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So we were discussing this least square problem, basically using this technique of  

optimization to try to find the solution to A x equal to b. Now, if you remember we have 

shown that any critical point of this function is a solution, is a minimum to this function 

and hence is, and hence is a solution to the original problem. 

So any critical point of this problem is a solution to this problem, so the in fact it has 

only critical, and it has all critical points should satisfy this equation, so these are 

sometimes called normal equations. And if you remember what we had shown that any x 

star which satisfies this, this one will satisfy A x equal to b that is what we had proved in 

the board so basically to solve to find an x star, which satisfy A x star equal to b. We 

basically have to solve an equation like this, that is we should have x star equal to of 

course, this is only true when rank of A is n is a full column rank, m has the row has to 

number of rows has to be more than a n, so it would it should have so basically my x 

should have this expression. 
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So this expression a transpose A transpose is sometimes called the generalized inverse of 

A or pseudo inverse of A. Now what sort of an algorithm would actually work for the 

least square problem, in general let me write you let me tell you the least square problem 

has the following form that this discussion that we were doing in the last class where just 

an demonstration of how optimization in the form of minimizing a square. So the least 

square minimum square can be used to really solve a problems of solving linear system 

of linear equations. So, least square problem is essentially trying to minimize a function f 

x which itself is expressed as the sum of squares, an explanation of the use so I want to 

minimize over x element of R n. So, an example of such thing comes possibly in 

regression, in regression analysis in statistics, this is the least square method is a quite 

chosen method. 

So, what happens? One of the problem is that you are given certain points, say of the 

form t i, b i, time and positions of a person. Now, what sort of curve will it fit, shall I can 

I fit a straight line to explain the relationship between t i and b I, that is whether t i and b 

i have certain relation or there are some curve like this, that will be a better fit. So this, 

this there is a whole subject called curve fitting, and that is also useful in statistics what 

does is exactly what it do in regression analysis, you try first the basic problem is to give 

first try to fit a straight line. And then you really want to minimize the errors, square of 

the error that you would get if you use the straight line instead.  



And if you just assume that this points actually should have a linear relationship, that is 

they would lie in some straight line. So, curve fitting is a very important area, the curve 

fitting has important applications. Now, so suppose I have all these points of the form t i, 

b i is obtained by some experiment, and of course some physical experiment or some 

statistical experiment. So, we want to see where b how b is related to t and x here is 

essentially the parameter if you want to fit a straight line, that is if you want to say b is a 

t plus c, suppose you want a relationship like this then this is your pi a c t, in fact a c here 

plays the role of x. 
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Now, once that is done these n set of parameters x should be ideally chosen the 

parameter x should be ideally chosen in such a way, in such a way that at every t i, the 

function value should be b i. So, suppose I have just generated m points here here, but 

the number of points I generate for example, in two dimensional, so he has two d i, 

suppose, I am in two dimension and the number of points I have generated is as two. 

And of course, you can say they are laying on a straight line may be actually the 

relationships are not that, when we run the experiments. So, experiments has to be run 

much more times than the dimension of the decision variables, so the number of 

parameters here, whatever be the number of parameters. Suppose a n is a number of 

parameters usually in a well posed setting m should be much larger than m, actually I 

should say m, this is way of telling m is much larger than see due to experimental errors 



or whatever this condition need not match exactly, so what I conclude is that I compute 

some reschedules, so these are so if I find an x which will minimize these residuals not 

really these residuals, but the sum of the squares of this residuals. So, I will put so for 

each i, I am having one residuals so and then I want to minimize this over x in r n and 

this is nothing but if you take a vector r x. So, if you take r x that is nothing but sorry, an 

u square of the Euclidian norm of r, so basically you have to minimize this function over 

r n, right. 

So this is a very important example where least square techniques are of useful, so 

statistics. For example, is one of the very, very important areas where least square 

techniques are indeed very useful, now we are going to see what sort of a algorithm one 

might use, when one tries to do a least square method ok. 
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So this algorithm is essentially what we call the gauss Newton method, so it is some sort 

of Newton method, but modified by gauss, so it is called the gauss Newton method. 

Now, if I want to minimize a sum of squares that is now f x, first I really have to find a 

critical point, so I need to compute the grad gradient of grad effects, which is this is what 

you will have these are very simple thing this is an application of chain rule at this point. 

Now, you observe that here what one needs to do is that, you can express this in slightly 

better way you know what is a Jacobean matrix, so Jacobean matrix j x of the vector r x, 

so if you so basically taking the grad of x grad of r i x.  



So, if you look at this like, let me write down the Jacobean matrix; Jacobean matrix is a 

matrix whose first row is, so is a gradient vector. Now, written as a row vector now, once 

you have this if you know simple matrix multiplication, then you would realize that are a 

grad r i x. So j x transpose is a matrix whose column is first column is gradient of r 1 x, 

see we are always writing things as column vectors. Now, this simply means I can write 

this as twice of j x transpose, if you know a simple multiplication r x.  

So, once that is done I would leave you as home work the following computation is a 

computation of the Jacobean matrix a hessian matrix of f, so which we usually write like 

this or… Now for simplicity you can also write as h x which is equal to twice of, so this 

will be home work for you. Now, if I want to use a Newton’s method then I really have 

to compute all these things basically a, I have to compute the hessian of each of the r i x 

at every point, so that will be too much of hazard not a hazard I would say but I would 

say that it is too much of computation effort, but instead of doing. So I can use some sort 

of heuristics not heuristics I do some little bit of tuning here, and then I say ok. 

Let me do not not take h x the hessian matrix itself, but some sort of approximation 

awaits, so I take the h x is almost this. So I do not do this again derivative at all, because 

this J x depend on the first derivatives, so what I am trying to do I do I do not intend to 

use second order information in a place, where I should have used second order 

information, but use first order information to force in an algorithm which is as effective. 

As the one which you would have if you had taken in the second order information, so 

this is some sort of a heuristic step, the term heuristic is very common in optimization. 

Now, a days many people would know, for example I have heard about genetic 

algorithms which is also heuristics, but I would not go immediately for algorithms which 

are not supported by mathematics, because mathematics gives you the strength and tells 

you how an algorithm would actually behave, and so when you really see a problem of a 

particular type, you can know that which algorithm would actually fit this scenario. So, 

this is let us say this is something called a heuristic step, so we are basically ignoring this 

part. Now, the second order part to he has with only this information, we are going to 

construct a technique which would actually give me you would lead me to the solution. 
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Now the gauss Newton method says, I will just do the following you should be able to 

put two here, but two is of course, does not make much of a difference just, so this is act 

actually acting as some sort of an approximation, this one as some sort of an 

approximation to your, so it is acting as a approximation to your hessian matrix. Now, 

how do I know that such an inverse would actually exist, so you have to know that J x 

transpose J x J x has how many rows m and it has n grab r 1 x x is from r r i is from r n 

to, so this r i is from r n to r which is clear.  

Of course, from the expression you are not getting to all this every time, so which means 

that there are n rows, now if all these n rows formally nearly independent set of vectors, 

right then then only the factor two here actually does not matter, because here you have a 

factor two. And then here if you take the inverse of this, so factor two if you take a 

inverse of this, then you have to take inverse of two which is half. So, that will cancel out 

so does not matter, so do not bother get bother about the two here the two will cancel 

out. So, here in the gauss Newton step what we should have is that we should also have 

that for each x J x is a rank n that would guarantee, if J x is of rank. 

 Now here we have written on this heuristic step, and then will take the gauss Newton 

will write down the gauss Newton iteration, which is x k plus one is x k. Now, instead of 

a grad f square x inverse, I have here h x k that iteration. Now of course, what we need to 



do is to assume that this is each x J x is of rank n, then this inversion formula, so the fact 

that rank of J x is n would guarantee the following. 

So in order to have the fact that this made fix becomes invertible, so we write some sort 

of a Newton step, we x have we have taken that the rank is n. So, you want this to be 

invertible, so the required condition is that this would be of rank n which we already 

have mentioned in the last page. So, this leads to the gauss Newton method which is 

basically some sort of Heuristical Newton method specifically done for this least square 

problem, so will let us write down the gauss Newton method, in the gauss Newton 

method the interesting part is the following interesting part is that… 

Here we write everything just like a Newton method, and we expect the hessian matrix to 

be this one, if think that that is a hessian matrix, if that was hessian matrix. So we would 

expect algorithmic iterative scheme of this form, so the hessian is twice of this. Now, if I 

take the inverse that will become half, so into the derivative that is twice of J x k 

transpose r x k, and this, this cancels out to give me x k plus 1 is x k minus, this 1 into 

that 1, 2 2 being canceling out. 

So, this is the gauss Newton iteration. Now, in general you might think that what would 

happen, if this is not invertible what can I do, if then we can create what we what is 

called the damped gauss Newton’s scheme, which is as follows basically you can write 

this one. If you look at it very carefully I can write J x k transpose J x k, this matrix 

operating on the vector x k plus 1 minus 1 x k is equal to minus of J x k transpose r x k, 

so we can tell that this difference is nothing but d k the direction of or it is some alpha 

times d k, so in general the idea would be the following. 
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So that let us write down what is called the damped gauss Newton method; damped 

gauss Newton method the idea is now to take solve this equation, this is a first step. Now 

find lambda k such that, so I get a complete decent f for x k plus lambda k d k, that is my 

x k plus 1 must be strictly less than f x k. And then basically you set x k plus 1 to x k 

plus lambda k d k. Now, the question is will this be a decent direction question is will 

this be a descent direction, so you can take this as home work. So, if I call this as 

equation a here, for example so is d k the solution of equation a, a decent direction that is 

very, very important to know whether of course, if you write d k as inverse of this, then 

that will become a descent direction that is the material, but in general can you show it to 

a descent direction kindly take this down as an home work. 
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So, once you know this, I will give you an additional example to work on example, home 

work example to try out the gauss Newton method, you can even run it on your compute 

writing programs, so consider f of… So, this is my least square problem I have to 

minimize this of course, r 1 x 1, and x 2, in this case is root 2. And now of course, the 

Jacobean, which is the Jacobean of these two vector function Jacobean or vector function 

are whose components are these r 1, and r 2. So, the Jacobean is given as this is j x 

basically in this case x is x 1, x 2, so this is of rank 2, this is J x 1 x 2 is of rank 2, when x 

1 is not equal to 2. 

If x 1 is equal to two this will become 0 so the column vector would be 0 0, so that could 

that 2, 3, and 0 0 would be linearly dependent. And so you cannot have this, you cannot 

have a 0 vector in the set of linear independent vectors, so hence if x 1 is not equal to 2, 

then you can obviously have, so you start with points x 1, x 2 never take x 1, x 2 be 2. 

And if you start with those points, then if your staring point in that then Jacobean is 

invertible you have to make sure that your Jacobean is never x 1 is never 2, then your 

Jacobean has stops been invertible. Now try out this procedure using the gauss Newton 

method, and you can and also try out the damp gauss Newton, and see what happens? So 

we can talk about something later on but we can now lo look at our program ahead 

means, what are we going to learn and discuss ahead, so in the case of solving un 

constant optimization problem. 



We have two important methods left rather three important method, but first we are 

going to just do the 2, 1; the two more important once not more important rather very 

popular once quasi Newton method, number two trust region method the surprising thing 

about these two methods is that even if they are talking about un constant optimization 

problem in order to develop this methods we need constraint optimization. So, we need 

very special types of constraint optimization problems, so without a better understanding 

of constraint optimization. And the Karush Kuhn tucker conditions which are as the 

necessary our sufficient conditions for differentiable optimization problems with with 

constraints, it is not possible to get a correct idea of these methods. So, the idea is the 

following that we in the coming lectures study in detail the Karush Kuhn tucker 

conditions, and the Quasi Newton method. And the trust region method would be done 

as an example of a as of the application of the Karush Kuhn tucker conditions or the 

ideas of constant optimization. 

So this is what is very, very example; very, very important. And so we will start 

tomorrow’s starting from central issue of optimization theory, that is optimality itself 

how do I characterize a point. If I know that it is a local optimal to a constant 

optimization problem, so that that is the first question how do I characterize a point. If I 

know it is a local minimum of a constrained optimization problem, the text that we are 

going to largely follow here is the following is a fabulous book called the foundations of 

optimization.  

Only you will talk about the differentiable case, we will not go into the non differentiable 

case at all, and that will cover at least ten lectures would be needed to complete Karush 

Kuhn tucker conditions. I would just say possibly for the next ten lectures we will really 

be bothered about knowing about the Karush Kuhn tucker conditions, we will solve a 

examples and those examples will be very, very important; and very, very important 

examples as far as optimization goes, so this is the book by Osman guler a very famous 

optimizer works in the US. Of course, in in university of paul mary landed baltimore 

Baltimore, and this book was published by springer under the g t m series or the graduate 

text in mathematics series in 2011. 

 I suppose so this is the any anybody the who is looking at optimization from a certainly 

higher point of view, from the graduate perspective should really go for this book I 

would rather say that in, if you look at the NPTEL web site, I find that there are larger 



courses catering to optimization operations research, those who would be just bother 

about knowing some techniques of how to compute a problem in various situations, I am 

not really knowing about the deep issues involved the mathematical issues involved in 

optimization. Then I would rather tell you to concentrate on those courses rather than 

concentrating on this course, because this course is given slightly at a graduate level or 

rather, you can say quite quite or bit of stuff would be at the graduate level. 

So we would really like you to get involved, and know the mathematics behind 

optimization. So, this course is essentially telling you the math behind optimization not 

just you know telling these are the problem, you do this, do this do this what you will get 

call it a solution the point is that, in most algorithms what you will get? You can never 

call it a solution the art of optimization, you should know that how good is your solution, 

how can you estimate the goodness of your solution. So, how do you do that that is also a 

story, which you will tell you in the form of a section called error bounds which will 

come later on ok. 

So here we stop, and here we ah from tomorrow we will start Karush Kuhn tucker 

condition, we talk about the history, first we start with the (( )) condition inequality 

constraints the types of problems are which come in those sort of cases. We can talk 

about then we talk about both equality inequality constants how to really get those 

conditions you might think that. I have learnt multiplier in calculus whether that is doing 

something with constant optimization, but there you never learn that you really have to 

guarantee the existence of such a multiplier, so that the at the actual solution of the 

problem is nothing but a critical point of the Lagrangian of the function such a thing has 

to be guaranteed, and here we show such things right. 

So we stop here, and I would rather say that this course would be given from this point 

onwards it was earlier, if you look at the other things, it was given at quite a simple level, 

it would not be I understand, but I wanted to keep this course very simple. But in order to 

give a much more in depth view of optimization to really tell you what optimization is all 

about what the hell is actually going on, you need to know the math deeply you 

understand the math properly. I am afraid possibly many of you would like to away from 

mathematics, but I am afraid optimization is a mathematical subject. And a deeper idea 

about optimization is not possible without a understanding of its mathematical principles. 

Thank you very much. 


