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So, today we are going to concentrate on unconstrained optimization. That is here we 

are going to look at minimizing effects where x is in R n whole R n. Now, what are the 

two aspects of this problem? So, any optimization problem has two aspects them two 

aspects; first is the theoretical aspect and the second aspect is the computational aspect. 

Now, in the theoretical aspect, what are we suppose to do in the computational aspect, 

what are we suppose to do these are the two main themes of discussion we will carry 

out today. So, let us see what is the, what is the theoretical issues here. The main issue is 

to characterize a local minimum. Why you need to characterize a local minimum? 
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It is important to note the need to characterize local minima, minimum is essential to 

develop is essential towards developing computational techniques. So, in the theoretical 

characterization there are 2 things that we really have to bother about these. So, there 

are 2 aspects of it namely the necessary condition and other is the sufficient condition. 

Now, what do these two conditions do? A large amount of optimization literature is 

bothered about really geared towards designing these sorts of conditions for various 

types of optimization problems. Now, why you need a necessary condition, why you 

need a sufficient condition? Necessary condition tells us how to compute a candidate 

point for a minimum. 

So, necessary condition tells us who can be a candidate for minimum, who can be a 

candidate for minimum. Now, if he tells you who can be a candidate for minimum. So, 

what it should do? So, necessary condition will do this. If x bar is a local minimum, 

what condition it must satisfy? Means a point, which does not satisfy that condition 

cannot be a local minimum. So, that is very important. So, in order that your point that 

you say that possibly be a local minimum has to satisfy this condition. First you have to 

find the point which satisfies this condition. Then you check whether it is a local 

minimum or global minimum or whatever. 

If a point does not satisfy this condition, then it is ruled out it is it can never be a local 

minimum. So, that is why necessary conditions are very important or rather central to 



the study of optimization. Now, if x bar satisfies the condition the required condition, 

what additional assumption would guarantee that it is really a local minimum that is 

where sufficient condition comes. It tells you if these conditions are satisfied along with 

the fact that x bar has come from the computation that you do with the necessary 

condition then that x bar is a minimum. What condition it must satisfy? So that, x bar is 

indeed a local minimum. Now once you know this. So, our first job is let us layout our 

job properly. 
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Our first job to find the necessary condition, this we state as follows, which we write as 

theorem one of our study. It says that if, if from R n to R is differentiable and x bar is a 

local minimum, then my next question is, then what would happen then gradient of f at 

x bar must vanish. Like any other part of mathematics, optimization in a mathematical 

subjects it demands proof of what statement you are making. You have heard this when 

n is equal to 1 that is when f is from to R you have studied this in school if you are 

trying if you are given a ordinary function say x square plus two x plus theta when I ask 

you to find the minimum. You will immediately go and find the derivative you got it to 

0 find a point and try to do something. So, here so what we have to do to find the local 

minima is to first find a point which satisfies this. 

So, let us see whether this condition, how this condition gets satisfied? So, what we are 

writing here is formally the first proof of this talk. How does we how does we do we 



proceed to do the proof? No one has to understand, we are talking about local minima 

so around x bar we are looking at a neighborhood around x bar, we are not looking 

around, around the looking at the nature of the function very far from x bar. So, then we 

can employ tailors theorem or which is another way of talking about differentiability. 

So, we will use this idea of differentiability in a very, very sensible way. So, what does 

it mean by a local minimum. Since x bar is a local minimum. So, I will write it down 

completely. So, you can follow the proof step by step. 

Now, once you know that x bar is a local minimum what you have there exists delta 

greater than 0, such that for all x in the delta neighborhood of x bar, the ball around x 

bar f of x must be bigger than f of x bar. Now, I will try to draw the picture of this 

scenario in order to which can, which will make proof much clear. So, here is my x bar 

and here is the ball here is my vector x bar. So, this is my B delta of x bar. What I can 

do is let me take any vector w in any direction. Then I can choose I can choose to move 

from x bar along the direction w, say this is my w vector and so this was my x bar 

vector. 

So, I can choose to move from w from x bar long a direction parallel to w. So, let this 

point where I come and stop the x bar plus lambda w. Now, you see if I increases 

lambda there will be a threshold beyond which it will come out of the ball and then I 

cannot do anything. So, if I am within the ball I can relate the function values of this and 

with that of x bar that this function value at this point must be bigger than function 

value at x bar. So, for any w element of R n there exists lambda naught strictly greater 

than 0, such that for all lambda between s naught you see even if I lambda naught is the 

point where x bar plus lambda w this vector comes and touches the boundary, because 

once you are in the boundary you are out of the neighborhood. 

So, that is why you have a opened here. For all of these, so that is for all lambda of 

these x bar plus lambda w remains in the ball this naturally implies f of x bar plus 

lambda w is bigger than f of x bar, but knowing the definition of the derivative. Because 

the function is differentiable at x bar I can write I would just like to recall where I had 

written the definition of the derivative, this is the definition of the derivative. So, I can 

write here f of x bar plus lambda times grade f x bar to w plus mole o of ohm of lambda 

w. And this is bigger than f this also means the following this means that lambda times 

grade f x bar, this is what you get, because I have cancelled f x bar from both sides. 
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Now, let us look at this term o lambda w. So, whatever be the powers of ohm w, lambda 

would have the same powers. So, if you have, because you can bring out lambda outside 

here. So, you can write this as o of lambda ohm w. So, basically here if ohm w is fixed 

if I vary the lambda I can keep on changing the things. So, basically this is nothing but a 

o lambda quantity that is o of ohm lambda w by lambda as limit lambda tends to 0 plus, 

I have taken lambda as positive that should be equal to 0. So, here what I have observed 

now I have got if I divide by because lambda here is positive, because lambda is 

positive I can divide both sides by lambda. 

So, let me write down more clearly, we have now as lambda tends to 0 plus that is 

lambda strictly greater than 0. And lambda is going to 0 so as lambda tends to 0 plus we 

have because this will go to 0. Now, w was chosen arbitrarily, w was not fixed thing fix 

vector. Since w was chosen arbitrarily, we have for all w element of R n for all w 

element of R n. So, once this is known, now put w is equal to the negative of grad f of x 

bar. So, this would imply from this condition that grad f of x bar minus grad f of x bar is 

greater than equal to 0 which would imply minus of because I take the minus outside 

and normal inner product of this a vector with itself is nothing but square of its own is 

greater than equal to 0 which would imply at the known, but it is this is the length. So, 

the length of a vector from the length of a vector cannot be less than equal to 0. 
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So, this would imply that and you know from the property of the norm this will imply 

that the gradient of f at x bar is 0. So, here to here we have applied the formula norm of 

x is equal to 0 if and only if x is equal to 0, this is the property of the know and here at 

this point from here to here we have employed the fact that x x, which have been a 

product of this is nothing but square of the norm. So, we have this condition. Now we 

need to test it up for example, you take first the function f x is equal to x cube. We want 

to show that it is truly a necessary condition at a point x bar which satisfies this need not 

be a point of minimum. Any point which satisfies, this is called a critical point. 

Now, you have f x equal to x cube, let us look at the picture of f x equal to x cube a 

graph. Now, f dash x bar equal to 0 would imply 3 times x bar square is equal to 0 and 

that would imply x bar square is equal to 0 and that would imply x bar is equal to 0. So, 

the only critical point in this case is x bar is equal to 0. But x bar is not a point or not a 

local x bar equal to 0 is not a minimizer is x bar equal to 0 is not a local minimum. So, 

this is very important that this is just a necessary condition and not a sufficient 

condition. 
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Let us look at another example where this is possibly alright. So, x y here is in R cross 

R each individually from the real line which is nothing but R 2. Now, if I want to find 

the gradient of f x y, I want to find this means I would have two of x bar 2 of y bar. This 

vector would be equal to the 0 vector. This would imply x bar is equal to 0 vector and y 

bar is equal to 0 vector. So, it is x bar y bar is equal to 0 0 is the critical point. But x bar 

y bar equal to 0 0 is also a point of global minima of the function. How do I know this 

fact? Because you observe that x square plus y square is always greater than equal to 0. 

So, x square plus y square because this is all non negative is bigger than x bar greater 

than 0. this is true for all x y in R 2 where this is 0 this is 0. 

So, this would imply that x bar y bar is truly a global minimizer. So, here you see the 

two different notions of differentiable function in 1 case, I am having the critical point 

to be a global minimizer this forms an important class of functions called convex which 

will focus on little later for some part of for a little part of the course. But which is none 

the less important and there is a complete course on optimization problems with convex 

functions which are already been delivered and you will see it quite soon. But here we 

are dealing with all types of functions which are differentiable could be convex could be 

non convex whatever. So, here is so there are two examples; one example here for 

example, this function is really not convex. 



Now if, now the question is what is the point here? Actually here you see the curve it 

changes the nature. So, if you have a function from R to R then a point is either a local 

or global minima a critical point or it is a like this where the curve is changing shape. In 

general, I could find the critical point which is neither a local minimum, local maxima 

nor nothing it is just a critical point for and it is not also a saddle point. Now, I am not 

going to get into the saddle point issue right now, because they might just confuse you. 

So, what I am going to get going at this movement is that if I have a critical point, how 

do I know that it is a minimum. To answer this question we have to additionally assume 

certain conditions on function f. 

So, what are those conditions? so trying making an attempt to answer it just by having 

the knowledge that f is differentiable or even continuously differentiable does not help 

me at all it does not tell me anything, because that is where we get stuck. But now if I 

put some more additional conditions on the function can I device a condition which if 

satisfied by a critical point with guarantee that such a point is a local minimum. First 

condition is that if f is twice continuously differentiable. 

And second condition is the Hessian matrix is positive definite at x equal to x bar, 

where x bar is a critical point. Now, what do you mean by the term positive definite and 

what do you mean by the term positive semi definite these are terms which comes from 

matrix theory, but which are very important in optimization. And so I would just like to 

take a minute to explain what these terms are. So, our matrices by because we have 

taken the function do be twice continuously differentiable the hessian matrix is a 

symmetric matrix. 
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So, let us consider a to be A n cross n symmetric matrix. Now, now A is said to be 

positive definite positive, semi definite positive semi definite. If the inner product of x 

with A x is always bigger then equal to 0 for every x in R n. So, this is condition is 

always taken and now A is said to be positive definite if x A x is strictly bigger that 0 

for all non zero x in R n. In fact if A is we can show that, this is where lambda min of A 

is the minimum Eigen value. It is important, however to note that if A is positive semi 

definite all Eigen values are non negative. If A these are also 2 bullet points, if A is 

positive definite, then all Eigen values are positive. Of course, these Eigen values are all 

real, because A is a symmetric matrix. Now, this is what you have now we go to the 

main question the second order result. 
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So, we are now going to state the sufficient condition for optimality and you would be 

amazed how strong a result we get. Now, here is the result. You might ask me for a 

proof of this, but the proof keeping in view that this optimization course is really for a 

very broad audience from very different disciplines in engineering in the sciences, so in 

mathematics of course. But would not like to bog you down with the proof of this which 

is quite technical and needs a slightly more deeper understanding on mathematics I 

would rather give you the result. And you would see for yourself how to apply it, then 

we would go more into the algorithmic aspect computational aspect which would be 

really of useful to you, and and you would be really able to use it in several things 

specially those who are in engineering sciences. So, let us just state this result. 

So, let f from R n to R be a differentiable function. Let x bar elemental of R n be a 

critical point that is gradient of f x bar is equal to 0. Let additionally f be twice 

continuously differentiable which you had added here also I just did not do it. And the 

hessian matrix is positive definite, then x bar is a strict local minimum proof of this 

would be added to the f A Q of this subject. But here we just do not do the proof. So, 

you can see it later on in the website of this course main conclusion here is that it is not 

just a local minimum it is a strict local minimum. So, it forbids global maximum to take 

this position so global maximum can never be a strict local minimum. So, we are really 

getting a local minimum and not been fooled by flat type of functions where you have 

you can say a local minimum can be also global maximum. 



So, those sorts of anomalies won’t come because it will give you this. So, this is a very 

important result and this result has to be really appreciated. Now, if you look at for 

example, I take an example of a quadratic function. Now, then grad of f x bar equal to 0 

would imply A of x bar would be equal to 0. But if A is positive definite, then you will 

observe that the hessian matrix is a here for any x actually the hessian matrix is A. So, if 

A is positive definite here the answer would be of course, 0 as we will soon see if a is 

positive definite. Then x bar equal to 0 is the only solution it is a strict local minimum 

there are many other cases where a your second order condition you have learnt in 

school actually gives you the strict local minima. So, this is very simply case actually 

which is to illustrate you that how to how do you find the hessian. 
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For example, if you have a say a more slightly strong slightly different looking scenario, 

put n equal to 2. Now, try to figure out say let me put f of x y. So, let me put out try to 

figure out this. So, this would imply 3 x power minus 1 whole square is equal to 0 and 2 

y bar is equal to 0. So, the only critical point is, point is x bar is 1 and y bar is 0. Now if 

I want to compute the hessian of this. So, I compute the hessian of this. So, you I take 

the gradient of this right. So, I take the gradient of this in x bar, then in y bar and write it 

as a row vector. Then this will become 6 x bar minus 1 and the next term would be 0, 

because there is no y term. And here first I will differentiate with respect to x term 

which is 0 and then I have 2. Now, grad square f at 1 0 would give me 0 0 0 2. 



So, let me try to find the Eigen values of this matrix, which Eigen values of this matrix 

means you have to find, so that determinant of this is equal to 0 which would imply 

lambda is 0 and lambda is 2. So, this matrix is positive definite. So, this is positive semi 

definite, but not positive definite. In fact, in fact x bar, y bar equal to 1 0 is not a local 

min. In fact, it is not a local max is just a critical point, see it is positive semi definite 

does not give you, what you want? What you require it is positive definiteness, which 

will give you what you require. So, this example illustrates that. 

So, with this I end today’s discussion. And tomorrow we would talk about decent 

direction as to how to really compute a point. But you know in optimization we will 

learn a very important lesson tomorrow that real optimization problems cannot be solved 

exactly. So, we will get in to that issue tomorrow and in detail try to develop 

computational methods to solve or minimize a differentiable function over R n. 

Thank you very much. 


