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Last lecture on conjugate direction methods, our primary concern was how to find the 

conjugate direction because we had already seen that if I know about the conjugate 

directions solving a convex optimization problem. A quantity convex problem with 

positive definite hessian is a matter of n steps, but the question clearly lies at how do I 

find such a conjugate direction. And this method which we had written down in the last 

lecture was largely this was a method due to Hestenes and Stiefel Hestenses was 

responsible for a brilliant school on optimization and control at optimum, control 

calculus variations at Chicago. And here we call this particular approach is called the 

conjugate gradient method; it is called a conjugate gradient method, because my starting 

conjugate direction is minus g 0. So, you see what a what we generate here at least in the 

convex case that convex quadratic case that if I slightly tamper the idea of Stiefel 

Hestenses method then I can get a algorithm which is much faster than the Stiefel 

Hestenses method at least in the convex quadratic case. 



So, here because we our initial direction, initial conjugate direction is found by taking 

the negative of the gradient at the starting point x naught, g 0 of course in this case you 

might be wondering g 0 is actually nothing but g of x naught. Now what Hestenses 

Stiefel shows that if you can construct a new vector which is the gradient at f x k plus 1 

which you can also write it as like that. So, once you know d k you know x k and you 

find the alpha k which is of this form and then you get the x k Plus 1. Now, your d k plus 

1 to go from x k plus 1 to x k plus 2 is found from d k in this sort of manner. Now the 

remaining question the main major part of the proof lies in the fact that this d 0, d 1, dot 

dot dot sorry d n this d n minus 1 d series of vectors are actually conjugate direction. 
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That is we will start to prove this thing, a proof methodology would first show we have 

to show essentially that is what we need to show at d 0, d 1, d 2 and so on up to d n 

minus 1 forms a set of conjugate directions. And once I know that these are conjugate 

directions then it is as same as what we had discussed before. And how do I prove that 

and what I need to prove. So, what I want to proof is that, so what I have to prove that d i 

H d j always a conjugate directions with respect to H because the original problem as the 

hessian matrix has H, and of course you have to consider this as positive definite which I 

have already written. So, H is my hessian matrix if you want to stress that at every point 

x. 



So, if you prove d i H d j or d k H d i is equal to 0 and k is not equal to I or another way 

of showing is that this is equal to 0 for all i. So, you fix the k and you change the i’s for 

all i, you just strictly and then k this is equal to 0 and this is true for, so if you can show 

these then you basically show that d i in a product H d j is equal to 0 whenever i is not 

equal to j. So, if k is one then you put d 1 H d 0; if k is 2 then you have 0 and 1 k is 2 

then i is 0 and possible values of i’s are 0 and 1. So, it will be d 2 H d 0 is 0 d 2 H d 1 is 

0. So, in this way you basically show that d i H d j is equal to 0 when i is not equal to j. 

So, what would be our proof approach. 

In this for these when you have these sort of things, when you have to prove something 

about a large number of elements, you use the method of induction you prove for the 

two, two of them and you prove for three and then you prove for k’s and you prove for k 

plus 1 and that is what we are going to use here the method of induction. So by the 

method of induction, what are we going to show? 
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We are going to show the following we are going to say that let I will assume that let this 

is equal to 0. So, we assume for every i which is bigger than or equal to 0, and strictly 

less than k. So, once I know this what I have to show that, so this is what I have to show. 

And that is exactly your induction step. So, this is your induction step. So, once this is 

known then we try to use it now. Let S, v 0, v 1, v k denote the linear span or the 

subspace whatever linear span is a subspace or the subspace spanned by the vectors v 0, 



v 1, v k. So, what do I mean by this term spanned by the vectors v 0, v 1, v k, so you say 

that any vector say v is element of the span or e sometimes they write l s linear span or 

just l span of this. So, v is this if an only if this is a symbolic of only both ways v can be 

written as summation alpha i v i i is equal to 0 to k; where alpha i is in odd that is any 

element in this space can be written as a linear combination of the elements v 0, v 1, v k. 

So, that is the meaning of linear space. Now g k is grad of f x k which is H x k plus b. 

So, g k plus 1 which is grad of f x k plus 1 is H of x k plus 1 plus b. 
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Naturally g k plus 1 minus g k is H of x k plus 1 minus x k. Now you know that if I go 

back to this setup x k plus 1 is written like this. So, x k plus 1 minus x k is alpha k d k. 

So, it is g k plus 1 minus g k is alpha times H of d k, where x k since x k plus 1 is x k 

plus alpha k d k sorry. Here I should put alpha k. So, this is what you have actually. So, 

this is the basic stuff we have now let us see what does this show. So, if I put k equal to 0 

then I will have g 1 for k equal to 0; it implies that g 1 is g 0 plus alpha 0 H d 0 g 1 is a 

linear combination g 0 and H. 

Now, since d 0 is minus g 0, I can write g 1 as g 0 plus alpha naught H. Now you have to 

put minus here, because d 0 is minus g 0 that is the basic assumption that is how you take 

the starting one. This is exactly this assumption and which we will now try to write down 

here that is what you have at this point. Once you have this I can keep on doing the stuff, 

now if I look at d 1 the direction one, it is minus g 1 plus beta naught d naught where d 



naught is again minus g 0. So, g 1 can be written as g 0 and d 0 can be written as minus g 

0, so b 0 g 0. So, g 1 is g 0 minus alpha naught H g 0, so it is 1. So, y minus g 1 so minus 

g 0 plus. So, I will have a plus and a minus g 1 is minus g 0 plus minus g 0. So, that is 

what we will have. 

So, now, I can write minus 1 plus beta naught, beta naught is the beta naught here. Beta 

naught is the beta naught that you already know here. This is beta naught, this is actually 

scaling up and generating the descent directions the conjugate directions. I can write this 

as this into g naught plus alpha naught H g naught. So, d 1 is the linear combination of g 

naught and H g naught, so that is for k equal to 2. So, what I have what I have concluded 

here, so g 1 and d 1 are the linear combinations of this; d 1 and g 1 are linear 

combinations g 0 and H g 0. Now I will leave it to as a homework to prove. Now what 

we will have here is S, now this of course, what we are trying to show that the linear 

span or the subspace generated by these two are same as these two are same as these two. 

So, this is a simple exercise in linear algebra which I pose as homework for your course. 

So, you have to show this as a homework. 
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Let us look at k is equal to 2. So, for k equal to 2, we can again write g 2 as g 0 minus 

alpha naught plus alpha 1 into 1 plus beta naught 1 plus beta naught into H g 0 plus alpha 

naught alpha 1 H square g 0. How to compute these g 2 is again by putting k equal to 2 

in the expression of g k plus 1 is equal to g k plus alpha k H d k and then successively 



suppose g 2 is g 1 plus alpha k H d k H d 1. So, you put what is d 1 and g 1 in their place 

you will get this expression. So, I will ask you to check it out as homework check it out. 

So, it is your duty to check it out whether what we have written on the board is actually 

on the screen is actually correct. And now d 2, so here g 2 is a linear combination of g 0 

H 0 and H square g 0. And so d 2 is written as so the coefficients are getting lightly 

slightly complicated once we introduce the other variables. So, if I know the gradient 

vector at this and this g at gradient vector at g 0 that is x naught, then I can know I can 

have a lot of information about the problem. So, here beta 1, beta naught I calculate 

accordingly to that beta k formula given in the beginning. Now what I want to say is that 

you observe again that g 2 is a linear combination of g 0 H 0 and H square g 0, while d 2 

is also linear combination of g 0 H 0 and H square g 0 which shows that then from there 

you can have this conclusion. 
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That a span generated by g 0, g 1, g 2 is same as the span generated by these vectors. So, 

again the span generated by see our whole goal now is we are trying to put that these are 

conjugate directions you see how much work is involved. It is very easy to state the 

theorem anybody can understand possibly why is done the bit of optimization, but a 

problem lies that once you start proving that their conjugacy of the directions then the 

difficulty starts. Now this is also equal to the span of, so that is what happens. So now, if 

you continue in this way, for say k steps k minus 1 steps essentially or k steps essentially 



then you will have the following by continuing. So, we know the result up to k. So, let us 

one go up to k by continuing in this manner that is you see what we did was d 1 was a 

linear span of 0 g 0 and H g 0. Then we expressed d 2 in terms of d 1 and press pack the 

value of d 1 to get g 2 and d 2, and now in that there are three terms now g 0, H g 0 and 

H square g 0 expressing g 2 and so is d 2. 

So, what we found is these two. So, these two you have to again find as homework, it is 

not very difficult, it is plain simple manipulations. And by continuing in this manner, so I 

am continuing in a manner same as what we have just done here, and if you do so then I 

can extend these things. So, our stuff is up to k, we do not know what is there in k plus 1 

that is exactly what we are set out to prove. This is true and of course, once you know 

this, you can of course, extrapolate and say that this is true then not g I made a mistake 

the directions is same as this. So, the thing in the top part of the board and the bottom 

part of the board looks similar, but it is enough that if you prove the top part and once 

you prove the top part you can understand the bottom part it is just an extension of that. 

So, once I know that, I now start doing the stuff. Now what I can now look at this 

expression, what I have to compute is for i for any i which is strictly less than k plus 1 

what I have to compute is let us see how to compute this expression - d k plus 1 is of 

course minus g k plus 1 plus beta k d k. So, what I get here is minus g k plus 1 H d i plus 

beta k d k H d i. 

So, now, what I do is to restart this thing and look at I am looking for i strictly less than k 

plus one. So, I can choose i equal to k. So, put i equal to k, to get now what happens to 

this that is a very important thing to know. Now if I put i expect this should be 0 and let 

us see what happens. Now I put b k is expression this one. So, now, b k would become, 

so what happens is that you see this gets cancelled with this and this, so this remains and 

which is nothing but the negative of this. So, ultimately this becomes 0. So, that is what 

the choice of beta k is particularly important and that comes out in a very natural way. 

So, now, which I leave for you to think about how did people conjugate of this 

expression for b k. It has got linked with what we have discussed in the previous section. 

Now, here we have this part. So, this part is 0. So, now, we have to look at scenarios 

where k is strictly less than 1; i is strictly less than k. 



(Refer Slide Time: 28:05) 

 

Now consider, now if I do that if I take now consider i is strictly less than k, now using 

these facts which I had already written down on the board; using these two facts, I expect 

you to prove show that this is a simple exercise in linear algebra and. So, I think this fact 

is important when you learn unconstraint minimum optimization. So, prove this, show 

this as homework. Now once you can, this is true actually H d i can be shown as a 

combination of g 0, g 1, g 2, g k and all those things. So, then you can basically show 

that because this is equal to this. So, you this so which means this is equal to this and this 

is equal to this, so this is equal to this. 

So, H d i becomes an element of that and so hence we can show that H d i thus H d i can 

be written as H d i yields you have some scalar a i, so i is equal to 1 to k this is how it 

happens linear combination of this. Where a i with i from these are constants and now 

once I know this then I again go back to this part, because now I have to look into the 

case i strictly less than k, because i equal to k, I know that d k plus 1 H d k is 0. So, this 

can be again written as because of H d i is minus a i d i. Now what I am going to how do 

how do I prove that I need to prove that this is 0. So, how do I do this. So, I will write 

down H d i H d i is so this goes the calculation. Now what is d k plus 1; d k plus 1 is 

nothing but minus g k plus 1 plus beta k d k, and this a i d i. This will give me i is equal 

to 0 to k; if I break it up inside; this is minus g k plus 1 a i of course, is a scalar which I 

can write in the front. So, I can take this scalar out and so I can have a i times minus g k 



plus 1 d i plus d k times a i d k d i. Now for this to prove this 0, we need to go back to the 

homework that we gave in the last lecture. 
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So, consider that, so how to prove this 0. See now you observe that. So, if the same 

problem I have asked you to show that g k d i d i as a conjugate directions is equal to 0. 

So, up to k, I have conjugate directions. So, g k plus 1 d i, i is strictly less than k. So, it is 

strictly less than k plus 1, so this is 0. So, this becomes equal to 0, because of this 

assignment just go back and try to see. So, if each d i is so if we I have kept here g k plus 

1 then I have d i, where d i are behaving as a conjugate direction till k then this holds to 

k, so I go back. So, using that particular think this becomes 0 while I think there is a 

small little bit of change I will do in the calculation. Let me rub off this to make it much 

more effective, let me not put a i d i here just I am going to change the calculation. 
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So, let me do something here. So, what I do is I first take the d k plus 1 and write it as 

minus g k plus 1 plus beta k into d k and that I put with H d i, because then I can have 

minus g k plus 1 H d i plus beta k d k H d i. Now this is 0 is already known that is the 

assumption we have made. And here I will have by putting H d i is this, I can write this 

part only as i equal to 0 to k a I into g k plus 1 d i. So, we know that from again I go back 

to this homework where is that. So, whenever k is bigger than this i. So, k plus 1 is 

bigger than i, because i is strictly less than k then this is always 0. So, then using that fact 

we can now conclude that this is 0 and this is anyway 0, because that is the assumption. 

So, what I have is that this is 0 and what I have is that this is 0, this is 0 from the 

homework and this is 0 from assumption. 

So, ultimately, you have d k plus 1 H d i is equal to 0 or i strictly less than k bigger than 

or equal to 0 of course, but and with k I have already proved. So, what we finally, proved 

is that d k plus 1 H d i is so this would imply finally that d k plus 1 H d i is equal to 0 for 

I strictly less than k plus 1 and hence we have proved this thing. So, added with this 

result, this result has two parts is this result. In our next lecture, we are going to prove 

this part and we are also going to complete the homework that I had given. We are also 

going to complete this homework where is it this homework as well as we are going to 

complete the proof of this part. Once we do that we will write down the conjugate 

gradient algorithm, and once we do that we will stop our discussions of conjugate 

gradient algorithms for the moment, and then go on to study what is called quasi Newton 



method. You see the proof here rests largely on the fact of the clever use of identifying 

two types of subspaces generated by very different sort of basis. So, basically you are 

finding a subspace the same subspace, but with different basis. So, these writings here is 

of same subspace, but here this is the basis and here this is the basis. So, it this is 

generating this and this is generating this. 

So, we end our talk today and first in the next lecture we are going to first concentrate on 

proving the b part of what is left and then which is also very important to know and it is 

just not a very trivial proof. And once we do that then we can write down the conjugate 

gradient algorithm, but before we will also complete the solution of the homework that 

we have given. So, with that we finish our talk today. Thank you very much, please go 

through this calculations very very carefully because conjugate gradient calculations 

though they are simple they are not so straight forward because really you really have to 

do this linear algebraic manipulations to show that and I expect that you really take some 

time to have a look at these things. 

Thank you. 


