is obviously an element there. 
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Take a nonzero element is there; take a nonzero element from the linearized cone. And, 

for all such nonzero element with this equal to 0… I will just refine the writing. Let for 

all S not equal to 0, S element of this with this. So, take all those S, which is not equal to 

0 and it is belonging to this and also satisfies this. Assume that, that is, let for all S not 

equal to 0 with S element of this with this been equal to 0. So, you cannot take only those 

nonzero S from this for which this is true. And, for those S’s, assume that this is true. 

And then, x hat is the local minimum of the original problem. And, we will give a sketch 

of the proof of such a thing. The proof would be quite long. So, we will do it step by 

step.  



Now, let me just remove this part; in the sense, I am rubbing it off, so that you do not get 

a feeling that the main result is not written; that means the main result is written. But I 

would just request you to remember this little linearization cone business and what I 

have just described and the tangent cone. But the tangent cone may not be exactly equal 

to the linearization cone. If it is equal, then we say some sort of an (( )) type qualification 

condition holds. So, we will not get into all that details, but just we will try to prove this. 
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We will start with a contradiction that, let x hat is not a local minimum; which means 

that whatever neighborhood you take around x hat, there is one y hat for which f of x hat 

is strictly bigger than f of y hat; which means that, what I can do, let x hat is not a local 

minimum. Then, without loss of generality, I can say that, there is a sequence of feasible 

points y k, which is converging to x. But for each of those y k’s, f of y k is strictly less 

than f x hat. So, there exists a sequence of feasible points y k such that y k tends to x hat 

and f of y k is strictly less than f of x hat. Now, once that is known, we would now 

construct some important things. 

Now, let me construct a sequence S k. Now, this sequence is bounded, because each is of 

norm 1. And, this sequence is going to some S k; there is a unbounded… there is a 

convergence of sequence of S k, which goes to some S. Now, if you observe carefully, if 

I put this as T k; without loss of generality, let me assume that, S k goes to S and S is not 

equal to 0; of course, norm S is 1. Now, observe that, if I put this as T k, this T k is going 



to 0 and y k is a element of the feasible set; y k is going to x hat; and, this whole thing is 

going to S, which simply says that S is an element of the tangent cone to C hat x hat; 

and, which is a subset of L of x hat. See immediately, certain things are known to us. 

And, that will help us to do some progress. 

Now, if u have remembered the optimality condition that we had spoken off in the last 

class, is that, if u have the tangent cone and if you have a differentiable function 

minimizing a… Not last class, last to last class I guess. If you have a differentiable 

function and you want to minimize it over a close set C, then the optimality condition is 

that, the gradient of f x in a product with all the tangent vectors must be greater than 

equal to 0. So, in this case, we should always have… This must be greater than equal to 

0, because S belongs to T c x as a part. So, this comes from necessary optimality 

condition. 

Now, if we look at this condition – this one and apply the Taylor’s theorem here; that is, 

if you write this as f of y k as f of x hat plus y k minus x hat plus o of norm y k minus x 

hat is Taylor’s expansion. And this is less than f of x hat. Now, if I divide both sides, this 

will cancel of course giving this is strictly less than 0. See if I divide this by this divide 

this – on both the sides by norm y k minus x hat and then I make k tends to infinity; and, 

what I will finally have from is grad of f of x hat, because this is going to S. What I will 

have finally, is this. So, this combined with these two gives me this fact that, grad of f of 

x hat s is equal to 0. And of course, S is element of L x hat and also S is not equal to 0. 

So, all these things are combined in this story. 

Now, once you have combined the things, now, you have an S, which satisfies all these. 

So, that S must satisfy this. So, the supremum of this is strictly bigger than 0 for all 

lambda mu; which means there must be at least one lambda hat mu hat in this for which 

that this in a product is strictly greater than 0. So, it would imply there exists – just by the 

definition of supremum, lambda hat mu hat element of lambda x hat such that S times 

grad square (( )) of this Lagrangian into the required S is strictly bigger than 0. This is 

just by the definition of supremum. What we will do, our job would be to contradict this 

fact. Therefore, now, we would use the second order expansion of a function – Taylor 

expansion. So, what is that second order Taylor expansion? Here in the second order 

Taylor expansion, because we will now write this second order term… 
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After the second order term, there will be an error term, which would be of the form this 

– o of h square. So, o of h square by h square – that goes to 0; h is a real variable – as h 

tends to 0. So, limit… This is going to 0 – is equal to 0. So, we would have some 

quantity like this. So, what we would now have is f of y k is f of x hat plus grad f of x hat 

y k minus x hat plus half of y k minus x hat grad square f of x hat y k minus x hat plus o 

of norm y k minus x hat whole square. The same argument will go through for each of g 

i's – maybe just for the active indices; does not matter. 

Now, here I have g i x hat; so g i x hat would be 0. I am just taking i element of I x 

naught. That is exactly what is required – i x hat in the Karush-Kuhn-Tucker thing, 

because lambda i g i x hat is 0. For all inactive cases, lambda is 0. So, I do not have to 

bother about those things. So, let me just take this part. And then, we will again write 

down everything in terms of the scalar thing. Let me take this out. I will have the same 

grad g i x hat y k minus x hat plus half of y k minus x hat grad square g i x hat. In fact, 

you do not need to even take this, but I am taking this just to make it easier, simpler as 

that, because that is what you will get at the end. If you feel uncomfortable, some people 

might try to confuse to take it for every i; take this for every i – this expression. For 

everyone, you will have this order quantity at the end. So, this is… Similarly, for h j’s, 

you will have the same expression. 



Now, what I do is multiply all of these with lambda i and this with u j’s and then add up 

the whole thing. So, if I add up this, add up this; now, I multiply with lambda, this with 

mu j’s. So, if I add up this, this and this; this multiplied with lambda, this with lambda 

mu j; then, what I would have is this part, would give me the first condition of the 

Karush-Kuhn-Tucker condition. This part would give me 0, because lambda i g i x hat is 

0; h j x hat is anyway 0. So, this part will go. This part is anyway g i y hat; g i y hat is 

less than equal to 0 and this is equal to 0. So, what I will have is finally, if you add these 

things completely; after addition, what I want to do is this – multiply all of these by 

lambda i's – these ones; multiply all of these by mu j’s. 
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Then, what you will finally get is f y k greater than equal to f of x hat plus grad of L x 

hat and lambda i hat of course; same lambda hat, mu hat – the same ones; y k minus x 

hat plus half of y k minus x hat… So, you multiply this with this, this with this. And 

then, added all the three. So, you will get some resulting equalities from here. And then, 

add all the three to get this one. Now, if you add and… this order quantity, this order 

quantity, this order quantity will again be that sort of order quantity of same type. Now, 

what you do, you basically know what has happened; you know that f y k minus f x hat – 

that is strictly less than 0. That was our basic assumption at f x hat was bigger. So, I will 

have… But this zero (( )) because x hat is the Karush-Kuhn-Tucker condition. So, this is 

0. So, I will have 0 – here this one. So, this is strictly less than 0. This will be strictly less 

than half of y k minus x hat grad square lambda hat mu hat y k minus x hat plus… 



Now, divide both the sides – all the sides by y k minus x hat whole square and then take 

the limit as k tends to infinity. So, divide by norm and then go to limit as k tends to 

infinity. So, now, noting this fact, you will simply see that, when dividing, y minus x hat 

square will come here – y minus x hat and here y minus y k minus x hat. And then, that 

will go to S. So, you will finally have S of grad square. So, that would imply… because 

this will go to 0, this will become… So, less than equal to 0. This finally becomes… So, 

what I have done, when I take the division by this, I separate the y k minus x hat whole 

square into norm y k minus x hat into norm y k minus x hat; one I push under this; one I 

push under this.  

And, here I push the whole norm of y k minus x hat whole square. So, when I take k is 

going to infinity, y k is going to x hat; norm y k minus x hat whole square is also going 

to 0; norm y k minus x hat is going to 0. So, this will go to 0. And, this will go to S – this 

part and this will go to S. And, this strict inequality will go to equality. And, that is 

exactly what we get. But, this is a contradiction to what we have. So, this one contradicts 

this one.  

And hence our assumption that x hat is not a local minimum (( )) x hat is a local 

minimum. This is a very very important result, though it is not easy to check. But it is 

mathematically very beautiful and it shows up to what level of complexity one can have 

when one actually handles constraint optimization problems. 

Thank you. 

And, tomorrow we would again start our discussion on exact penalty functions. 

 


