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I am going to give a survey lecture on d c analysis, and its applications to optimization. 

D c analysis - what does d c? D c stands for difference of convex. So, d c functions are 

functions which can be expressed as a difference of two convex functions, and they are 

generally non convex, as we are going to see there are lot of non convex functions, 

which can be expressed as a difference of two convex functions. So, they use of d c 

functions, d c analysis is a non convex analysis; it means, looking at non convex 

problems with convex high; using convex tools in a non convexity setting. 

This is a very typical attitude in mathematics differential calculus, what is it? You are 

linearising functions. So, you are applying linear methods in a non-linear setting look at 

non smooth analysis. What is it? You have non differentiable functions, but you are 

using sort of derivatives substitutes for derivatives. So, again you are looking at the non 

differentiable well with differentiablize. So, here we are looking at the non convex well 

with convex size.  

So, you can see here the title is basically an outline of my lecture, I will first present 

some general results on d c functions, where elementary, then some sub differential 

analysis, some applications to duality in optimization. And finally, I will present our 

result related to lipschitz continuity of  d c functions, and I will conclude by presenting 

the main references, I have used to prepare this lecture. 
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Well, in the first part of my talk we will be dealing with a functions defined on our end. 

In the last part I will consider the more general case, when the space is (( )) space, but 

here to simplify representation we just consider that, we have a function f defined on a 

non empty convex subset of R n and we call it d c, as I said before difference of convex, 

if it can be written on omega on the domain as a difference of two convex functions. 

I have a small question I want to know that it is it is clear that the number I want to d c 

functions is quite abundant. 

Yes we will see this later of course, you have taken omega as a sub set of R n. 

YesWould be a convex naturally a convex subset of R n suppose I take f from R n to R n 

means both g and h are from R n to R n is that class of functions also abundant 

 yes yes yes I think. So, you are looking at vector functions, which components are (( )) 

since it’s since, for scalar functions we have this abundance. In fact, it consulates in to. 

I am not talking about that if you are talking of some instead of omega if you have R n 

there means f is from R n to r. 

Is then also you have lot of d c function is abundant. 

Yeah in the space of finite valued functions on R n. 



Yeah it is a abundant.) 

Yes, again from the same must be here in the general case, where my (( )) of non convex 

functions I mean non convex functions, which had finite value on omega in particular 

omega can be R n(( )) and then the abundance is relative to the larger set of functions 

you are considering well. This is the notion we are going to use all the time, but there is 

also a local motion we say that the function f is d c at a point in the domain. If it is this d 

c on some convex neighborhood of the point must specifically, on the intersection of 

some convex neighborhood of the point with a, with a domain and we say that the 

function is locally d c. If it is d c at every point which means, at every neighborhood 

there is a decomposition, but in principle there may not be a common decomposition for 

all the neighborhoods.  

Nevertheless there are two important theorems by Hartman published in 1959, will give 

their précised reference at the end the first theorem says that in the case, when the 

domain of the function is either open or closed and convex of course, then there is no 

difference between locally d c and d c. Globally d c I mean whenever, you are sure that 

at every point there is a neighborhood with a d c decomposition, you can also be sure 

that there is a global decomposition although the proof is not constructive. So, it this 

result doesn’t tell you how to obtain a global d c decomposition out of the local d c 

decompositions of the functions. 
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The same applies to the next, theorem also due to Hartman in the same paper which 

basically, says that when you compose d c functions you get another d c function. Here is 

the precise result look at victor(( )) function y which is d c component wise and look at 

another function g which is a scalar value and it is d c assuming, that the domain of the 

vector function is either open or closed and the domain of the scalar function is open 

then the composition is d c. Again this result is not constructive, it assures you that the 

composition is d c, but doesn’t tell you how to get a decomposition out of the 

composition of the functions y and g. 

By using this result you can prove that a number of functions are d c. For instance you 

have here two examples the product of two d c functions is d c. Here is the proof apply 

the theorem to the vector function y whose components are f 1 and f 2 and consider g be 

the function y one times, y two which is this d c as clearly shown by this decomposition 

then applying the theorem, you get that the product is d c the reciprocal of a positive 

function f is a d c (( )) by applying that theorem to the case. When y is the vector 

function which in this case, it is a scalar and coincides with f and g is the function one of 

our y which is convex for a y positive. 

So, we see that the class of d c functions is rather rich its closed under well. Obviously, 

under the operation of addition, subtraction, multiplication by real numbers and now, we 

have just seen is closed under multiplication also the reciprocal of our d c function is d c 

and we see here that the maximum of our finite collection of d c functions is a d c and 

they they showed an easy proof. You can see here is in this case constructive is very c if 

our (( )) function f i you have a decomposition as a difference of two convex functions g 

i and j i then, here you have at the end a decomposition of the maximum of those 

functions as a difference of two convex functions. 

This function and that function are convex because what we are doing is just adding 

convex functions, which preserve convexity and they can maximum of a collection of 

functions, which preserves convexity to. So, here we know how to obtain a 

decomposition of the maximum out of decompositions of the individual functions that 

entering to this maximum.  
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One can obviously do the same for the point wise minimum of a finite collection of 

functions. I stress the fact that is point wise maximum or point wise minimum of a finite 

collection because the result fails to be true(( )) not only the proof, but the result is you 

would say; obviously, wrong if we consider an infinite collection of functions supermom 

of an infinite collection of d c functions may not be d c. Well in particular, we have 

specific decomposition for the positive part and the negative part of a d c function.  

Positive part is the maximum and negative part is the maximum of minus function and 0 

because we are taking, the maximum of two functions then apply in their precedent 

result, we get this decompositions for the positive part and for the negative part and of 

course, the functions appearing in d c composition are convex because we are taking the 

maximum of two convex functions. 

Well to be very soon, in some cases its very useful to have a decomposition which is not 

only a difference of two convex functions, but a difference of two convex functions 

which are also non negative and it is shown here, that you can always achieve that I 

mean, if you get me two convex functions. I can find two convex functions, which are 

moreover non negative and whose difference is the same as the original function. So, to 

this just you simply need to consider an affine minorum for each of the two functions it 

always succeeds. If a function is proper for a proper convex functions you all (( )) and 

affine minorum. 



And then just rewrite g minus h in this way, it is clear that after simplification this is 

equivalent to g minus h that is to (( )) with, but all the functions in this expression which 

are written between parenthesis are convex because. What are we doing? We are taking 

the maximum of two convex functions and the only subtractions, which you can see here 

the function which is subtracting is affine and subtracting an affine function does not 

destroy a convexity. Why is this decomposition with the extra condition of non 

negativity useful? Because using such decompositions in some cases as in the one, we 

will see here you can construct explicit decompositions for some operations with 

functions, when instance is product. 

Suppose, you have here two functions f 1 and f 2 which are the c and the 

decompositions, which is for them f decides the property of non negativity. Then we can 

expand the product in this way and in this algebraic sum, every term is the product of 

two non negative convex functions since, the n non negative its product for instance the 

first ten (( )) can be expressed in this way as a difference of two convex functions 

explicitly, but it’s essential that g 1 and g 2 are non negative because otherwise raising to 

the square would destroy convexity. 

So, you have here a situation in which a (( )) having decomposition with not only 

convex, but also non negative functions is a useful. Here you have n is a, here you have 

an example of application of the preceding a technique the function of two variables x y, 

x over y with y with y positive this is the product of two functions. X is 1 of the factors 

and the other is 1 over y both are convex, but x is not non negative. So, we have to 

decompose it as a difference of two non negative functions and a using this 

decomposition. The technique I have show here then after some obvious calculations, we 

end that with this expression for x over y as a difference of two convex functions. As I 

said before, the space of d c functions is rather large. It contains the class of c 2 functions 

even more class of all.  
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So, called c 1 1 functions c 1 1, stands for functions which are locally lipschtz and help a 

functions, which are differentiable and help a locally lipschitz gradient in particular c 2 

functions are c 1 1. So, the (( )) space of c 1 1 function is contained in the space of defect 

c functions on omega. 

Yeah actually is c 2 functions there is a proof for the c 1 1 functions right. 

Yes every comment on the proof now. 

I think I saw order c 2 functions I learnt it from (( )) they said that c 2 functions are 

always d c. 

Yes 

But this is this is from the omega right? 

For, the for the class of c 2 functions. In fact, the proof is simpler than, even simpler than 

what I have here the proof is as follows take a compact neighborhood of the, of a point at 

a given point you take a convex neighborhood, thank you very much. Then on that 

neighborhood the secondary (( )) is bounded from below. 

Yeah, compact  

By a, by a positive number then. 



Yeah. 

You come use this to express, the function as a difference of a convex function minus a 

multiple of the square of (( )) and then you have that the function is locally d c and by 

Hartman theorem it is locally d c. So, this is a very simple proof for c 2 functions, but for 

c 1 1 functions, the proof is not difficult and it’s here given a point in the domain you 

come take a compact convex neighborhood of that point. Then you have the Lipchitz 

condition you have a common constant k which works for all points in this neighborhood 

and then look at this inequalities (( )) one is yes (( )) the second is the Lipchitz condition 

and then we end up with this an equality, which can written like this. 

That what we have here is the gradient of g this function f plus k halves, this square of 

(()) on U then this inequality. What is telling us is that the gradient of g is monotone, but 

this is equivalent to saying that the function is convex. So, this function f which is g 

minus k halves the square of (( )) on U is d c because both g and the square of norm are d 

c. So, we have the d c condition at the point is 0 and then a because of Harman theorem 

the function is globally d c. 

No I have one comment to make. 

Yes. 

 I am just trying to figure out that kappa that k that you have used that k is positive of 

course, because that 

Yes. 

 You know this is a interesting thing and this f is a class of functions called weakly 

convex functions introduced by 

Yes. 

J b (( )). 

I know. 

In 1983. 

 So, what we are proving that every c 1 1 function is actually weakly convex. 



Locally. 

Locally yes. 

Locally and then Harman theorem doesn’t tell you that if you have this weak convexity 

condition locally 

Yeah 

You get it globally. 

 that is the interesting point yeah because that is the interesting point I want to know 

yeah. 

This is an important difference 

So, we have here the proof also we have here the statement that the space of d c 

functions is the smallest, space of functions which contains all convex functions. So, it 

contains all convex functions all concave functions and is the smallest subspace which 

contains those functions.  
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Then It is clear that this set of d c functions on omega is very large, but not as large as I 

could, we could imagine every d c function must (( )) several properties, which are listed 



here first of all they must be locally Lipchitz because every convex function is locally 

Lipchitz and when you take differences this locally Lipchitz character is preserved. 

Second there is a no (( )) by Alexandroff which says that every convex function at every 

path almost every point, in the (( )) of (( )) is a second order Taylor expansion. We know 

by (( )) theorem that convex functions are being locally Lipchitz are differentiable almost 

everywhere, but the Reci (()) by Alexandroff says more there is not only a gradient 

everywhere almost everywhere, but also almost everywhere there is a matrix which plays 

the role of the Hessian matrix. 

9 But it is. 

This matrix. 

But it is not with hessian. 

If it may not be hessian in particular because the function may even fail to be 

differentiable on our neighborhood. So, even if the gradient does not exceeds in on that 

particular neighborhood. You can be sure that there is a matrix which would play the role 

of the Hessian matrix. 

I would like to (( )) slightly note this is in rockefellers book or (( )), but I would like to be 

I understand it slightly more if I take a can I take a minute. 

 Of course, 

Yeah for almost every x naught there exist a there exist grad of f x naught which is of 

course, true where this (( )) theorem for convex functions. 

Yeah what will? 

And symmetric m cross m matrix such that this holds, but I cannot prove that this matrix 

because if I define second order differentiation of a function. 

If the Hessian exists, it must coincide with this matrix. 

Yeah that. 



But the Hessian needs not restrict even more the function need not be differentiable 

around the point. 

Around the point x naught. 

Need not be or it may be, but not be twice differentiable. So, in this (( )) there is no 

Hessian matrix, but there is one matrix. 

 If it is twice differentiable then it is hessian. So, you are just not right right. So, then it is 

a powerful result right. 

Yeah yeah. So, this statement was for convex function, but of course, it consulates two 

differences is because I mean, one can easily see that this almost every (( )) property is 

also satisfied in that case well then, we have a (( )) property that since, convex functions 

have one sided directional derivatives. They require the same must happen for every d c 

functions, we are just subtracting two convex functions and the last result on this page 

says that every d c function is d c on every straight line on every segment, let’s say 

contain in the domain of the function, but the converse is wrong there is a counter 

example showing that the function. 

The converse is doing only the convex case the converse is doing. 

The converse is doing the convex case. So, for convex is if and only if, but for d c no 

there is some example showing that a function, may have a older restrictions to straight 

lines d c without doing d c by the way, the result type presented before about the 

inclusion of the c 1 1 set, in to the d c set is doing finite dimensions that proved that 

proof does not apply, in the infinite dimensional case and there is a counter example also 

showing that the result doesn’t go through in then in the infinite dimensional case, these 

are the general properties about d c functions. 
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Now, I move to the next topic which is duality, first for unconstraint optimization 

problems and then we will consider a constraint optimization. I start by presenting the 

formula which was obtained by Pshenichny long time ago forty one years ago and were 

discovered by Elleia and Hiriart urruty sometime later. In fact, it is very easy to prove 

this formula, one can leave a very simple algebraic proof of this formula for the 

conjugate of a difference of two functions.  

In terms of the conjugate of the functions which are involved in this difference g and h 

look at this dot below the minus (( )) what it means, is that in case that you subtract plus 

infinity minus plus infinity by definition you take, take the difference to be equal to plus 

to minus infinity sorry, on the other hand when the dot is above the sign which means, 

the opposite convention that plus infinity minus plus infinity is equal to plus infinity. 

Why why have you put x star equal to 0 where are you putting this. 

 I will come to this in a few seconds, first I am comments on the on the first formula this 

is an expression for the conjugate of a d c function, but I will tell you to prove it I said 

there is a very simple purely algebraic proof. You only need h to be convex g can be an 

arbitrary function, but for h you have to assume that it is a convex proper and lower semi 

continuous with this assumption, the proof is an exercise a very easy exercise. Now, in 

this particular formula now, I come to your question take x star to be equal to 0 then you 



have the conjugate of our d c function at 0 and the conjugate of a functional 0 is minus 

the minimum of the function. 

So, for x star is equal to 0 this left hand side here reduces to minus, this infimum then 

from your (( )) x star equal to 0 in this expression you get this infimum up to a minus 

sign. So, this result which is known as to land singer duality because they obtained the 

result independently essentially at the same time, but we more complicities methods this 

result is an immediate consequence of the formula for the conjugate of our d c function. 

In fact, we are over the time considering finite valued functions, but we consider also 

extended real valued functions. In this case the formula still goes to if you put the dot 

over the minus sign, here as it is on the right hand side this is a duality result yes. 

x star equal to 0 is put on the right hand side of the formula on the first line. 

Yes 

Then I would have (( )) y star element of R n g of y star minus x star of 0 

Yeah, this with from minus sign. 

Which comes that (( )) supermom with. 

 no. So, it should why shouldn’t it have x star of 0 because you are putting x star is equal 

to 0. 

Now, I have made that change of variables you would obtain here wait a moment, well 

thank you very much for noticing this because this formula is not correct x star should be 

y star. 

Exactly it should be y star. 

X star should be y star. Thank you, for pointing this out x star is y star yeah, otherwise 

this term would be would not be depending on y star no this that, the this is an important 

correction the real formula is with y star. 

Then the why is the y star is dummy. So, you will. 



Exactly. So, thank you for pointing out this, this type this is a duality result very well 

known in in non convex optimization, but it’s not is a non standard duality result because 

in convex optimization who are used to (( )) which infimum of the primal programming 

is equal to the supremum of the dual problem minimization, maximization here both are 

minimization problems. So, the use is very different as in classical convex duality, but 

nevertheless solving the dual it helps solving the primal and moreover as we will see 

now and moreover this is an evolution in the sense that the dual of the dual is the primal. 

So, look for computing the dual you simply take conjugates and exchange reverse the 

order. Then if you use the separation to the dual then you get the primal because g star 

star is g and h star, star is h. If you have (( )) and both g, h and h are proper convex and 

lower semi continuous well as I said before. So, then that we have problem faced helps 

to solve the primal problem because if, you look at an approximate optimal solution of 

the dual problem epsilon optimal solution x star you just need to take a sub gradient of 

the conjugate of g star at this epsilon optimal point to get an epsilon optimal solution of 

the primal problem. 

We have a formula for the conjugate in a, we also want to obtain a formula for the sub 

differential for this g function. One combination are there first we are taking the 

conjugate of a function which is not necessarily convex, we can the definition is 

applicable to any function no matter that its convex though their properties are not. So, 

nice if the function is not convex same with the sub differential. The (( )) of sub 

differential does not need the function to be convex, but there are some problems is your, 

if your function is not convex first problem is that this sub differential may be empty at 

many, many points. 

And the second problem is that looking at the different definition of the (( )) sub 

differential, the you say that it’s a global definition. You you need to know the function 

everywhere, but when the function is convex the sub differential is closely related to the 

direction of the (( )) for the computation of which you only need local information. So, 

for convex function the definition is just local this is now, the case in general for non 

convex functions. So, if you consider the sub differential of a d c function take in to 

account that it may be empty at many points, first thing and second that you need full 

information of the function not just local to to compute it. Well to give a formula for the 

sub differential of a d c function one needs to consider, this operation star difference is 



called sometimes of two subsets of R n, it was in previous (( )) in that same (( )) which is 

mentioned here. So, it’s a set of points such that if you translate the seconds at B 

following this vector x then that runs late is a subset of A. So, the set of all those 

translations is this star difference equivalently.  

We can easily see that the star difference is this intersection, this star difference may be 

empty very frequently because for the non emptiness, we need the assistance of A 

translate of B which is a subset of A and very often such a translate will not exist or from 

another point of view, we are making a key A here intersection with a large collection of 

functions of sets one set for each element in B. So, we are intersecting. So, many sets 

that we may have an empty set, but nevertheless we don’t care this difference may be 

empty, but we easily see looking at this expression is that this star difference is (( )) 

properties. Every property of A which is preserved and their translations and 

intersections will be held by the star difference because we are just doing translations 

and intersections. 

 So, if A is convex this this star difference will be convex no matter how regular or 

irregular B is the same with closeness. If A is closed then the star difference with 

whatever B will be closed or if A is bounded the star difference with B will be bounded 

no matter how. 
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Now, we are in a position to study the sub differential of our d c function, but first let us 

make a conjuncture and let us see if it works, but the expression for the sub differential 

of our d c function should be to get some inspiration. Let us consider first the easy case 

when the difference of the two convex functions turns out to be convex. We find the 

formula for the difference in that case and then, we will see if this formula extends to the 

general case. So, assuming that f is convex then, we have this relation between three 

convex functions g, f and h and because of the (( )) of this sub differential we have this 

equality. 

But we are assuming that we know, the sub differential of g and the sub differential of h 

and with this data, we want to compute the sub differential of f in other words from this 

equality we from this equality, we want to deduce the value of this term we want to solve 

this equation with this unknown this is an equation of this type with three sets x is the 

unknown a and b are data.  

So, how can we solve this equation, we are dealing with convex convex compact sets sub 

differentials are convex and compact? So, first of all we have to recall the. So, called 

consolation property for for a closed convex sets. Convex compact sets if you look at this 

equality a one plus b equal to a two plus b then we can consulate b and deduce that a one 

is equal to a 2. One can prove this consolation (( )) very easily using dissipation theorem 

even more directly taking support functions because the support functions of this sub is 

the sum of support functions. 

And since, our sets are compact this support functions are finite value to every (( )) then 

you can consul out just using, the standard arithmetic and then you end up with the 

equality of the support functions of A 1 and A 2, which is equivalent to the equivalence 

between the sets if the sets are convex and closed. Now, once we know this property, 

consider the equation we want to show for a the very definition of the star difference, we 

get that if x is a solution we are assuming that our solution exists. 

So, if we have a solution for this equation, this solution X must be a subset of the star 

difference. Now, from this inclusion we get this one simply by adding A to both sides X 

plus A is contained in this set plus A which is a subset of A because of the definition of 

the star difference, but we are assuming that X is a solution of the equation. So, X plus a 

must be equal to b all the inclusions here are actually, equalities in particular (( ))first one 



this equality, then we use the consolation property to consul a and then we conclude that 

the solution of (( )) equation is the difference, but the star difference mean we proceed 

like in standard arithmetic’s moving a to the right hand side with different, but with this 

special difference. 

So, in this particular case assuming that f is convex, we have that the sub differential of 

the difference is the star difference of the sub differential, but convexity was essential in 

this proof at this step we need convexity to use the additivity of this sub differential. 

Now, the question is does this formula hold in the general d c case of course, the proof 

doesn’t hold, but may the formula holds true in the more general case.  
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But the answer is no consider for example, the case when the two functions are 

differentiable in this case the sub differential reduced to the gradient. If that formula 

were through then we would have that this sub differential of f is the star difference of 

this single terms. But for single terms there is no difference between the star difference 

and the ordinary difference they coincide. So, we would have the single term of the 

difference of the variants, which is the gradient of the difference, but in particular it 

would be non empty everywhere and non emptiness of the sub differential everywhere 

means, the function is convex. So, the conclusion would be if that formula would hold 

true in the general case, every function which is the difference of two differentiable 

convex functions would be convex and this is; obviously, true; obviously, not true. 



There is also another argument, may be when more elementary look, this expression 

again in the right hand side we are dealing with convex functions. So, to compute this 

sub differentials we only need local information, but on the left hand side if the function 

is d c we cannot do it we just local information well. So, the true formula is this one 

which is more complicated, you need to consider epsilon sub differential. So, the 

definition for the epsilon sub differential is here and its worth pointing out that epsilon 

sub differentials, even for convex functions require global information with just local 

knowledge we cannot compute them. 

So, you have to take a star difference of the epsilon sub differentials and then the 

intersection of well all positive or non negative epsilon. And also this formula is a more 

general version for epsilon sub differentials it basically, says if here you write the epsilon 

prime sub differential, you just have epsilon prime here and that it this is for this formula 

this again.  
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Using that formula for the epsilon sub differential, we can immediately deduce the global 

optimality condition for a d c functions which was obtained by Hiriart urruty in nineteen 

eighty nine. Although since, the formula for the sub differential of a difference was not 

known at that time, the derivation of optimality condition is not the simple in their in the 

initial paper by Hiriart urruty. 



The derivation using the formula is as simple as you can see here x 0 is a global 

minimum of the of the difference. If 0 is a sub gradient this is just an algebraic fact 

follows immediately from the definition of the sub differential. Now, the next step is 

using the formula we have just obtained 0 belongs to the intersection means, 0 belongs to 

every set in the family and 0 belongs to a star difference means, the second set is 

contained in the first set or equivalently we here in equality between the support 

functions. The support function of the epsilon sub differential which is. So, called 

epsilon directional derivative. 

Which can be also expressed by means, of this infimum like in the case of convex 

functions. I mean like in the case of the exact directional derivative, epsilon equal to 0. If 

we take here x equal to 0 then, we get an expression directional derivative because for 

convex function this question without epsilon is a increasing with lambda. So, the limit is 

equal to the infimum but. 

I have a comment here. 

Wait a second please, but here we have infimum, but it’s not the limit. So, again this is 

not a local notion even if it is called derivative, we need global information to compute 

it, it provides us with equivalent information as the epsilon sub differential, which we 

have seen is not a local notion, even for global for for globally convex functions you 

please. 

You referred this about j b Hiriart Urruty but. 

Yes 

As far as I have seen are you sure you is that this notion has already, it was in in 

Rockefellers 1970 book. 

Which notion? 

This g dash epsilon x naught d. 

No, no I am referring to Hiriart Urruty for the optimality conditions. 

Oh optimality conditions. 



So, this result that x 0 is a global minimum of the difference if and only if the epsilon sub 

differential of x is contained in the epsilon sub differential of g for every epsilon, this is 

due to Hiriart Urruty and this this situation here is for the first part not not for the second 

part. This equality here is well known for epsilon equal to 0, the directional derivative is 

the support function of the sub differential, here we have an expansion well  
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Now, let us consider duality for a d c optimization problems with constraints. We are 

assuming here that both the objective function and the constraints are d c. But to avoid 

very technical discussion on a constraint qualifications, I am going to avoid them by a 

considering an extra constraint x belong to k. If it is k is a non empty compact convex set 

thanks to it, we can avoid completely constraint qualifications here you have the precise 

functions on the functions, we are considering in the conjunction which will be used in 

the formulas we are going to see.  



(Refer Slide Time: 42:04) 

 

Then we have this complicated expression which is the duality result, we have (( )) here 

the optimal value of the primal problem and here you have other problem, which is 

expressed in terms of the conjugates of the delta. 

Well here is not just the conjugate of delta, but conjugate of linear combination, but you 

seen an extra assumption for instance, that all this functions are continuous at a common 

point of the domain, then we can replace with that which is really in terms of the 

conjugates of the original functions. This is a very complicated formula and. In fact, the 

real problem is mixture of minimization and maximization, you have an (( )) expression 

the original problem was minimization. 

But the interest of this problem is that it unifies, the most classical non convex duality 

theorem with the most classical convex duality theorem namely, Toland Singer for the 

non convex case and Lagrange, Lagrangian duality for the convex case, if there are no 

constraints it’s very sad to say that this formula reduces to Toland singer duality. If there 

are constraints, but all the functions involved are are convex which means, that x can be 

h sub I’s are all equal to 0. Then this formula reduces to the standard Lagrangian dual 

problem.  
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Just two theoretical applications of this general formula, first you consider the 

minimization of a d c function over a compact set, compact set which need not be 

convex. So, this is our our problem yeah. 

The set c in p 1 is not convex anymore it need not be. 

The set c is compacting not convex. 

Just compact ok 

So, we are considering a very very general problem. In fact, it can be seen that the 

minimization of an arbitrary lower semi continuous function over a compact set can be 

reformulated in this way.  
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But then we can replace this condition x belongs to c by this inequality, which is the c 

because by the well known formula Asplund one half the distance to the set can be 

expressed as this difference of convex functions then. Now, to give a (( )) in which there 

was the extra condition, that x belongs to a compact convex set we have to consider a 

here this extra condition x belongs to the convexly of c, c was compact. So, the convexly 

of c is now, compact and convex. Now, we just apply the formula. We have seen before 

and we have these expression, which doesn’t look as complicated as the one for the 

general case for this very general problem of minimizing a d c function over compact set.  
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Second theoretical application is the problem of a linear programming with binary 

variables 0, 1 variables, this is an important program in application roughly speaking 

every (( )) optimization problem can be reformulated under this problem. We are 

minimizing a linear function subset to in linear inequalities, but all variables must be 0, 

1. Then this problem can be reformulated in this way, one can see that if instead of 

saying that its variable is either 0 or one we consider that its well our belongs to the close 

interval 0 and 1, but then we are the (( )) condition which is a d c inequality linear minus 

convex. So, actually concave then these two constraints are equivalent to this one and 

then we have the problem reformulated with our format.  

(Refer Slide Time: 46:21) 

 

Then we can immediately apply, the general formula and obtain this exact duality result 

for a linear programming problems with 0,1 variables of course the right hand side is non 

convex, one cannot expect miracles the 0,1 linear problem is non convex. So, it is a non 

convex dual, but nevertheless the expression here look that complicated and moreover if 

you succeed to solve the problem, then you can really give a solution of the primal 

problem because if we have an optimal solution of our problem. 

Then this is one among all the optimal solutions of the minimization part of the dual 

problem. So, you succeed to solve the dual problem. You obtain a collection of optimal 

dual solutions and then you know that, this set of optimal dual solution contains at least 

one solution of the primal problem. In particular if the solution set of dual problem is a 



single term that single term, is the single term of the optimal solution of the primal 

problem yes. 
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Can I go back to the previous slide now this very interesting actually to me these are 

things I am? So, interested in now the p 2 that you are forming here p 2 by adding this 

constraint by which you are replacing. 

Geometrically its very simple. 

Half, but this is e right e x. 

E is the vector of once a once. 

Then that constraint would. 

That is only true if. 

In two variables. 

0 and 1. 

In two variables, this is the unit square this is the feasible set the vertices when, what we 

are doing is replacing this set of four points with the intersection of this set with this 

circle with the compliment of this circle and the intersection is the set of vertices. 



You you can also prove this algebraically in that very very. 

No no I one at the second that constant is true only if if and only if x is in 0 and n. 

Yes 

That is clear. 

This together with the fact that the variables are between 0 and 1 well. Now, about to a 

more theoretical part which is a characterizations of d c functions, there are two ways of 

looking at d c functions. First as (( )) before d c functions are locally lipschitz. So, its 

natural, natural to look for characterizations of d c functions, within the set of locally 

lipschitz functions and the proof for this would be the (( )), but another point of view is 

we also know that this functions are directionally differentiable. Then how to 

characterize this function in the larger set of directional differentiable functions and to 

answer this question the most reasonable tool is the quasidifferential define long time 

ago by denviano (( )). 
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I will present some results in the setting of (( )) spaces and I will mention the differences 

with finite dimensional case, where first of all I recall here the definition of quasi- 

differentiability which basically, says that the one sided the rational derivative, which is 

always positively homogeneous can be expressed a sub difference of two convex and 



positively homogeneous that is to say sub linear functions. Then those functions has to (( 

)) support of compact convex sets in this case with weak star topology. 

And then these two sets of which the support functions, appear in the expression for the 

derivative are called the pair formed by this two sets is called the quasidifferential of the 

function at the point and function is said to be quasi differentiable if it is, so at every 

point in the domain. The first set in the quasi differential would be called a sub, the sub 

differential and the second set the super differential.  
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Now, the set of quasi differentiable functions is very large it contains all d c functions its 

quite clear, but it also contains all differentiable functions. 

Then it contains many functions which are not d c, so how to characterize this functions 

in terms of the quasidifferential to obtain this characterization we need. So, we recall the 

notion of cyclic monotonicity, which is (( )) in convex analysis because it used to 

characterize sub differentials, then in the finite dimensional case. So, for functions 

defined on subset of our n we have this characterization a function is d c if and only if, it 

is quasi differentiable everywhere and the quasidifferential is such that both the sub 

differential and the super differential are restrictions to the domain of the function of 

maximal cyclically, monotone multi valued functions that contain omega in the domains 

this is if and only if. So, it is a characterization. 



But its true only in the finite dimensional case, to see what happen in the general (( )) 

space case when need first this lemma, which can be proved easily using hammanac 

theorem, which says that if we have a difference of two proper convex functions then 

you can get a similar representations which is. So, called normalized, normalized means 

that the second function is no negative and vanishes at (( )) specified point then, using 

this theorem we connecting this important result, which says that whenever you have a d 

c function which is continuous, then in the d c decomposition you can create the two 

times continuous (( )). 
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As a consequence continuous d c functions are locally lipschitz because continuous 

convex functions are locally lipschitz and then we have here the infinite dimensional (( )) 

of the result we showed below, which says the same the same, but with the difference 

that you need here f to be continuous not only d c, but continuous and a under this extra 

assumption, you have exactly the same as before, but you need continuity yes. 

I am just reading them. 
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Yeah is the simply (( )) we showed before, the only different is continuous here with our 

continuity we cannot do anything and this is to be compared with much older result by 

obtained by Elhilali Alaoui long time ago, in which d c functions are characterized in the 

set of locally lipschitz functions. Using the Clarke generalized gradient one needs, the 

space to be separable and the characterization is this one f is d c. If and only if the Clarke 

gradient is contained in the difference algebraic difference mean (( )) difference of two 

maximize cyclically monotone mappings, which contain omega determinant of function 

in their domains. 
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Now, the last part of my talk will be about lipschitz continuity. Everything will follow 

from I need to write a result, which I find very interesting not by the result itself, but 

because of the proof which fortunately I have no time to tell you now, but the proof the 

difficult part of the proof, you see are very interesting technique invented by a young 

Czech student (( )) well this result says that all this five statements are equivalent. 

The only (( )) assumption is that the two functions, we are dealing with are define the (( 

)) domain which is non empty and convex no other assumptions. Then we have that 

using the next function h which is assumed to be a continuous and convex and vanishing 

at the origin, then the two functions are convex and lower semi continuous on their 

domain and satisfy this inequality if and only if each of this and then all of them of this 

results hold, well all this results or this statements are expressed in terms of the 

approximate sub differentials, the epsilon sub differentials of the involved functions. 

And most of the implications are easy one can make a circular proof, some implications 

of (( )) two implies three is (( )) because two and three are the same statement one for 

every epsilon the second only for sufficiently more epsilon also three implies five is 

obvious because this intersection would be the smaller set, which is assumed to be non 

empty in the same way two implies four is obvious and four implies five is obvious. So, 

to complete the proof we only need to imply one implies two, which is a quite you see 

convex analytic proof and five implies one which is where the technique by (( )) that the 

job. 
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H is any convex continuous function vanishing at 0. If we take this function to be 

identically equal to 0 then we get this equivalences, the two functions are convex and 

lower semi continuous and coincide up to an additive constant, if and only if we have 

two or we have three or we have four or we have five the interesting implication, here is 

five implies one because just assuming that the epsilon sub differentials always intersect 

for sufficiently more epsilon. We conclude with some (( )) result first of all that the 

functions are convex and lower semi continuous and then that they are the same at two 

analytic constant. 
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Also if you want a result with just sub differentials not approximate sub differentials, 

then here is the result. Again this is an integration result because assuming one of this 

conditions, we get that the functions are convex lower semi continuous and their 

difference is constant here, the interesting implication is two implies three because just 

assuming that the intersection of this sub differential is non empty everywhere, you get 

equality or you get the fact that the two functions are identical up to analytive constant, 

this follows immediately from the first result. We are talking about the Lipchitz 

condition. 
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The Lipchitz condition appears, when we take h equal to k times below A is the Lipchitz 

constant, then we have all this equivalences this follows immediately from the general 

theorem by just computing the epsilon sub differential of the norm at the origin, which 

turns out to be the (( )) in the dual space, well not the (( )) the (( )) with various k and 

center of the origin. So, this is just up to the statement five and immediate application of 

the general theorem, but we have here two more statements which appear to be weaker 

than the previous ones. 

If you look at five for instant five says that, there is a point here and a point there such 

that the difference is the is in (( )) that is to say such that, the difference is a normal less 

than or equal to k then the distance between the two sets is less than or equal to k, but 

this is apparently weaker because the distance need not be attained nevertheless, it can (( 



)) to be equivalent. So, it’s interesting to notice that you just need the distance between 

the epsilon sub differentials to be less than or equal to k for sufficient small epsilon to be 

sure that your d c function f minus j is Lipchitz with constant k. 

Another, interesting observation is that some of the statements here are symmetric for 

instance, one if minus g is Lipchitz if and only if g minus f is Lipchitz, the same with 

many others, but not this is not the case with a statement two and a statement three, but 

because they are equivalent then we get the symmetry which means, we can interchange 

f and g here and here everywhere. 

 


