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So, we are in the last part of our study of the karush Kuhn tucker conditions; it is not that or 

the fritz john conditions. It is not that this is the last part of the subject, but just because of 

the limited time we have in the course that we really have to end it here. Tomorrow we will 

give you a set of exercises on this issue, which I think you should try at home, they are 

very, very important. Now, some of these exercises would actually be given in a solution 

when f a q would be attached to the course at the end; so that those exercise, some of the 

exercises which are important would be solved. 

And, today we are going to first show a very important thing, again using the motzkin’s 

alternative theorem that we had studied in the last lecture which says that if you have a 

linear programming problem all your john multipliers would always be normal; there is no 

abnormal john multiplier. And, it means that the KKT condition always holds. Whenever 

all the john multipliers are normal we will call such john conditions as a karush kuhn tucker 

condition; after the seminar work of kuhn and tucker and later on found to be have also 

been done by karush. So, it is in this field of naming it is very very strange because 

somebody calls it karush john condition, somebody calls it Kara theory john conditions, 

somebody calls it you know john KKT conditions; there is lot of things. So, we will just 

have john conditions and the karush Kuhn tucker conditions. 
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So, we are here today considering linear optimization problems. When I am considering 

linear optimization problem, I am considering minimization of a linear function; any linear 

function of r n is given by an inner product; subject to so called affine constant, that is 

linear minus a translator real number. Maybe I should write equal to 0; there is a standard 

form. And, all the x i’s are greater than equal to 0; the decision variables. So, here c is in is 

an element in R n and so is x then; of course, the decision variable. Each of the a i’s are in 

R n. 

Now, if I consider now a matrix whose rows are these vectors a i, then I can write down this 

linear optimization problem in a more compact form. And, this is what is called the linear 

optimization problem in the standard form. So, I will call it LP; that is called and this is, 

this is what is a standard form. And, this is the form that is used to actually start solving it 

by using the so called simplex method or any other method. Of course, you could have a 

more standard form by putting this to be less than equal to 0. This requirement comes 

largely from practice; it is not really required for mathematicians to think about x i greater 

than equal to 0. 

But in practice in most cases your decision variables are non negative integers. It could be 

say number of vehicles, it could be number of things to sell, it could be number of 

employees, number of students. These decision variables are or amount of food that you 



buy the different type quantity and types of food; these are the types of food and the so you 

are making a diet plan and what is the optimal diet plan and all those things. 

So, linear programming has a huge literature. A substantial amount of linear programming 

has been done in the course on convex optimization which I gave earlier. Here we are not 

going to spend so much time on linear programming, because this course is (( )) general 

foundation of optimization. So, we are going to mention this very, very important fact that, 

so you can write this problem in a slightly compact way. 
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So, if A is a matrix which is formed by taking all the rows as the vectors a i. So, it is the 

row matrix of m rows and n columns; giving you this equation basically A x – b, b is a row 

vector in a column vector in R n. And, x is also written as greater than equal to 0. And, this 

structure is very very important to consider because here you would observe that this x 

greater than equal to 0 actually means component wise greater than equal to 0. Now, once I 

have this I I am now inclined to write down the fritz john conditions. So, the conclusion 

that we will have is if x star solves LP, any solution of this problem any solution of this 

problem is a global solution. Because this is a convex programming problem, every local 

minimum is global that I have also proved in my other course in convex optimization. You 

see these two courses convex optimization and this foundation of optimization could be 

considered as a compact course and a two semester course in optimization. 
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So, here if x star is a solution, so this is the major result. So, I would so this was known to 

Kuhn and tucker, one of these one of the celebrated results. So, these are known to Kuhn 

and tucker. So, I I would not put it there like that; I think historically that may not be a 

correct thing to do, but kuhn and tucker of course, knew this fact. So, I have written down 

the result which will say that if x star is a solution of l p then all john multipliers at x star 

are normal. As we, we will deduce this we you will soon see that there is nothing like a fact 

that the multipliers depend on x x star the solution. 

The multipliers that will appear or the john multipliers that will appear do not depend on x 

star. So, whatever be your x star the multiplier set is same. So, now let me just try to prove 

this fact. So, if you remember what we did when we tried to prove the fritz john conditions, 

we tried to prove that a certain system of inequalities are basically strictly less than they are 

strictly less than 0, then apply the Gordon’s alternative theorem. Here we would go back 

trying to apply the Motzkin’s theorem that we have learnt in the last class. I would like you 

to have a look at the earlier lecture; the Motzkin’s theorem of the alternative, which I do not 

want to prove, put it here once again, because we have already done in just in a class 

before. So, what I would first prove is the following. 
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That if x star solves lp there exists, there exists d in R n; such that, let us see what is 

happening. 
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Such that c of d is strictly less than 0, a i d is equal to 0 and e i d is less than equal to 0. This 

is what I am going to prove, where e i is basically if you write all these x i’s each x 1 as a 

function of x 1 x 2 x n then you can take the gradient of that and that would be 1 0 0 0 0, so 

that is e 1. So, where e i here I should write i equal to 1 to m equal to 1, you can put j also if 

you want e j, if you. No, let me put i that is exactly the thing that I have been putting; does 



not matter. So, index is you know what this is the index over this; this is the index over that. 

So, i equal to 1 to i equal to 1 to what was that n; that is what we are going to first show. 

Sorry, I made a mistake there exists no d in R n. So, what I am going to show that there 

cannot be any d in R n, for which this is true. So, this would be a first system of the 

Gordon’s theorem of alternative that we did in the last class. So, once you understand that 

you can immediately know, what is the final system that we are going to write; so, let us 

start by proving this fact. So, let us see how we prove this fact. 
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So, suppose on the contrary there exists I am just taking the mathematicians liberty to write 

like this. d in R n such that the (( )) system which I call sys 1; sys 1 has a solution. Now, 

you observe one fact x star is a solution. Now, I will prove that x star plus lambda d, x star 

plus lambda d will be a for some lambda strictly greater than 0 will be a solution, will be a 

feasible solution to the original linear programming problem. And, it would be a solution, 

whose where the objective value would be strictly lower than the current objective value c 

of x star which is the optimum objective value and that cannot happen. So, it is exactly the 

same way that we proved there we will show this. So let us see how we do it. 
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So, take a d so take you have this d construct x star plus lambda d with lambda strictly 

greater than 0. Then, what does this give you? This now, this shows you a i sorry this 

should be minus here; I made a mistake, because here it would be minus x i less than equal 

to 0. 
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Because we have learnt it; when you write this one, you can also write it alternatively as 

minus x i less than equal to 0. So, you write it in the form of inequality constraint, so the 



gradient of this function; so if I if you write this as g 1 (x) is equal to minus x i, then grad of 

g 1 (x) is actually minus e i. 
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So, e i’s are actually vectors of this form one in the i th place and 0. Now, let us see what 

happens with this, so, lambda is strictly greater than 0; I will have a i x star plus lambda a i 

d. a i d is equal to 0, because d is a solution of this system of equations; while a i x star, x 

star being the solution must be a feasible point that is equal to b, so it is finally b. Now, how 

do I know that now x star plus lambda d is also component wise greater than equal to 0? To 

see this observe this equation; this would give you minus first one, it will give you minus d 

i d 1 greater than less than equal to 0, so d 1 greater than equal to 0; similarly, d 2 greater 

than equal to 0. 
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So, basically what this equation gives you is that d is a vector which is component wise 

greater than equal to 0. Once, you have that fact, you can immediately see that x star plus 

lambda d is also greater than equal to 0 component wise. Now, let us write down let us put 

this whole thing here. Now, let us observe what I what will happen if I compute the 

objective function at this point, x star plus lambda d. Now, the theorem would be changed 

to this point, so I will just basically use this now. So, this would be equal to c of x star plus 

lambda times c of d. 

Now, lambda is strictly greater than 0 and c of d is any way strictly less than 0, because d is 

a solution. And, c of x star is c of x star; so this we have added a strictly negative quantity 

to c of x star. Which means what I would get is nothing but a quantity; this quantity which 

is strictly less than c of x star. So, what, what it means that x star plus lambda d is a feasible 

solution at which the function value is strictly less than the optimal function value and this 

is something which is impossible, this is an impossibility; contradiction. So, this is what 

mathematicians, one of the finest tools the mathematicians has is called proof by 

contradiction. 

Now, once you have got this fact, so this fact is correct; that there if x star solves l p there 

exists no d in R n such that this holds. So, this system does not have a solution and this 

system looks like the first system in the motzkin’s theorem of alternative. Once, that is 

done, we will see that we can now write down by applying the motzkin’s theorem of the 



alternative, the LaGrange multiplier rule or the karush kuhn tucker condition whatever you 

want to call it or the fritz john condition. Now, I would again, now observe this fact that if 

this is the story that this system does not have a solution 
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Motzkin’s alternative theorem will immediately tell me that there exists scalars, lambda 

naught greater than equal to 0 and lambda naught not equal to 0, which means, lambda 

naught is strictly that is lambda not strictly greater than 0; lambda i in this particular case, 

element of R i equal to 1 to m and S i element of because this is the greater than less than 

equal to 0. So, S i greater than equal to 0, i equal to 1 to n; such that lambda naught times c 

plus summation lambda i a i times lambda i a i times plus S i minus e i times, this is equal 

to 0. 
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Now, what I will do in order to get something nicer and in the way people write in the 

actual literature, I will replace lambda i by lambda I will write this as lambda i dash 

because lambda i is just a real number; so I can just write it like this. So, I can basically add 

to lambda i, some number so that the thing is 0. So, I can write lambda naught c a i plus 

lambda i dash; so, it will become minus, minus lambda i dash. S I, e i will finally give me 

the vector s. So, lambda naught c is equal to summation lambda i dash a i plus S i e i that 

will combine to give me the vector s; where s is nothing but S 1, S 2, S n. Now, each e i is 1 

0 0 0 1 all those things; so this is what I have. 

So, now I will divide both sides by lambda naught because lambda naught is strictly greater 

than 0 to give me c is equal to, so I will write this lambda i dash by this as this. And I will 

write this as S bar; S divided by lambda naught. Now, what it is important to note is the 

following. Is that, this can be written in a matrix form because this is nothing but the matrix 

multiplication and you should be able to note that c can be written as a transpose lambda 

bar plus S bar. 

Now, you know you observe it very carefully that this c is nothing but the gradient of this 

objective function, this is gradient of the constraints and these are associated with the 

gradients of this. But you must be thinking that there is some interesting feature of fritz 

john condition which is not here, I have not got that; complimentary slackness condition. 

Now, which how do you get that? I guess there are couple of ways to do that; but I will now 



tell you one way and I will leave it to you to find some other way by looking at the affine 

version of the motzkin’s theorem from (( )) to those who have access to that book. Now, 

what is important to know is the following. Here, what I really wanted was this greater than 

equal to 0. Suppose, I had x i strictly greater than 0, right, then I do not really, so I have x i 

strictly greater than 0 and what I really want to do is the following. 
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So, x x i star, so take any x i star which is strictly bigger than 0. Take d, d could be a 

negative number does not matter. Now, I now I have the controlling capacity on lambda. 

So, I choose my lambda in such a way make it so small that I can always have x i star plus 

lambda d, d could be negative to be strictly greater than 0, does not matter; does not matter 

at all. It will always have for lambda greater lambda sufficiently small. 

So, choosing my controlling my lambda I can always make x i star, whenever x i star is 

strictly greater than 0, it will always imply this by choosing lambda sufficiently small; 

lambda greater than 0. Now, observe that if I x i star is equal to 0, then I cannot do 

anything. Because, if delta is d is negative then this will be negative; d is less than equal to. 

So, d all the components of d is negative, then this will be strictly less than 0; so that will 

not be what we want. So, what we really need to look at are those points of x 1, x 2, x x n 

star, x star, x 1 star, x 2 star, x 3 star, x 4 star; that x star vector which are the components 

which are 0, that are the point where we really should concentrate. 
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And, that needs us to consider what is called the (( )) index which we have already done in 

the last class also. So, consider all the i from 1 to n such that x i star is equal to 0. So, d, the 

d corresponding to those x i stars must be greater than equal to 0. So, this would lead us 

because we are missing the complimentary slackness condition and we are trying to push 

in, you know that those things there. Also, you could have taken here to be put one x i or 

something like that; that is a different issue. Now, what I want to now tell you is that this is, 

this is not exactly mimicking the way we proved the fritz john condition; this is not the, the 

exact one. So, what I am trying to tell you is that, now let us see we have concluded 

conclusively that d is greater than equal to 0 is required only when the case x i star is equal 

to 0. When x i star is strictly greater than 0, I have no problems. 



(Refer Slide Time: 27:43) 

 

So, what I am now doing is I am now looking at this system. So, the same story I am now 

going to write it in a much more compact way, because you are now much more; I would 

only consider e i d to be less than equal to 0, sorry minus for all i in the active index set. 

Now, if I do that I can actually prove this fact. So, I can prove that this system which I can 

call as sys 1 star, this system has no solution; this has absolutely no solution. I would leave 

that as an exercise to you; please consider this as your homework, H W. Now, this system 

does not have a solution, so I can go back and make my changes here. 
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So, I will apply the same motzkin’s alternative theorem that we learnt yesterday, but I will 

put this sys. So, basically what I will have now here is summation sorry i is belonging to i x 

star. Now, what I do S i bar. Now, we can write now, now for  i naught in i x star take S i 

bar equal to 0. And, construct sorry S i bar minus e i, take that to be 0 and construct, and 

construct the vector S star which is S star, in such a way star such that S star i is equal to S i 

bar; if i is in i x bar, x star sorry and is 0 if i is not in i x star. So, in that way if I now 

compactify, what I have done here. 

(Refer Slide Time: 31:22) 

 

So, I can write this as lambda naught, lambda naught can be again in the same way. I can 

now write this whole thing as a vector S, S star. So, I can now compactly write this as A is 

equal c equal to A transposed lambda bar plus S star. Now, look at the nature of S i star. 

See, whenever i is element of i x bar, s i star x i star is equal to 0. So, x i star into S i star 

would be equal to 0. x i star into S i bar which is same as S i star would be 0. Now, when i 

is not equal to i x bar, x i is strictly bigger than 0 but S i star is equal to 0. So, which means 

that finally, I get what is what would you and I call the complimentary slackness condition; 

which says this is equal to 0. And, this is essentially the two major lines of the john 

conditions. And, you see that lambda naught, whatever way you get this is the only way to 

get the multiplier rule by applying the separation theorem which is the motzkin’s theorem. 

So, here I had forgotten to write, so I have told repeatedly what just for your memory I am 

just writing it at the last point; apply motzkin’s theorem, motzkin’s theorem of alternative 



or a l t shortcut anyway. So, this is of course, people would like to extend it it like this, 

writing A x equal to b, A x star equal to b which is of course, any way has to be true; if x 

star is a solution. So, this is, this is essential system that you have to solve to find out x star. 

So, this is usually called this though this is the john multiplier, fritz john multiplier rule that 

we have got; you see the multiplier associated with the objective function of the gradient is 

always 1, a positive, which means, this always you cannot get it otherwise; this is what we 

call the karush kuhn tucker conditions.  

So, we have learnt a very very important aspect of optimization today. The karush kuhn 

tucker conditons or K K T condition associated with a linear programming problem, which 

is essentially this fact that your x star is a solution of the l p problems and all john 

multipliers are normal. Now, as I told you that we had been studying algorithms for 

unconstraint optimization. And, while studying algorithms for unconstraint optimization we 

stopped at a certain point, we stopped after the Newton’s method. We said that the 

Newton’s method is some sometimes not very helpful because we do not know whether the 

hessian matrix is always positive definite at those i points of iteration. So, we cannot really 

get a descent direction at every x k. So, how can you remedy this situation? 

To remedy this situation we needed some modification, originally initiated by W C David 

and though there is an ironical story here which will tell you tomorrow. Before after I give 

the homework for this part on the KKT part, the ironical part is very fascinating W C David 

had actually invented the method but he is all, all papers following his actual work was 

published and his paper was published possibly the last among all the legendary works in 

that area. So, what I want to say is that there we remarked that if I want to study the 

improvements of the Newton methods called the quasi Newton methods or quasi Newton 

methods as some people would like to say, in that case we need to understand constraint 

optimization. All these methods have come after all these KKT conditions or fritz john 

conditions are known. 

So, we need to use the optimality conditions there, the constant optimality condition. 

Hence, we shifted and reverted back our study and came to karush kuhn tucker conditions 

or the john conditions, whatever you want to call it. Now, once we have done that, we are 

now going to keep our promise and go back to the quasi Newton method. And, show that 

how these results can be applied to get a very interesting and conclusive theory. And, that 

would generate algorithms which are still very effective used in softwares are quite fast and 



was considered as one of the revolutions in optimization in the 70s and early 80s. So, 

before all these other things like interior point method and conic programming and semi 

definite programming take over. 

So, we what we are going to learn is essentially a revolution in optimization carried out by 

few great researchers in the subject. So, with this little fact that you have learnt today which 

is a I think a very very interesting fact to go through this step by step. Now, I I will 

leave you here with a question. Now, here I could go back and write such a system and do 

all these things because of the fact that I know the fritz john conditions at the very 

beginning. Since, I know the fritz john conditions I am writing this story; that is also true. 

Now, you can tell me one thing very clearly that I I will also leave you this part that to write 

the theorem in a nice way. What we have shown is that if x star is a solution, there would 

exist a multiplier lambda naught equal to 1, lambda bar in R n, S star in R n plus. Of course, 

here we have to note that this has to be in R n plus. We have written it here. 
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So, you can also add it here, wait S star greater than equal to 0; so such that these 

conditions are satisfied. Now, here because we knew about the fritz john condition we 

could you know gauge this change and make this change here. So, this is one way to go 

about it; this could be looking slightly artificial to you. Because suppose you are just given 

a linear optimization problem and you do not really know anything about the karush kuhn 

tucker conditions; how would you deduce an optimality condition? This is the question I 



am keeping in front of you. You will get this solution in the FAQ but this is a question I am 

actually keeping in front of you for you to really ponder. So, with this I will end my talk 

today. 

Thank you very much for listening. 


