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So we were discussing this least square problem, basically using this technique of
optimization to try to find the solution to A x equal to b. Now, if you remember we have
shown that any critical point of this function is a solution, is a minimum to this function

and hence is, and hence is a solution to the original problem.

So any critical point of this problem is a solution to this problem, so the in fact it has
only critical, and it has all critical points should satisfy this equation, so these are
sometimes called normal equations. And if you remember what we had shown that any x
star which satisfies this, this one will satisfy A x equal to b that is what we had proved in
the board so basically to solve to find an x star, which satisfy A x star equal to b. We
basically have to solve an equation like this, that is we should have x star equal to of
course, this is only true when rank of A is n is a full column rank, m has the row has to
number of rows has to be more than a n, so it would it should have so basically my x

should have this expression.
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So this expression a transpose A transpose is sometimes called the generalized inverse of
A or pseudo inverse of A. Now what sort of an algorithm would actually work for the
least square problem, in general let me write you let me tell you the least square problem
has the following form that this discussion that we were doing in the last class where just
an demonstration of how optimization in the form of minimizing a square. So the least
sguare minimum square can be used to really solve a problems of solving linear system
of linear equations. So, least square problem is essentially trying to minimize a function f
x which itself is expressed as the sum of squares, an explanation of the use so | want to
minimize over x element of R n. So, an example of such thing comes possibly in
regression, in regression analysis in statistics, this is the least square method is a quite

chosen method.

So, what happens? One of the problem is that you are given certain points, say of the
formti, b i, time and positions of a person. Now, what sort of curve will it fit, shall I can
| fit a straight line to explain the relationship between t i and b I, that is whether t i and b
i have certain relation or there are some curve like this, that will be a better fit. So this,
this there is a whole subject called curve fitting, and that is also useful in statistics what
does is exactly what it do in regression analysis, you try first the basic problem is to give
first try to fit a straight line. And then you really want to minimize the errors, square of

the error that you would get if you use the straight line instead.



And if you just assume that this points actually should have a linear relationship, that is
they would lie in some straight line. So, curve fitting is a very important area, the curve
fitting has important applications. Now, so suppose | have all these points of the form t i,
b i is obtained by some experiment, and of course some physical experiment or some
statistical experiment. So, we want to see where b how b is related to t and x here is
essentially the parameter if you want to fit a straight line, that is if you want to say b is a
t plus c, suppose you want a relationship like this then this is your pi a c t, in fact a ¢ here

plays the role of x.
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Now, once that is done these n set of parameters x should be ideally chosen the
parameter X should be ideally chosen in such a way, in such a way that at every t i, the
function value should be b i. So, suppose | have just generated m points here here, but
the number of points | generate for example, in two dimensional, so he has two d i,

suppose, I am in two dimension and the number of points | have generated is as two.

And of course, you can say they are laying on a straight line may be actually the
relationships are not that, when we run the experiments. So, experiments has to be run
much more times than the dimension of the decision variables, so the number of
parameters here, whatever be the number of parameters. Suppose a n is a humber of
parameters usually in a well posed setting m should be much larger than m, actually |

should say m, this is way of telling m is much larger than see due to experimental errors



or whatever this condition need not match exactly, so what I conclude is that I compute
some reschedules, so these are so if | find an x which will minimize these residuals not
really these residuals, but the sum of the squares of this residuals. So, | will put so for
each i, I am having one residuals so and then | want to minimize this over x in r n and
this is nothing but if you take a vector r x. So, if you take r x that is nothing but sorry, an
u square of the Euclidian norm of r, so basically you have to minimize this function over

rn, right.

So this is a very important example where least square techniques are of useful, so
statistics. For example, is one of the very, very important areas where least square
techniques are indeed very useful, now we are going to see what sort of a algorithm one

might use, when one tries to do a least square method ok.
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So this algorithm is essentially what we call the gauss Newton method, so it is some sort
of Newton method, but modified by gauss, so it is called the gauss Newton method.
Now, if I want to minimize a sum of squares that is now f x, first | really have to find a
critical point, so | need to compute the grad gradient of grad effects, which is this is what
you will have these are very simple thing this is an application of chain rule at this point.
Now, you observe that here what one needs to do is that, you can express this in slightly
better way you know what is a Jacobean matrix, so Jacobean matrix j x of the vector r X,

so if you so basically taking the grad of x grad of r i x.



So, if you look at this like, let me write down the Jacobean matrix; Jacobean matrix is a
matrix whose first row is, so is a gradient vector. Now, written as a row vector now, once
you have this if you know simple matrix multiplication, then you would realize that are a
grad r i X. So j X transpose is a matrix whose column is first column is gradient of r 1 X,
see we are always writing things as column vectors. Now, this simply means | can write

this as twice of j x transpose, if you know a simple multiplication r x.

So, once that is done | would leave you as home work the following computation is a
computation of the Jacobean matrix a hessian matrix of f, so which we usually write like
this or... Now for simplicity you can also write as h x which is equal to twice of, so this
will be home work for you. Now, if | want to use a Newton’s method then | really have
to compute all these things basically a, | have to compute the hessian of each of the r i x
at every point, so that will be too much of hazard not a hazard | would say but | would
say that it is too much of computation effort, but instead of doing. So | can use some sort

of heuristics not heuristics 1 do some little bit of tuning here, and then | say ok.

Let me do not not take h x the hessian matrix itself, but some sort of approximation
awaits, so | take the h x is almost this. So | do not do this again derivative at all, because
this J x depend on the first derivatives, so what | am trying to do | do | do not intend to
use second order information in a place, where | should have used second order

information, but use first order information to force in an algorithm which is as effective.

As the one which you would have if you had taken in the second order information, so
this is some sort of a heuristic step, the term heuristic is very common in optimization.
Now, a days many people would know, for example | have heard about genetic
algorithms which is also heuristics, but | would not go immediately for algorithms which
are not supported by mathematics, because mathematics gives you the strength and tells
you how an algorithm would actually behave, and so when you really see a problem of a
particular type, you can know that which algorithm would actually fit this scenario. So,
this is let us say this is something called a heuristic step, so we are basically ignoring this
part. Now, the second order part to he has with only this information, we are going to

construct a technique which would actually give me you would lead me to the solution.
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Now the gauss Newton method says, | will just do the following you should be able to
put two here, but two is of course, does not make much of a difference just, so this is act
actually acting as some sort of an approximation, this one as some sort of an
approximation to your, so it is acting as a approximation to your hessian matrix. Now,
how do | know that such an inverse would actually exist, so you have to know that J x
transpose J x J x has how many rows m and it has ngrab r 1 x x is from r r i is from r n

to, so this r i is from r n to r which is clear.

Of course, from the expression you are not getting to all this every time, so which means
that there are n rows, now if all these n rows formally nearly independent set of vectors,
right then then only the factor two here actually does not matter, because here you have a
factor two. And then here if you take the inverse of this, so factor two if you take a
inverse of this, then you have to take inverse of two which is half. So, that will cancel out
so does not matter, so do not bother get bother about the two here the two will cancel
out. So, here in the gauss Newton step what we should have is that we should also have

that for each x J x is a rank n that would guarantee, if J x is of rank.

Now here we have written on this heuristic step, and then will take the gauss Newton
will write down the gauss Newton iteration, which is x k plus one is x k. Now, instead of

a grad f square x inverse, | have here h x k that iteration. Now of course, what we need to



do is to assume that this is each x J x is of rank n, then this inversion formula, so the fact

that rank of J x is n would guarantee the following.

So in order to have the fact that this made fix becomes invertible, so we write some sort
of a Newton step, we x have we have taken that the rank is n. So, you want this to be
invertible, so the required condition is that this would be of rank n which we already
have mentioned in the last page. So, this leads to the gauss Newton method which is
basically some sort of Heuristical Newton method specifically done for this least square
problem, so will let us write down the gauss Newton method, in the gauss Newton

method the interesting part is the following interesting part is that...

Here we write everything just like a Newton method, and we expect the hessian matrix to
be this one, if think that that is a hessian matrix, if that was hessian matrix. So we would
expect algorithmic iterative scheme of this form, so the hessian is twice of this. Now, if |
take the inverse that will become half, so into the derivative that is twice of J x k
transpose r X k, and this, this cancels out to give me x k plus 1 is x k minus, this 1 into

that 1, 2 2 being canceling out.

So, this is the gauss Newton iteration. Now, in general you might think that what would
happen, if this is not invertible what can | do, if then we can create what we what is
called the damped gauss Newton’s scheme, which is as follows basically you can write
this one. If you look at it very carefully I can write J x k transpose J X k, this matrix
operating on the vector x k plus 1 minus 1 x k is equal to minus of J x k transpose r x Kk,
so we can tell that this difference is nothing but d k the direction of or it is some alpha

times d Kk, so in general the idea would be the following.
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So that let us write down what is called the damped gauss Newton method; damped
gauss Newton method the idea is now to take solve this equation, this is a first step. Now
find lambda k such that, so I get a complete decent f for x k plus lambda k d k, that is my
x k plus 1 must be strictly less than f x k. And then basically you set x k plus 1 to x k
plus lambda k d k. Now, the question is will this be a decent direction question is will
this be a descent direction, so you can take this as home work. So, if I call this as
equation a here, for example so is d k the solution of equation a, a decent direction that is
very, very important to know whether of course, if you write d k as inverse of this, then
that will become a descent direction that is the material, but in general can you show it to

a descent direction kindly take this down as an home work.
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So, once you know this, I will give you an additional example to work on example, home
work example to try out the gauss Newton method, you can even run it on your compute
writing programs, so consider f of... So, this is my least square problem | have to
minimize this of course, r 1 x 1, and x 2, in this case is root 2. And now of course, the
Jacobean, which is the Jacobean of these two vector function Jacobean or vector function
are whose components are these r 1, and r 2. So, the Jacobean is given as this is j x
basically in this case x is X 1, X 2, so this is of rank 2, this is J x 1 x 2 is of rank 2, when X
1 is not equal to 2.

If x 1 is equal to two this will become 0 so the column vector would be 0 0, so that could
that 2, 3, and 0 0 would be linearly dependent. And so you cannot have this, you cannot
have a 0 vector in the set of linear independent vectors, so hence if x 1 is not equal to 2,
then you can obviously have, so you start with points x 1, x 2 never take x 1, X 2 be 2.
And if you start with those points, then if your staring point in that then Jacobean is
invertible you have to make sure that your Jacobean is never x 1 is never 2, then your
Jacobean has stops been invertible. Now try out this procedure using the gauss Newton
method, and you can and also try out the damp gauss Newton, and see what happens? So
we can talk about something later on but we can now lo look at our program ahead
means, what are we going to learn and discuss ahead, so in the case of solving un

constant optimization problem.



We have two important methods left rather three important method, but first we are
going to just do the 2, 1; the two more important once not more important rather very
popular once quasi Newton method, number two trust region method the surprising thing
about these two methods is that even if they are talking about un constant optimization
problem in order to develop this methods we need constraint optimization. So, we need
very special types of constraint optimization problems, so without a better understanding
of constraint optimization. And the Karush Kuhn tucker conditions which are as the
necessary our sufficient conditions for differentiable optimization problems with with
constraints, it is not possible to get a correct idea of these methods. So, the idea is the
following that we in the coming lectures study in detail the Karush Kuhn tucker
conditions, and the Quasi Newton method. And the trust region method would be done
as an example of a as of the application of the Karush Kuhn tucker conditions or the

ideas of constant optimization.

So this is what is very, very example; very, very important. And so we will start
tomorrow’s starting from central issue of optimization theory, that is optimality itself
how do | characterize a point. If |1 know that it is a local optimal to a constant
optimization problem, so that that is the first question how do I characterize a point. If |
know it is a local minimum of a constrained optimization problem, the text that we are
going to largely follow here is the following is a fabulous book called the foundations of

optimization.

Only you will talk about the differentiable case, we will not go into the non differentiable
case at all, and that will cover at least ten lectures would be needed to complete Karush
Kuhn tucker conditions. | would just say possibly for the next ten lectures we will really
be bothered about knowing about the Karush Kuhn tucker conditions, we will solve a
examples and those examples will be very, very important; and very, very important
examples as far as optimization goes, so this is the book by Osman guler a very famous
optimizer works in the US. Of course, in in university of paul mary landed baltimore
Baltimore, and this book was published by springer under the g t m series or the graduate

text in mathematics series in 2011.

| suppose so this is the any anybody the who is looking at optimization from a certainly
higher point of view, from the graduate perspective should really go for this book I
would rather say that in, if you look at the NPTEL web site, | find that there are larger



courses catering to optimization operations research, those who would be just bother
about knowing some techniques of how to compute a problem in various situations, | am
not really knowing about the deep issues involved the mathematical issues involved in
optimization. Then | would rather tell you to concentrate on those courses rather than
concentrating on this course, because this course is given slightly at a graduate level or

rather, you can say quite quite or bit of stuff would be at the graduate level.

So we would really like you to get involved, and know the mathematics behind
optimization. So, this course is essentially telling you the math behind optimization not
just you know telling these are the problem, you do this, do this do this what you will get
call it a solution the point is that, in most algorithms what you will get? You can never
call it a solution the art of optimization, you should know that how good is your solution,
how can you estimate the goodness of your solution. So, how do you do that that is also a
story, which you will tell you in the form of a section called error bounds which will

come later on ok.

So here we stop, and here we ah from tomorrow we will start Karush Kuhn tucker
condition, we talk about the history, first we start with the (( )) condition inequality
constraints the types of problems are which come in those sort of cases. We can talk
about then we talk about both equality inequality constants how to really get those
conditions you might think that. I have learnt multiplier in calculus whether that is doing
something with constant optimization, but there you never learn that you really have to
guarantee the existence of such a multiplier, so that the at the actual solution of the
problem is nothing but a critical point of the Lagrangian of the function such a thing has

to be guaranteed, and here we show such things right.

So we stop here, and | would rather say that this course would be given from this point
onwards it was earlier, if you look at the other things, it was given at quite a simple level,
it would not be I understand, but | wanted to keep this course very simple. But in order to
give a much more in depth view of optimization to really tell you what optimization is all
about what the hell is actually going on, you need to know the math deeply you
understand the math properly. |1 am afraid possibly many of you would like to away from
mathematics, but | am afraid optimization is a mathematical subject. And a deeper idea
about optimization is not possible without a understanding of its mathematical principles.

Thank you very much.



