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In the last lecture, we deduced essentially largely on the board fritz john or the john 

multiplier conditions. Here you can see the application of the Gordon’s Theorem of the 

alternative, which leads to the john multiplier rule or the fritz john’s multiplier rule 

whatever you want to say. Of course, there are lot of things has to be said about this 

normal multipliers, abnormal multipliers, examples must come. But we are going to first 

give you a brief outline about how this proof came about in the sense that the crux of the 

proof is the application of the Gordon’s Theorem of the alternative. And it is very 

important at this stage to know how do you actually prove the Gordon’s Theorem of the 

alternative? So, here I guess we did not use the Gordon’s Theorem, write down the 

Gordon’s Theorem of the alternative. 
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So, let me tell you, key to the Gordon’s Theorem of the alternative is the separation 

theorem of convex sets. I have a series of lectures in the same imperial set of series of 

lectures series of 40 lectures on convex optimization, and I think the 7th or 8th lecture 

would contain this separation theorem for convex sets where the thing has been in done 

absolute details. 

But here, because we have lot of other pressing details lot of other things to do, and so, 

here instead of getting too much into the issues of convex analysis, we would rather give 

a brief outline of what is the separation theorem and that would be enough for you to get 

an idea about how these things are used. And let us look into the issue of separation 

theorems; that brings us to some important convex sets. So, these are already there in the 

other lecture, but, I am just giving recalling the other. So, the first important convex set 

is the hyper plane. So, Hyper plane is the set of all H, set of all x in R power n, it satisfies 

an equality of the form this so, this a and b, a which is R power n, and b which is in R so, 

these two determine the hyper plane. You can in fact write hyper H (a, b) many authors 

do so; so this is a definition of a hyper plane, this hyper plane is a convex set. Typical 

examples of hyper plane in two dimensional case is a straight line, this is a hyper plane 

of course, you can understand these straight lines are written as ax plus by equal to c. 

So, it is inner product of ab with xy equal to c, and another in R3 typical example is the 

plane where you usually the equation is written as a1 x 1 plus a2x 2 plus a3x3 equal to b. 



This is the equation of the plane so, that is the idea now this hyper plane or straight line 

you can see is dividing the plane R 2 into two parts, this is one half space and this is 

another half space, this is the upper part, this is the lower part. So, this leads to two more 

convex sets associated with the hyper plane. 
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One is called upper half space which is you can write like this, you can invent your 

symbols. So, once you know this it is a set of all x element of R power n such that, this is 

usually referred to as the upper half plane, then there is a lower half plane so, these are 

all half planes. Find all the set of all x which this so, this which satisfies these two. So of 

course, the only intersection point between upper and lower half space is the hyper plane. 

So now, of course, you could put strict inequality here to get the interior of the hyper 

planes, they are called the strict upper half plane, and the strict upper half space and the 

strict lower half space. The idea behind the separation is very interesting, in the sense it 

says if you take two convex sets which are not intersecting, one is C1 and another is C2 

and what is given to you is C1 intersection C2 is phi. Then you can always find an hyper 

plane which can be drawn in such a manner such that, the set C1 is in one half space and 

the set C2 is in another half space. This is always true when you have two convex sets 

which do not intersect, but, this fact cannot be said about none a convex sets which is of 

course, you can have a non convex set like this you can have another non convex set like 

this which are not intersecting C3, C4. Of course, you can say oh I can draw a straight 



line like this of course, that is all right you can do it, but, you cannot do it for every such 

situation where you can do It for every such situation in a convex case. 

Here for example, if you take this set, a set which is very important in multi-objective 

optimization. If there are more than one constraints, so this is a set W which is R power 2 

set minus int R power 2 plus. So, leaving this part if the interior of this third quadrant 

everything else is considered in W, now W intersection minus int R2 plus is phi. Now 

you cannot draw any hyper plane where minus interior R2 is in one side and this whole 

thing is in the other side. So, here the things are broken, but, this is a convex set while 

this is a non-convex set this is non convex not convex and this is convex. 
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So, what are the essential separation theorems? So, essential separation theorems are as 

follows. First case is, you take a close convex set C which need not be bounded and a 

point x outside it C closed and convex and x not in C, then the conclusion is then there 

exists a hyper plane strictly separating them. Let me tell you what does it mean; means 

you can draw hyper plane whose in whose strict half spaces, C lies in and whose other 

strict half space x lies. That is none of them are on the boundary this hyper plane does 

not contain any point from any of these two sets that is what is the meaning of strict 

separation. 

So this is one thing now this is the first and the basic result. And the second result is C 1 

and C 2 are two convex sets. C 1 is compact, C 2 is closed. This is C 1 and this is C 2 



with the fact that C 1 and C 2 do not intersect. Now, compactness here becomes a very 

essential thing because, now we say that if this happens we can do strict separations 

sections strict separation possible you can say that strict separation is possible. What 

does it mean so let there be an hyper plane which is strictly separating so h is hyper plane 

set of all x such that a x of course, it is not a is not zero. It means that whole so if it is 0 

and a is 0 then b is equal to 0 b must be 0, then basically any x will do but, that is that is 

not the thing a is not 0. Now, if we look at this, what does it mean maybe I should write 

it more I should not write x because I have taken x here so maybe I will write z.  

So, let this define this is this hyper plane so what does it mean it is strictly separating. So 

x is in the upper half space here so a of x strictly bigger than b while a of w is strictly 

less than b for all w element of c that is the meaning of strict separation. You see here we 

have taken c one to be compact if you take just c one to be a single point then it is also a 

compact. So, whatever we know about this result can be applied to this actually one can 

prove this and then apply it to prove this we will not do any proof here we are just giving 

an outline.  

See here the compactness of the set c one is very, very important because if you do not 

have compactness then we cannot guarantee a strict separation. So, consider these two 

one is the lower half plane which I call c one e to the power minus x right and then take 

the upper part. Now, both sets are unbounded both are closed now you cannot find a 

strictly separating hyper plane if I draw this line for example, there will be a time when it 

will come and cross this. So, you cannot find a strict separation separating hyper planes 

strict separation not possible. Now, once this is known you might ask me then prove the 

Gordon’s alternative Theorem, but will not prove the Gordon’s alternative Theorem. 
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But refer you to this small and nice book by B. D. Craven is called control and 

optimization. It is published by Chapman and hall, and it is way back in 1995. It is a very 

nice proof of the Gordon’s Theorem of the alternative, which they call the basic 

alternative theorem. Now the question would be going back to the john conditions again. 

So, we will now go back to a simpler mode a more traditional form of an optimization 

problem where I will just talk about inequality constraints. 
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In this case, we will get what is called the famous Lagrange multiplier rule and now let 

us assume in this case when because we need certain thing called implicit function 

theorem to derive a multiplier rule f naught, f 1, f 2, fm are continuously differentiable. 

So, we are now looking at a much more different sort of problem instead of in equalities, 

let us go back and look at the traditional issue of in equality constraints.  

First study some examples from in equality constraints, and then try to get it with in 

equalities. You have one major point is that, they have the issue of complimentary 

slackness condition, and to satisfy in equality, and satisfying all these things are not so, 

easy actually. Note now that if x star is a local minimum then there exists lambda naught 

greater than equal to 0, lambda 1, lambda 2, lambda m, element of R means they are all 

free such that so, here it is quite a simple rule. The most crucial point as I again mention 

is, this fact, this cannot be 0, whole vector cannot be 0. So, this instead of calling it as a 

john multiplier, we will call it as a Lagrange multiplier. So, when you just have equality 

constraints these are usually referred to as Lagrange multipliers. You have read about 

them in your calculus course, but of course, you did not know that you really had to 

show the existence of such lambdas now. 

Now, what Lagrange multipliers are doing is that it converts the whole constraint 

problem into an unconstraint problem and then you are just checking the differentiation 

of the unconstraint problem. This is the basic philosophy of solving any constraint 

optimization problem, you really have to convert the constraint problem into an 

unconstraint problem; and then solve it just like an unconstraint one that is without 

constraints. Now it is enough to know that this it is enough to know just this fact. 
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Similar way, if lambda naught is greater than zero than Lagrange multiplier is normal, if 

not we will call the Lagrange multiplier abnormal. Now, it is also important to remember 

when we can have a situation when there will be no abnormal multipliers. So, if this 

vector is linearly independent then there is no abnormal multiplier. It is very important to 

note here the following fact, that what is the definition of an abnormal multiplier, but 

lambda naught is 0, if lambda naught is 0, then from here it means one among lambda, 

one lambda m 1 among these at least has to be non-zero so, these vectors are linearly 

dependent. So, lambda naught equal to 0 would immediately imply linear dependence so, 

lambda naught equal to 0 implies in linearly dependent. 

Now, there is a interesting question so it means that if it is linearly independent and 

lambda would is not equal to 0. But see, if it is linearly independent, I will never get a 

abnormal multiplier the interesting question is suppose, I have linear dependence that 

what does it mean? Does it mean that it will have a abnormal multiplier? The answer is 

actually no. It need not have an abnormal multiplier even if you have linear dependence. 

we will use examples to demonstrate that both a normal, and an abnormal multiplier can 

be present we know that given an x star these multipliers are not unique unless you 

guarantee linear independence if there is linear independence then it is unique right. If 

there is no so, if I leave that as a home work to you of course, if this is linearly 

independent then m must be less than n which is a very basic fact about linear 

independence that maximum number of linear independent vectors in R power n is of 



course n. Of course these functions f naught, fi these are all functions from R power n to 

R. If this m is linearly independent then there is a unique Lagrange multiplier. This is a 

home work for you unique Lagrange, unique Lagrange multiplier of this form. Because, 

once lambda is not zero I can divide it by this and I can get a new set of multipliers. 
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Now, the question is this is quite very elegant simple did not have to write much no 

inequality constraints suppose I have the inequality constraint issue the problem can I use 

this idea to actually develop the Fritz John multiplier rule for inequality constant. Can I 

apply the Lagrange principle? So, what I would like to show here just like a Jan 

Brinkhuis and the great optimization theorist Vladimir Tikhomirov has shown in this 

book optimization insights and applications I have already named this book, but, I really 

want to show you this book. It is a Princeton university publication of 2005 and a very 

very beautiful book it gives a very beautiful insight into optimization, very deep insight I 

would say.  

And what I would also like to note that in this book they show that it is the Lagrange 

principle, which is the guiding principle of all of optimization this Lagrange principle 

this one and that and lot of problems can be actually solved by using Lagrange principle. 

Let us now try to develop the inequality constraint john multiplier rule let us make a trial 

through this Lagrange. 
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So, now if I am making it less than zero, once you do that remember I can always 

introduce what are called slag variables, that is I can always introduce non negative 

variables right which will make them non zero. But the biggest problem that you will lie 

is that when you want to try to apply the Lagrange principle on this. Then what would 

happen is the following; if you want to write this is as a inequality constraint problem, 

you have to write this as but S 1 is greater than equal to 0, (( )) so, I have added m 

variables and added m constraints also. Now, these are again inequality constrains. So, 

the question is that I cannot try and write down if I want to use the Lagrange principle 

and try to write down the john multiplier rule it is really not possible. So, here we need to 

have a lot of geometry which is essentially related to sets given by inequality constraints. 

So, that is why Fritz Johns derivation of the whole thing was so so, important it was a 

1948 paper rejected by Duke, published in a memoir volume celebrating the 16th birth 

day of Richard Curand of who is a famous mathematician. In fact John is a famous 

mathematician known in partial differential equations, now this again needs some more 

convex geometry a more geometry. Because, again inequality constraints even if you 

change the functional constraints to equality, inequality constraints are actually reappear 

in the form of the slack variables, which must maintain non negativity to actually be a 

slack variable so, this procedure cannot be done. So, now what is important is that we 

will take some examples and try to use the Lagrange principle we will take these 

examples from Brinkhuis and Tikhomirov so and try to apply and see what we can get. 



(Refer Slide Time: 31:18) 

 

So, let us look at the first problem minimize f naught(x), minimize minus x 1 x 2, where 

x 1 and x 2 belongs to R power 2 so, this is a problem in two dimensions. So, here f1, f1( 

x) so, it is a unit, it is a circle of radius a and you are only expecting x i strictly greater 

than 0. That is you want the problem to be here so, once you basically want problem to 

be minimized over this so, basically you are excluding you are taking everything in the 

non negative (( )), but, you are excluding the points (a, 0) and (0, a). Now, once you do 

anything you restrict your things to in an open set then, it does not matter you will get 

back the Lagrange multiplier. 

How you would get back would need a lot of more deeper things which we will not go 

into at this moment. Let us try to first learn, how to apply the Lagrange multiplier rule 

and we will see that we are actually getting in most cases the multiplier lambda naught to 

be one because we are getting normal Lagrange multipliers. First case is to know the 

existence of a solution. See if I look at this problem from this point of view, if I consider 

this whole set and I do not take the fact that xi has to be strictly greater than 0 if I do not 

bother then this set is a compact set. It is closed and bounded and over it you will have a 

minimum, that is over a compact, set a continuous function has a minimum now here we 

are not putting a is not equal to 0. 

So, there will be a minimum somewhere here, on this let us forget this extra condition I 

do not think that you really need to bother about this extra condition at this moment just 



take this problem. Now the there will be a minimizer somewhere so, the multiplier rule 

says that there would exist a lambda naught grad of f x star plus lambda1 grad f x star, f1 

x star. Now lambda naught this one would become grad of f x, f x star is here, minus x 2 

star, minus x 1 star plus and lambda naught lambda1 are not equal to 0. 

Assuming that there will be a we are now sure about the existence of a solution, because 

we are minimizing a continuous function over a compact set. So once you are sure then 

we are telling that let x star be that minimum and then that would follow the Lagrange 

multiplier rule and in fact it is a global minimum, if you take this one. So, this would 

now amount to the following. Lambda1 does not have signs so, I can take minus 

lambda1 also, it does not matter just for easiness of the calculation never mind is equal to 

zero. Another equation is lambda naught so, if I say if lambda naught I will now claim 

that lambda naught is not equal to 0. 

Now, if I say if lambda naught is equal to 0 then, from the above two equations it would 

imply that x 1 star is equal to 0 and x 2 star is equal to 0. Because by the Lagrange 

multiplier rule lambda naught, lambda1 both cannot be 0 lambda1 is 0 so, lambda 1 is 

not equal to 0 so, this will happen. But if this happens, then it will mean s square is equal 

to 0, but I have taken n not equal to 0; so I cannot really take that these two equal to 0 

either so, this is hence, this would imply that a equal to 0 contradiction. Hence, it implies 

that lambda naught is equal to 1 it is just taking lambda 0 equal to 1 so, then that what 

would it give me, so let me just lambda naught is 1.  
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So, minus x 2 star plus; 2 lambda 1 x 1 star is 0; minus x 1 star plus 2 lambda 1 x 2 star 

is equal to 0. Now we will eliminate the lambda one to get the results about so, from here 

lambda1 sorry from here we will get 2 lambda 1 x 1 star is x 2 star; 2lambda just a 

moment 2lambda1, the first equation will give me 2 lambda 1 x 1 star is x 2 star; and 

2lambda1 x 2 star is x 1 star. So, lambda1 is x 2 star by 2 x 1 star; and lambda from here 

we also get from the second equation; we get lambda 1 is x 1 star by 2x 2 star so, then 

this would imply that x 2 star by 2 x 1 star is equal to x 1 star by 2x 2 star; and this 

would finally, imply that x 1 x 2 star square is equal to x 1 star square. 

Now, these has to be feasible so, which means x 1 star square plus x 2 star square; is 

equal to this. Actually, now if I want that these are to be positive we can have positive, 

negative all those things now if we really want that we will restrict it to the positive part 

let us see what happens. Now once you have this, what do you have you have this as a 

square now you will have 2 x 1 square as a square. 

So, x 1 star is plus minus root over a by 2. Similarly, x 2 star is equal to plus minus a by 

root two. Now you have to determine which will give you the minimum. Basically, if 

you take a positive and negative combination then you will get a negative number you 

take x 1 star to be a by root2; x 2 star to be minus a by root2 so, you really have to see 

what are the points where the minimum is achieved on the circle. So, if you want only x 

1 and x 2 to be both positive then you will have to take x 1 star; see what you have to 

find the so f naught(x); suppose, if I take both negative then what I will get minus of a 

square by two. 



If I take both positive then I will get minus a square by 2; if I take one positive one 

negative then I will get so, I take this positive and that negative so, I will get plus and 

minus would be minus and then there is a minus so, I will get a square by 2. So, this is 

giving me the maximum value of minus x 1, x 2, and this is giving me the smaller value. 

So, only when I have both positive or both negative so, x 1 x 2 is this or x 1 star x 2 star 

is; these are the points where the minimum is achieved so the two points where the 

minimum is achieved. Because, if you take a plus minus combination then you get a plus 

thing so, that is a bigger quantity than what you get and we know that a minimizer exists 

so, among these points these four possible combination, we will get the minimizer. 

So, these are the two points where the we get the minimum value; so, these are the 

minimizers. So minimizers must you know satisfy this all this Lagrange conditions and 

minimizer exists. So, the minimum value among this four critical point objective, 

objective function value is minimum at which point we have to find that among these 

Lagrange points or points satisfying the Lagrange multiplier rule so, for minimum value 

is obtained where the objective function is getting is achieving the minimum value that is 

in this particular case. So, this is our example and we will carry out some more examples 

in more details in the next class. 

Thank you very much. 


