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Now, I given you this homework while discussing the conjugate directions method in 

some of the, in one of the previous lectures. Now I will solve this part of this homework 

this part, this part, but I will keep this for you to try out. So, today I will begin by trying to 

solve. So, what I have to prove is the conjugate directions and the gradients are 

perpendicular to each other. 
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But, so what I have to really prove is a following is g k, d i at any k is equal to 0 for all i 

for, for all i which is bigger than equal to 0 or less than or equal to k strictly. What we do 

is that we use induction. So, by induction what we show is a following that we show that 

let us assume g k, d i is equal to 0 for all and to prove g k plus 1 d i is equal to 0 for, so 

that is exactly what we have to do. So, you we have assume this now let us start working it 

out; let us observe this fact. Now this one is very simple since g k is nothing but, H x k 

plus b. So, g k plus 1 would be nothing but H x k plus 1 plus b, so b would get cancelled 

out and this is what you will have. 

Now of course, you know that x k plus 1 is x k plus alpha that is how you update using the 

conjugate gradient direction that is how you update alpha k d k. So, then g k plus 1 minus 

g k, now I can write this as alpha k d k, so it will become alpha k H d k. Now I multiply 

both sides by (( )) take the inner product both sides by d i right for i. So, then I will get g k 

plus 1, d i is equal to g k, d i plus alpha k, d i H d k. Now I have to prove this fact. So, 

basically I have to prove that for all 0 for all i equal from 0 to i equal to k this thing holds. 

So, first put i is equal to k; imply that plus alpha k d k H d k. You know what is alpha k, 

alpha k is already you have solved out alpha k. Now what we have to do is now here I 

have to put the value of alpha k. 
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So, alpha k is already known to me and that is minus g k, d k, d k, H d k. So, if you do 

that, so then g k plus 1, d k is nothing but g k, d k minus orientation, so that can following 

it - g k, d k. This and now here also we have d k H d k which cancels up now H is positive 

definite matrix, so it will this d k is non-zero, so these are all positive. So, this will cancel 

up and so we will be left with g k, d k. Now once you have done, this is 0. So, you have 

proved for k, now you have to prove for anything other than k. Now take consider i is 

strictly less than k then for that g k plus 1, d i is g k, d i plus alpha k I think alpha k you 

will come here d I, H d k. So, this i is strictly less than k now, so our d i is not i is not 

equal to k. So, then by the fact that these are conjugate directions this would become 0 and 

the fact that we have already assumed when we started the proof then this would also 

become 0. 

So ultimately, so this proves the fact. Now what is important to know that all these things 

that we have done, all the conjugate direction or conjugate gradient method have been 

really applicable for convex problem that to with H a convex quadratic problem with H 

positive definite is really strongly convex or strictly convex quadratic problems. What 

about handling it for non-quadratic problems or anything it is a for any sort of convex 

problems for example, can we do something with that. 
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So, for that Fletcher reeves introduced a method called the Fletcher Reeves method. We 

are just going to outline this method here. Now let us write down the Fletcher Reeves 

method step by step. This can work for non-quadratic problems also. Actually the shift 

from linear to non-linear is quite a difficult shift methods you know they are not once you 

have non convex problems you have very less things available to you. You just make a 

trial with whatever algorithms you have in your hand and see what you have that that is the 

only thing that you can possibly do. And recent research there are efforts to take those 

points and try to give some quantitative justification about their behavior, but that is 

absolutely at the frontier of research. 

So, we would not get into that issue at all, but I just want to recall and remind you that non 

convex optimization by the way is very very hard, of course, there could be convex 

optimization problems which are also not so easy to handle, but there are algorithms which 

will support them. But for non convex problems, you just do not know in large cases what 

to do. We will learn about sequential quadratic programming method methodology as we 

go along, but you see that that has its own drawbacks as we come to it. 

Now in Fletcher reeves method, so step one is to initialize your starting point x 0 and 

tolerance epsilon. Step two is to set k is equal to 0; step two, you should compute g 0 that 

is the gradient at x 0 and set the first conjugate direction that is set. Step three - it was the 

most idealistic stuff find alpha greater than zero, which minimizes of course this 



minimization is done in a approximate way. So, here you have one dimensional 

minimization, we have not spoken much about one dimensional minimization in this 

course, possibly at the very end of this study about unconstraint optimization, we will take 

up a one day to explain some very important one dimensional minimization techniques. 

Because when you want to solve this problem where x k and d k are fixed then this is 

nothing but a function in alpha. So, then basically you are talking about one dimension 

minimization minimization of a one of a real function in real variables, so f from r to r. 

 Now once we have done that, so that is alpha k. So, basically find alpha k I should say 

which minimizes this set your next iterate to x k plus 1 and x k plus 1 is x k plus alpha k d 

k is that I cannot I really do not know the solution. But when the distance between x k plus 

1 and x k - these distance that distance comes becomes very very small that is we are 

basically coming near the solution. Like if you had thought about steepest descent, so there 

was this is your this is your level curves, suppose say what would happen level curves 

means these are the function values say f x y equal to c, because we are in two dimensional 

set up you can see it very well. So, you are here, so you take one direction and you moved 

here then you took another direction and you moved here then you are moving there then 

you are moving there and then you are moving there and then here then here then here then 

here. So, as go near the solution, these distance also decreases. 

Let me also give an explanation that so if you thing is actually taking you to the solution 

then this is what should happen that is if x k is going to the solution x star then this is what 

should happen. Because then what I can do is that I can write x k plus 1 minus x star this is 

equal to plus x star minus x k, and this is nothing but less than x k plus 1 minus x star plus 

x star minus x k. And this all also this whole thing now goes to 0. So, if I can show that the 

distance between these two consecutives one’s becomes very very small, basically I am 

trying to show that it is a essentially in some sense. So, if I can show that then I know that 

it will converge that it will actually go to towards the solution. So, for sufficient for k 

sufficiently large, we can show that this is true this distance is very very small then I am 

almost near the solution then I can stop there. 

So, what I do now x k plus 1 minus x k is equal to alpha k d k, and norm x k plus 1 minus 

x k is equal to alpha k d k. So, basically you really do not have to bother about x k plus 1 

at very first, you just take alpha k d k check if norm alpha k d k is strictly less than epsilon 

- step 4. So, there are two answers to it yes and no. So, if it is yes, stop and take x k plus 1 



as the solution approximately, as the Approximate solution I should write. If it is no, then 

do the following there comes step five. If k is equal to n minus 1, set x 0 is equal to x k 

plus 1 and go back to step 2. If k is equal to n minus 1, so we have not reached our 

solution in n minus 1 steps then we have to again restart the procedure. If not else compute 

g k plus 1 and beta k is equal to g k plus 1 g k plus 1 g k g k that is nice one and then you 

compute the next direction d k plus 1 because from there the x k plus 1 now you have to 

go to x k plus 2. So, you are computing the d k plus 1 is equal to as minus g k plus 1 in the 

same way we have done for the power this hastiness conjugate gradient method plus b k to 

d k. 

And you see now once you have that what you can do is set k is equal to k plus 1 and go 

back to step three or rather assign k equal to k plus 1. So, this is an approach see why this 

k equal to n minus 1, because in the quadratic case when you have positive definite hessian 

in n minus 1 steps you are basically getting the solution. So, in n iterations basically n 

iterations you are getting the solution, and here I am in n minus 1 eth step and I am yet to 

get the solution. So, I have to reset x naught as x one and taking up the starting point and 

start the whole procedure again. Because at k is equal to n minus 1, I have not got the 

solution this is some sort of slight restriction that is there, but k equal to n, I am suppose to 

get the solution and I started from x 0. So, I have x 0 then in n steps, so x n minus 1 would 

be my just a moment… 
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So, as we have already seen in our previous studies that in n steps in the case of when H is 

positive definite, in n steps we are coming to the solution. So, this we can come to the 

solution in just n steps. We start with x 0, and x n would be x star. So, here when k is you 

can say, why k should not be n minus 1, but I have started with k equal to 0 and I have 

come to k equal to n minus 1 which I have, so I have taken n steps right 0 th step first step 

second step third step n eth step. n minus 1 is the n eth step in this case. So, I have reached 

the n eth step. So, even if I have reached the n eth step, so x n should be my solution. So, 

here I have reached the n eth step, but I have not got the solution that that is the if k is that 

that is the whole idea if k is equal to n minus 1. So, I have already taken n eth k is from 0 

to n minus 1, I have taken n step, this n eth step and 0 th iteration the first iteration 0 th 

iteration first iteration second iteration k n minus 1. 

So, basically I have taken n steps I have got my come to my n minus 1 th iteration in next 

iteration, I am suppose to get the solution. But at k equal to n minus 1, if I do not get the 

solution then I really have to restart the procedure that because we are handling non 

convex problems, we are not sure whether at nth step we are going to get a solution. We 

have non-quadratic problem with we do not know anything about the of functions nature. 

So, then a little bit of extra caution is kept here by putting k is equal to n minus 1 and then 

again restarting the whole procedure from x not equal to x k plus 1. Now we are going to 

end our discussion of conjugate directions and conjugate gradient method which is very 

important class and then we will go into in a very slightly interesting problem called the 

least square problem. Now what does this least square problem means? So, least square 

problems is how optimization can help you in solving, how optimization can help you in 

solving equations. 
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And let us just see what can we do about it one to I have a m cross n matrix, and I want to 

solve this equation. So, A is m cross n matrix, and x is a n vector, and b is in R m . So, 

now, this need not have unique solution, it depend on the relation between m and n. So, in 

general, it can have many solutions, and it is not see I do not know that is a there is a 

because m is not equal to n, and I have no idea about the inevitability in this case. And, so 

I cannot really figure out what is the solution so easily, it is not so easily to figure out one 

solution even. If b is 0 then x can be 0 then one of the solution; if b is non 0 I do not know. 

How do I try to attempt to solve this sort of system of equation, because these things come 

of very much in applications. See what I can prefer to do instead of trying to solve it, I 

construct this function is called the residual function. So, if I take n x, I take any x in R n 

and put here in and multiply it with A, then if A x is not equal to b if it is not the solution 

then A x minus b this vector is a non zero vector, and then the norm of that would be non 

zero. 

So, if x is not a solution, then so this quantity is called a residual, this quantity sometimes 

for the more terminology loving b person is called a residual. So, x is not a solution then 

this will happen. So, if x is a solution A x minus b is would be equal to 0, and then that x 

would actually be the minimum of this problem, because this is always greater than equal 

to 0. For any x for which A x minus b is a x is A x is equal to b that x must be a solution of 

the minimization of this problem over R n. So, if x star solves A x equal to b, if and only if 

x star solves the problem minimize r x, x element in R n where r x is in this case now how 



do you… So, if I want to solve this problem, I can actually solve the this minimization 

problem, but how do I prove that. If x star solves A x equal to b then naturally A x star is 

equal to b and r x star is equal to 0, hence r x is greater because r x is greater than equal to 

0 for all x, so r x star, so x star minimizes r x. Now if x star minimizes r x, how do I show 

that you have this as a solution, if x star minimizes r x then that x star would solve A x star 

equal to b. 
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So, if x star minimizes suppose x star minimizes r x then what would happen, I can write 

that the gradient of this problem must be 0. So, I have already know that x star is 

minimizing r x. So gradient of f x star, so that would give me A transpose A x star minus b 

is equal to 0 or A transpose A x star is equal to A transpose b that is what it gives me. 

What I have found here is actually a critical point, so if this happens then this is what will 

happen, then can I say here that A x star is equal to b from this can I say that A x star is 

equal to b which looks quite clear. Now suppose A is of full rank, A is of full column rank 

then A transpose A is actually invertible then you can write x star if a is of rank n that is a 

is of full column rank if a is of rank n then x star is equal to A transpose b. 

Now if I can get this, so if x star solves this problem then grad f x star must be equal to 0 

and x star must have this form. Then if A is of rank n then x star must have this form then 

what I have if a x star then A of x star is equal to A of A transpose A inverse A transpose 

b. See because A is of rank n, A transpose A becomes a positive definite matrix that is 



very important and that is why it is invertible. So, if A is of rank n is a positive definite is a 

positive definite matrix. So, we prove this in the homework, so this is your homework. 

Now what is A x star. So, let me see what happens. So, now, this can be written as A A 

inverse A transpose inverse where A b inverse is b inverse A inverse. So, this is A inverse 

A transpose inverse A transpose inverse b, this is identity and this is identity. So, you have 

A x star is equal to b. So, I will now modify what I have written. 

So, this is how you discover things in mathematics by trying it out. So, I have not written it 

purposefully, but what I have now done what I have written, I have written that if A is of 

rank n, let so my result is let a be of rank n of full column rank. Then x star solves A x 

equal to b if and only if x star solves this problem. Then so you see then now we have the 

full result now this is my result. So, basically, now if I want to solve this problem, what I 

will first do is I will first find a point like this, and then if A is of rank n, and if I am now 

trying to minimize this problem. If I find a critical point of this problem, any critical the 

critical point of x star if A is of rank n critical point of r x I have written should be r x 

critical point of r x is of this form. And we want to show that this critical point is actually a 

minimum this critical point is actually a minimum that is very very important to show. 
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So, r of x is norm A x minus b whole square. So, take any x in R n, now once you know 

this, you can write this as x star minus b. Now this term would be 0, because of this fact 

because we know that if x star is a critical point, so the critical point of this least square 



problem if I minimize this if I find this critical point when a rank of A is n then that critical 

point is actually a solution of this problem. And we have shown that that critical point is 

actually solving the original problem A x star equal to b. So, it is very nice that I can 

actually in an exact way I can find I mean exact analytic expression for this and that is a 

beautiful part which you do not always have in optimization. So, if x star is a critical point 

in then what you have, so the derivative I have again made a small mistake in my writing, 

but please forgive me for this, because this is something you can figure out because here 

instead of A it should be r, because we are trying to find the critical point of r. 
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So, then grad r x star is equal to 0 and again I will leave it as a homework for you to figure 

out that the derivative of r x that is it is your homework to figure out that the gradient of r 

x is nothing but A transpose A x minus b. So, this implies A transpose A x star minus b is 

equal to 0. Now if you look at the expression 2 or A x minus A x star. So, let me just 

forgot out this two. So A x star minus b and this is nothing but A into x minus x star while 

matrix property and A x star minus b and that is equal to x minus x star A transpose A x 

star minus b and that is you already know it is 0, so this is 0 . So, now, this is equal to 0 

and this is greater than equal to 0, so what we have proved that we have proved that r x is 

greater than equal to r x star is this part. 

So, this is your r x star. So, hence x star is the minimum of r x. So, any critical point, there 

is one critical point, the critical point of this function is actually minimum of this and 



hence and is also a solution of the equation A x star A x equal to b provided A is of rank n. 

So, this is a very very important requirement of rank n. So, it is some little bit of extra 

things that we have if you put in some little assumption things flow in a much more 

interesting way. So tomorrow we will start in the next class by talking to you about the 

Gauss Newton method and talking to you about the least square problem in a more general 

way. This is just an example to show you the importance of the least square problem, how 

optimization can be used even to solve a equation this linear equation. So, and then we 

will discuss a bit about Gauss Newton method and after that we will start talking about the 

Quasi-Newton method and then return to theory for a while for and then get into return to 

the theory for a while for the unconstrained case and get into the study of the celebrated 

Kuhn Tucker conditions. 

Thank you. 


