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Welcome once again to this course in optimization. Today we are going back to our 

study of Quasi Newton method which are by the way very effective methods. Now, this 

is the problem that we really intended to solve, because we had a matrix B k. We now 

want to improve from B k to B k plus 1, such that that B k is B k plus 1 would be 

symmetric satisfy the second equation as well as it has to be a positive definite at the 

end. So, how do I do it? How do you choose the norm of a matrix? Now, because I am 

taking a symmetric matrices, in the case of symmetric matrices there is an important 

norm. 

Say, if you have A matrix a there is an important class of norm called the Frobenious 

norm. This Frobenious norm can be actually written as the trace of A A and you take half 

of that right. Now, of course this simply means that you can just write it down right. 

Now, because if you have an (( )) matrix, you can write down this as summation if all the 

elements of these are a i j. So, you can write them as a i j square where i and j are 

varying from 1 to n.  
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Now, usually in practice people have used what is called a weighted Frobenious norm of 

a matrix. So, it is called the weighted Frobenious norm. Now, the weighted Frobenious 

norm of the matrix is defined as the matrix a multiplied by a weight, now I would like to 

remind you why we use this symbol w to the power half. So, what is that square root of 

A matrix precisely? So, these matrices are p s d matrices right usually these are positive 

semi definite matrices.  

So, what it means that if you give me a positive semi definite matrix, there is a famous 

result if a is positive semi definite. Then there exists a positive semi definite matrix p s d 

matrix symmetric A is a n cross n percent symmetric p d positive semi definite matrix, 

then there will exist a symmetric positive definite matrix B, such that a is equal to B 

square or B is usually marked as or note denoted as a to the power half. 

So, with this that is that is the meaning of this w, now usually w is, so chosen that you 

know if you take a matrix like this basically, then if you look at this matrix B minus B 

bar or B minus B k. So, you really have to choose you want the weighted thing, so it 

should be W to the more minus half, so this is not the only way to do it. It is, but this is 

one of the ways used in practice, so we are just showing one of you this approach, but it 

might be quite difficult for a beginners. 

So, we will not just go into too much details give you an idea about what would go on 

and then take a simpler version of the problem and give a solution which Guler has given 



which is the simple and beautiful solution. Once you see that you can really appreciate 

and understand what has happened, so if you take A w like this we expect w to satisfy W 

y k should be is equal to s k, which is nothing but the reverse of it is nothing but the 

reverse of the if W y k is s k, then of course B s B k s k is y k this can be y k and so and 

so forth.  

Sorry, B k, so this is what you would expect. We we expect this to happen and how do 

you know what is your W? So, usually W is given as the inverse of the matrix, G k 

inverse, which is called the average Hessian. This has a particular formula which says 

you are a basically integrating out the Hessian matrix. So, you are taking the matrix and 

integrating it out term by term every term of the matrix is integrated and the new matrix 

means. This is now a matrix G is a matrix whose every term is some sort an integral of 

this you take the Hessian matrix term by term you integrate right this is s k minus s k 

plus 1 in to d 2. If you choose something like this and try to optimize this problem get a 

solution to this problem. 
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Then your solution becomes, so if I call this problem as Q N or the Quasi Newton 

problem. 
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So, the solution of Q N is I minus y k s k transpose divided by y k s k, looks elegant that 

such a complicated looking thing would give such a nice result. So, these are matrices, so 

if the starting matrix B naught is I, then B 1 is product of this, right? Product of this 2 

into this plus, this now this sort of updating moving from B k to B k plus 1 is called the 

Davidon Fletcher Powell update or the Davidon Fletcher Powell method. So, a the upper 

one is called… Now, the question is how do you actually solve this problem? The 

weighted a graph problem ha how do you actually solve that problem?  

That is a very, very important question and if I really want to solve that kind of problem 

it is quite difficult and in the sense that involved. It might be the scope of it might be 

beyond the scope of this audience which is a mixed 1, I guess so I will look into much 

simpler version of this problem which i take from Guler, Osman Guler Foundations of 

Optimization and with that simple problem I will try to solve that simple problem 

leaving a difficult job to you of course, but let us look at that simple problem, so simpler 

version, a problem Q N due to Guler. Now, let us look at this problem, see we will just 

look into this problem, so we will take an x let us, so let us.  

So, we will consider now the problem is on the space S N of symmetric matrices. So, we 

will minimize a matrix n cross n matrix X using the Frobenius norm, in fact I I will 

minimize half of the square of that such that x times a is b, a is an n cross n matrix and b 

is an n cross n matrix and of course, we do not expect b to be 0, b of course we will 



expect b to be non zero and a to be non zero too. So, let us just take for the time being, so 

X is my… So, this is a structured optimization problem as Guler calls it.  

So, we will just write it down here as this is a structured optimization, problem. In fact I 

have a query to give you here as a home work can you take this? Can you show that B k 

plus 1 is positive definite, if B k is so. Take it take take this as a home work. Now, we 

are going to look into this problem and try to solve this problem. If I write down the I 

can write down everything in terms of the variables x i j, where X I can choose, X the 

matrix X can be written as, so these x i j can be my variables.  

So, they are n square variables known and these thing, X equal to x transpose this can be 

setup for for… So, I can write the, this constraint can be written like this and this 

constraint this 1 as as I have shown you earlier can be written as. Now, so how do I 

construct the Lagrangian of this. So, that I can write down the Karush Kuhn Tucker 

conditions the Lagrangian which is of course, given in terms of X lambda, right? Delta 

and this is now given as half summation i j from 1 to n x i j square plus. 
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Now, this x a equal to b can be written as summation x i j a j minus b j, so you can write 

this very basic matrix multiplication. So, it is i is equal to 1 to n lambda i b i minus 

summation x i j a j. Now, if you look at this j, j is equal to 1 to n and then you of course 

have, so this is your Lagrangian, but this you really try to take the derivative and all 

those things this will become very, very complicated. So, in order to make the solution 



look simpler to do the solution simply what we do is, we a actually put in this whole 

thing in form of a matrix, in terms of the matrix X.  

So, X will now play a role, you see the complicacies that will arise, if you are now 

putting a weighted thing and getting this, all right? Now, let me write down the stuff, so 

you know in general if you have a matrix X in the space R n cross n, so any X is a 

member of R n cross n, it can be represented because if I I can represent a matrix x, if I 

by using a fake operation if it is if it is column is first column is a 1 second column is a 2, 

then I stack up the columns like this. And I get this n, n, n, n, n times. So, this is a n cross 

n into one vector.  

So, it is an n square vector and this vector is a member of R n cross n. So, that is why it 

is always written like this X is R n cross n. Then the inner product if this is the case, then 

inner product, then the inner product is given as follows. The inner product of two 

members of R n cross n is usually given as trace of X transpose Y. If x and y belong to S 

n, which space of symmetric matrices, space of… Then x y can also be written as just 

trace of, now what happened is as follows.  

Now, it is very important how do I express this thing, this part of course, I can write this 

part is nothing but half x x in a in terms of the inner product. So, I am writing every term 

thing in terms of the matrix. Now, how do I translate this one? The second part is 

translated as follows, is written as lambda times b minus X a, right? This means lambda 

b minus lambda times X a. Now, look at this expression lambda times X a. So, this inner 

product, if you look at this inner product this inner product is nothing but trace of lambda 

transpose X a. 

So, what I am trying to mean is as follows. So, what is the trace of lambda transpose X a 

because lambda transpose X a is just a number. So, it is a 1 cross 1 matrix. So, it traces 

that number, so that is a trace of this. So, this can be in written as using the associative 

law matrices the trace of X a lambda transpose. See this is not a symmetric matrix a 

lambda transpose, this a lambda transpose is not a symmetric matrix. So, when I write 

the, so it will be if X into y means, so it means trace of X so basically this would become 

trace of a b is trace of b a.  

So, here what had happened? They have taken x a lambda transpose, then by associative 

law it become x a lambda transpose. Now, this is I can write this as trace of, right? So, 



this simply means transpose of, the transpose if I take, transpose of the transpose, of the 

transpose. So, basically this actually means a lambda transpose transpose X, which is 

same as writing as X lambda a transpose.  
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Lambda times x of a is equal to X times lambda of a transpose. So, this is the inner 

product in R n and this is the inner product in R n cross n, but there is a interesting 

relation you see, that is the beauty of mathematics, better one. So, once I know this then I 

look into it bit more deeply. It is same as, as you have written in the last page trace of X 

a lambda transpose and this this is a, this is a sorry, just this step. Let me have a look at it 

the samething which can be a lambda transpose X.  

So, which can be written as follows this can be written as taking taking up from here it 

can be also written as lambda. So, this is already lambda a transpose transpose. So, it is 

all alright. So, this is nothing but X of a lambda transpose. So, you see there is a lot of 

links, so once you have seen this, I can also write lambda X a can be also written as X of 

a lambda transpose plus lambda a transpose. These are matrices by 2, so this I leave as, 

so this is now a symmetric matrix.  

So, this is homework this is very simple you have to observe these things that is all half 

of this plus half of this, that is all half of this plus half of this is this. Now, once you do 

that, then I can now write the Lagrangian function l X lambda delta as, now what about 

this part? This part is that we are already taking this whole thing to be true, because this 



part, now X is equal to X transpose. So, we are now taking only symmetric matrices. 

Now, my problem is of this form, that I have to only bother about symmetric matrices, 

right?  

So, X is so I have to now I now, what I do is, I make not this Lagrangian. I I now just 

look at this Lagrangian like this, right? I actually now construct this Lagrangian, the first 

part and the second part because now I am just working in S n I will tell you what is the 

issue. Now, you let me just tell you something what happens here is this, you might tell 

me what what about this constant, where does it vanish to? So, I can because here what I 

have done, I have already taken X equal to X transpose and I have set up my problem as 

this, my the Gulers problem is now this.  

Now, S n is my whole space S n is a space of all symmetric matrices. Now, then what I 

am doing is my optimality conditions should tell my something my optimality conditions 

are the Karush Kuhn Tucker condition is to note that basically my my S n is just like R n 

the whole thing that is the whole space. So, the normal cone to that whole space is 

actually 0, so basically we are now minimizing some inequality constraint problem. So, 

if I am putting whole thing in S n I do not need to bother to put this this thing, I know 

that it is in S n only, my problem is in S n.  

So, I need not bother to put this thing, so I am looking at the whole thing in from the 

from the matrix perspective, from the completely, from the matrix perspective. So, my S 

n is my whole space. Now, so basically in in in s n the problem is, so in S n, I am doing 

this problem, that is my problem. On this I can apply the Karush Kuhn Tucker condition 

by taking the gradient of the Lagrangian. 
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So, now what we do is a you take the gradient of the Lagrangian and equate it to 0, you 

see the Lagrangian is now written like this and then that would give you X minus a 

lambda transpose plus lambda a transpose, So, this is 0, so this simply tells you x must 

itself be of the form a lambda transpose plus lambda a transpose. So, a is given to you 

what you have to know is lambda the Lagrange multiplier. So, here you see the 

importance of the Lagrange multiplier of the Karush Kuhn Tucker multipliers.  

Now, you might ask me, how, why are you applying Karush Kuhn tucker multipliers? 

How do you know the KKT condition will hold? How do you know that there is a 

constant qualification which is satisfied. Now, in the setting of S n X a equal to b is a 

linear inequality and hence there is no requirement of any satisfaction of a constant 

qualification and KKT, there would be a KKT multiplier, right? We have shown that 

there would exist a KKT multiplier. I hope you remember that we have shown that every 

Fritz John point can be thought as a KKT point because there would exist a KKT 

multiplier.  

I can always show that I can directly reach the KKT conditions, if I have linear 

constraints, right? So, if that is the case then here, we have so this would be this and this 

would give me this is an inner product. Of course, real number in to this vector this real 

number into this vector. Now, b transpose a, which is b inner product a can be written 

like this. I want you to check the calculation that I am doing now. So, the last equation 



from this this one, we have lambda transpose a is equal to a transpose b, divided by 2 

norm a square.  

So, lambda transpose a can now be put in here. So, if I put this here, I can get out 

lambda. So, then this is a, and b put lambda transpose a into put lambda transpose a into 

the equation a to get. So, you can understand, this will become bit complicated when you 

have that particular structure s k y k you can a is your s k and b is your y k here, that is 

all. Now, putting this into X, so X would be a b transpose plus b a transpose. So, this is 

what is usually called the Broyden this updating is called the Broyden Broyden 

Fletcherm, Gold Farb Shanno, we will write it in terms of S k y k etcetera tomorrow.  

So we will write this down in terms of so in terms of the b k 1 plus b k, but there they 

may know a norm is taken in a very different way. So, here that will give you, just try to 

use this technique and just take the Frobenius norm of b norm b minus b k. Try to see 

whether you get this formula, so here you see basically b k minus one norm b k, that that 

is what you are basically looking at. Here you see the minus 1 the minus 1 is here, so b k 

s k is your y k right that is your norm here plus so minus part is here plus part is here so x 

is actually your b minus b k b k plus one minus b k so he here comes you are a, a 

transpose a a transpose, right?  

So, this is what is up this called this is your BFG’s update. So, we will write down the 

BFG’s formula algorithm tomorrow and go ahead a bit into our study of the. So, this 

when BBK is p d b k plus 1 is p d. So, we can go ahead into our study of the problem the 

Quasi Newton method, I will take once after I finish the Quasi Newton method. Then I 

want to go into the issues of constraint programming. I want to talk about penalty 

function method I would take a very special lecture in on the KKT conditions for linear 

programming problem.  

See it is usually felt and it written in every book that I have seen is that every FJ point is 

a KKT point, but that actually is a misinformation in a sense that what we can show that 

there would exist a Fritz John multiplier give me any local global minimum of a linear 

programming problem there would exist 1 Fritz John multiplier which is normal you 

cannot say that every Fritz John multiplier associated with a linear programming 

problem is normal.  



I think in from my earlier lecture that wouldn’t have been clear. So, I would take a 

complete step by step lecture to study the linear programming problem KKT conditions 

for linear programming problem of Fritz John conditions for linear programming 

problem. So, this is that would be a very special lecture and I think that everybody 

should listen very, very carefully that if a constraint qualification fails, the Mangarsarian 

Fromovitz constraint qualification fails, even if your problem is linear there would exist 

an abnormal multiplier, this is something which is very important in your understanding 

of optimization. So, tomorrow we will continue our journey on the Quasi Newton 

method.   


