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 Yesterday, when I closed the lecture talking about Convex Sets we had talked spoken 

about lot of Convex Sets, various types of Convex Sets properties, and we said that we 

are going to talk about convex functions today. But before we do so, let me start by 

telling you about a very important class of Convex Sets which is fundamental to 

optimization basically because it is a part of linear programming which is a very 

important part of optimization. 
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So, these types of sets are called Polyhedral Sets. So, Polyhedral set say p can be 

expressed as an intersection of finite number of half spaces. So, there is a i where i 

belongs, i runs from one to k or m or whatever some index basically. So, if you look at a, 

So, for example, if you take something like this or this, so this for example would be a 

Polyhedral Set, right, so the feasible sets of linear programming problems which we have 

already studied are always Polyhedral . So, l p problem feasible sets of l p problem are 

always Polyhedral. 



So, these are very very important thing, and hence knowing the properties of Polyhedral 

sets are important when you study optimization. But, we will not put all our effort in 

studying the properties of Polyhedral Sets at this moment, but rather concentrate on 

studying having a broad view of Convex Sets and Convex functions and a specific 

property of Convex Sets like Polyhedral which would be discussed when an when it is 

actually required.  
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So, now I will start talking about convex functions. Now, I told you in the last but one 

lecture that you can define a convex function over whole R n or you can define a convex 

function over a Convex Set c. So, it means there that certain Convex functions which 

cannot be defined over the whole space cannot be defined over some parts of the set can 

be defined only on a particular Convex Set belonging to R n. So, which, but how do I 

unify this in a common frame work, and how do I say that I will define every function; 

every Convex function on whole of R n rather than defining some for on R n, some on a 

particular Convex Set c. So, this will force us to introduce the notion of an extended 

valued function. So, R bar is nothing, but the standard real line R union to elements plus 

infinity and minus infinity, of course if you take any a as a real number you have a plus 

infinity is equal to infinity plus a, this is one rule which is quiet natural. 

a is element of R and a minus infinity, minus infinity plus a is equal to infinity, sorry 

minus infinity. So, these are standard rules which you can make out this adding, if I keep 



on adding something very big to a number it will only grow, or if I subtract a large huge 

amount form a number it will only keep on reducing. So of course, the Questions are 

with multiplication, so if a is element of R, a into infinity is equal to infinity into a then 

what, of course, it is equal to a if a is not equal to zero. See when I am taking a is a is 

element of R means I am not considering these two numbers, right, it is only here. 

Now, the Question is if a is equal to zero what would happen when Convex analysis, 

among the Convex analysis there are controversies in what to take, what is the meaning 

of this thing zero into infinity, what does is what does it mean. Now you must be 

wondering that can we put it zero, some say no, for convex analytic point of view 

possibility infinity is more meaningful. But we would follow the assumption or the rule 

taken by Rockefeller and wets in their famous book variation analysis and we will 

consider it to be infinity. So, this convention So, these are convention, this is not a 

mathematical certainty, its convection, is a conventions sorry. So, this is taken from the 

book variation analysis by the famous (( )) Rockefeller and R j b wets, a leader in 

stochastic optimization, one of the world’s greatest these two are; obviously one of the 

world’s greatest people in this area. 

Now, of course, this you might ask me a publisher, its Springer nineteen ninety eight and 

there is a corrected their lot of errors, some pending errors which is corrected in two 

thousand four print. Now, the Question comes what do you mean by this, it is not very 

difficult to think it is just infinity, but what do I mean by this, in most cases it would be 

undefined in most books, you will see that there are no definition, all these are 

undefined. we When we study convexity we will hardly have any chance to face this 

situation. 

But in convexity we cannot just forgot about this aspect the reason is very simple, if we 

want to define Convex functions in the traditional way as the definition of Jensen then in 

order to maintain the inequality we need to have some convention for this, again infinity 

minus infinity is defined as plus infinity this called the Rockefeller or wets convention, 

have you seen. 
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 So, I can now take a function from R n to R bar and define it in this fashion, so for any x 

y in R n we have for any lambda belonging to zero one f of lambda y plus one minus 

lambda f of x, sorry one minus lambda x to be less than or equal to lambda f of y plus 

one minus lambda f of x. So this definition we already know, but you see this 

convention, so this is not a t this is plus. See what would happen, suppose if f y becomes 

plus infinity and this becomes, f x becomes minus infinity, say f y is plus infinity in f x 

becomes minus infinity then in order to maintain this inequality this side should always 

be bigger than this side you have to invoke this Convex Rockefeller wets convention. 

So, but this is a technical issue we need not be too much bother about it, of course epi 

graph of f for if this function needs to be Convex, epi graph of f is Convex and vice 

versa. So, you might also define for such a class of functions epi graph of f to be is the 

definition of convexity, I do not want to tell you what is epi graph of f, if you already 

know this. Now, there is a important definition of a proper Convex function. f is called 

proper if f of x is always strictly bigger than minus infinity, and the set which is called 

effective domain of f that is set of all x as a f x is strictly less than infinity, that is set of x 

where f x is finite. So, there is at least one finite point, this cannot be non-empty, this is 

called the effective domain. So, a convex function is called proper if this happens, so we 

will largely deal with proper convex functions. Now, you see how this definition would 

be effective, now this is this is unified the way we can look at Convex functions.  
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For example, if I define, look at the function f x is equal to minus log of x where x is 

greater than zero, now you just look at log x, if you look at log x you will observe one 

very simple thing that if you take the epi graph it is not convex, but if you just take the 

negative so it will be something like this, then the epigraph would be convex. So, this 

function f x is a Convex function, but it is not defined over whole of R n. So, in this case 

I can write dom of f is a set of all x in R such that x is strictly bigger than zero. So, I can 

define the function like this, f x is equal to minus log x when x is strictly bigger than zero 

and I can define this as plus infinity if x is less than equal to zero.  

So, you see I can define log function in this specific fashion and this is the convex 

function, so f from R n to R bar is a proper convex function. Of course, there are Convex 

functions which are defined from R n to R, they take only finite values, for example a 

very important class of function is the following, so this is the quadratic problem, and 

this is the quadratic function. Now assume that this Q belongs to s n plus that is Q is p s 

d; positive semi definite, then f is convex. But I am mind you that if you want to directly 

prove it by the definition of convexity it will be very difficult to prove this to be Convex, 

in a certain ways, I think in different ways one can prove different function to be Convex 

(( )) if you take this function. So, now look at this function, this is an important Convex 

function called the negative entropy function, so again its domain is R n; the interior of R 

n plus. So, domain of f set of all x in R n such that x i strictly greater than zero for all I, 

may be some more examples.  
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For example, this standard function f x is equal to norm of x which measure the distance 

of the vector x from zero, so this is of course a function from R n to R and this is 

Convex. Another important class of convex functions which is very very useful when we 

do optimality conditions is an indicator function. So, the how Indicator function, please 

be careful to note that this is not the characteristic function of a set which takes the value 

one if the element x is in the set, When it takes the value zero if the element x is not in 

the set. Here, it is like a penalty function which tells you that if x is in the set I do not 

charge you any money or any penalty, but if x is not in the set I penalize you heavily by 

telling that your value becomes infinity, that this is zero if x is in c, of course c is a 

Convex Set and this is plus infinity if x is not in c. 

Another class of functions for which are very important in Convex and optimization is 

the support function of the Convex Set c, our set c is always Convex, we are not going to 

repeat every time this is a Convex Set Convex Set Convex Set, because this Convex 

optimization function is Convex Set is Convex, there is nothing else. Support function 

over set c is supremom x v, so your minimizing a linear functional over the set c, a 

Convex Set c. Now if c is compact, that is closed and bounded then just note a very 

simple fact then because this is a continuous function of a compact set then this would 

become finite because you will have finite value, the supremum would be finitely attend, 

this is a very fundamental fact from optimization. C is compact then, or what happens if 



c is not finite that is Question, sorry c is not compact very very sorry, if c is not compact 

sigma c may take the value plus infinity.  
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 Now let me give you some other examples which could be interesting, see apart from 

the norm when we have define this norm, when we say there is a Convex function we are 

basically expecting into write this function, basically it is a Euclidean. Now in this case 

the unit ball define by this norm, it is norm of find everything x as a norm of x is less 

than equal to one would be this round ball which we view one norm. Now, this is called 

the one norm which is defined as the addition of absolute value of the components, so its 

also called the taxi cap norm on the Manhattan norm, another all of these are by the way 

Convex functions, all of these are Convex functions and very very important Convex 

function, it is called the infinity norm which says of course, homework prove that these 

functions are Convex. 

Now, note this fact that how do you detect whether when a function is Convex, basically 

for the coordinate case I told very difficult to immediately pin point and say that these 

the Convex function or other if when you try to calculate it out in standard method trying 

to prove the Convex in equality it is not such easy game. So, here let us find ways to 

detect convexity, a very important way is as follows; let f be a twice continuously 

differentiable function then f is Convex if and only if the hessian matrix is p s d or 



positive semi definite at each x. So, this is I am talking about a finite value function only 

or if you want over the Dom f. 

Now, of course I have not told you what is the meaning of twice differentiability and 

what is the meaning of this term which I am calling as the hessian matrix. So, what you 

mean by twice differentiability, let us segregate out and talk about twice differentiability. 

So, function is twice differentiable if you have this sort of an expansion, there is a matrix 

a such that this happens plus small o of norm h square; small o, that is if I divide by norm 

x square, norm x square goes to zero, this one that ratio goes to zero. Now, a can be 

proved by simple calculations to be the hessian matrix at x, now what is this, what does 

this hessian matrix look like.  
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 So, if f was a function for simplicity from R two to R then f the hessian matrix at x y, 

basically is defined in this way for those who know Jacobean matrix is the Jacobean of 

the vector value function grad f. So, this can be written as follows, del square f del x to 

del square f del y del x del square f del x del y del square f del y. You see if this all of 

these things are continuous that is when we say that the function is twice continuously 

differentiable we mean that all of these are continuous, all this second order mixed 

partial derivative. So, which means that if that happens then this must be equal to this by 

young’s theorem and then this matrix become symmetry. So, as in most cases when we 

are having twice continuously differentiable functions this matrix for f, when f is twice 



continuously differentiable which we write in short as f element of c two, then grad 

square f x y is symmetric and hence we can talk about p s d positive.  

Now, you see when I am talking about this I am talking about also the gradient naturally 

because this tell as the expansion, but remember one thing now if I need to talk about 

this characterization, we need to talk about the characterization; the first order 

characterization in terms of the derivative for a Convex function because you see if I use 

this characterization then what would happen if you take a quadratic function f x. This 

half is not really required this is only for you to know making a making things looks 

good. when you take the derivative let me first do the gradient, the gradient of f x in this 

case is Q x plus c and grad square of f x is nothing but the matrix Q, so if Q is p s d if 

this is p s d positive semi then this thing actually holds that it is positive semi definite for 

each x in R n and hence that will show that if Q is p s d the quadratic function is convex, 

but if, but if you really want to know the proof of this then we need to talk about how the 

gradient of a Convex function is related to the Convex function itself. 

So, suppose we want to tell something more about the Convex function, when the 

function is differentiable, in that case what we will do is that we will do take this 

following thing, let us look at this. So, let us look at f of lambda y plus one minus 

lambda x is less than lambda f y plus one minus lambda f x; this is obviously true for all 

lambda in the open interval zero one, actually because the problem is convex. I can 

rearrange this a bit and write this as f of x plus lambda y minus x is less than lambda f y 

plus one minus lambda f x. But again assuming that this function is differentiable just 

once, I do not bother about twice at this moment, we can write this as f of x plus the 

gradient of f of x times lambda y minus x plus order of lambda is less than equal to 

lambda f y minus f x; I am rearranging this part, plus f x and you know I can cancel out 

this part and now divide both sides by lambda, so I will cancel of this f x with this f x 

and now divide by lambda. So, lambda is not zero, between zero and one to get grad f x 

y minus x plus o lambda y lambda is less than equal to f y minus f x.  
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Now you know what we had done we just have to take lambda going to zero , so, as 

lambda move to zero, that is lambda becomes smaller and smaller we know that lambda 

is positive in order to zero, o lambda by lambda is also going to zero of course, those you 

do not remember here more categorically which should be o lambda of y minus x o, but 

does not matter because if you have a lambda term, multiplier term, scalar multiplier 

then it becomes the o term of the lambda itself.  

So, this should show thus f of y minus f of x is grad of f x into y minus x, and this is true 

for all y x in R n, of course I am assuming the differentiable function, I am assuming it to 

be over R n to R. Now what about the converse, if there is the function Question now if 

there is a function from R n to R such that f is differentiable, which I am writing in short 

as d I f f and for algorithm all x y element of R n we have f y minus f x, the Question is 

then is f convex. So this is homework, I will give you the answer tomorrow, for the 

timing let me try to prove that if I have a Convex function then the easy which is twice 

continuously differentiable, that is if f is Convex and c two, this implies that the hessian 

matrix this is p s d for all x. So, now we are going to prove this statement, so we know 

that f is convex, so let us just write it down. 

 Take two points x and y, now instead of writing the convexity definition here we will 

assume that we will make use of this one that f is in c two and write this as f x plus the 

gradient of f x lambda times y minus x plus half lambda square y minus x grad square f x 



into y minus x plus small o of lambda square. Now look at this fact, now here is where 

we will use convexity, so I can write this whole thing as half of sorry, or lambda square 

by two times y minus x grad square of f x y minus x plus o of lambda square is equal to f 

of x plus lambda y minus x minus f x minus grad f x into lambda y minus x. But if you 

look at this, just from here you can immediately know that this whole thing by the 

convexity of f is greater than zero by convexity of f. So, what remains here is lambda 

square by two y minus x grad square f x y minus x plus o lambda square is greater than 

equal to zero. Now, what do I do with this, divide by lambda square, let me we choose a 

lambda of course between zero and one, this is the standard trick, divide by lambda 

square and take lambda going to zero, that is lambda square also going to zero because 

this is just positive quantity.  
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 And this would imply y minus x grad square f x y minus x, now take any w in R n and 

set, because this y is any R n, y is equal to x plus w, this will show that this thing, this 

inner product is greater than equal to zero for all w in R n. This second shows that grad 

square f x is p s d by definition, so this is just p s d by definition, and you see if you 

observe here we have done the whole thing simply, in fact instead of this if you get you 

could have write it f of x plus lambda w y minus x is w and do the whole thing, it would 

have been the same. We did this because it much more easy to view, and because it is 

linked with convexity.  



Now let us look at the converse, now you take any x and y and then let us see what 

happens because this is given to be p s d for each x, so if you those who know about tell 

us expansion for them it will be much simpler to understand f y is equal to f x plus the 

gradient of f x into y minus x. So, if the order term that comes after the second order 

expansion can be pulled into the second order expansion by writing this as half of y 

minus x grad square f z y minus x, where z is a element strictly inside the line segment 

connecting x and y, right. So it is not the interval x and y, but the line segment x and y, 

so z is written as lambda x plus one minus lambda y where lambda is strictly between 

zero and one. So, what I can now write is f y minus f x minus grad f x y minus x, this 

becomes greater than equal to zero because this is greater than equal to zero where z is 

any element in R n and this is positive semi definite, and y minus x is an element in R n, 

so this is just greater than equal to zero. So, this whole thing is greater than equal to zero 

showing that f y minus f x is greater than equal to grad f x into y minus x and y and x are 

arbitrary pairs, just arbitrary element, so this is true for every y and x. You see this is we 

have we have asked you the converse that if this happens whether it is Convex, answer is 

easiest and you really have to figure it out. So, you have to figure it out how is it convex, 

so once if I have function which satisfies this you can be sure it is Convex, so 

immediately you have the fact that f is Convex.  
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 Now, very important issue from the optimization point of view, now we know that if x is 

a local minimum of a convex problem Convex function it is also global. Now let f be a 



differentiable Convex function and x bar be x bar be a local minimum, now we have 

already said that if this happens there is a local minima and the function is differentiable 

and the gradient of f at x bar is equal to zero. Now, what happens when we have a point 

that satisfies grad of f x bar equal to zero which is, the local minimum point will satisfy 

this one, but if the function is Convex for any other x in R n we can write the following 

thing. So for any other x in R n, whatever R n you take or whatever x in R n you take, 

not whatever R n sorry whatever R n, whatever element in R n you take this result is true 

because of problem is Convex.  

But you know that grad of f x bar is equal to zero, so you can put in zero here to obtain 

this inequality which proves that x bar is global. So, we have f x greater than equal to f x 

bar showing that x bar is a global minimum of f. So, for Convex function every local 

minimum is a global minimum which we have proved already for a general case, now we 

prove it simply for the differentiable case. Now, there are two important classes of 

Convex functions which play an extremely important role in the solution aspects of 

Convex optimization problem, they are mainly the strictly Convex problem and strongly 

Convex problems or strictly Convex functions. So, we have to know about strictly 

convex functions and strongly convex functions, and by defining these two things we 

will stop our this course here for today. 
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So f from R n to R is strictly Convex, if for x not equal to y we have f of lambda y plus 

one minus lambda x strictly less than lambda of f y plus one minus lambda of f x, but 

lambda has to be now restricted between zero and one. So, what is strongly convex, we 

will not go into much of a discussion on this function because this is what we will need, 

if for x y in R n, so these are all function from R n to r. So, if you want I can just write f 

is from R n to R and f is strongly convex for x y x y in R n and lambda in zero one. We 

have f of lambda y plus one minus lambda x plus rho, so there is a rho which is fixed, so 

we have this expression true that this thing is not only less than equal to lambda f y plus 

one minus lambda f x, something more is less than because you know these thing, 

because we non-negative this is bigger than this part. So, which means that this part 

anyway it is smaller than this part on this whole part, so which means that every Convex 

function sorry, every strongly convex function is automatically convex, so you have a 

larger class of functions strongly sorry, smaller class strongly convex functions their 

contained in the class of Convex functions. In fact, we will show that there they are 

actually contained in the class of strictly convex function; we will leave it to you to 

prove this, so because when x is not equal to y this becomes strictly inequality.  

Important feature of this is that when this rho, of course has to be strictly greater than 

zero, when f is, rho strongly Convex, this is called the modulus of strong convexity, rho 

strongly Convex and differentiable then f of y minus f of x is greater than equal to grad 

of f x y minus x plus rho times norm y minus x square. So it is homework, prove this. 

Now once you have this, now I have the have the reverse Question, converse, if I have a 

differentiable function which satisfies this property with some rho greater than zero 

satisfies every pair y and x, I have this expression true then is the function convex. So, if 

for a given rho sorry, if the function strongly Convex or rho strongly Convex if not 

convex; obviously, it is what if the function rho strongly Convex, if for given rho greater 

than zero we have, if I mark this as a, we have a true for all x y in R n is f strongly 

Convex with rho, with rho that is where there is f is rho strongly convex. 

So, these these two things would be your homework and its good exercise to try it out. 

So, let me tell you that we have now got a very broad idea about Convex functions, their 

behavior, how to detect convexity for functions in c two. In fact, if this function, this 

strongly Convex function is twice continuously differentiable I will put on some addition 

of home works that you have to prove that the hessian matrix is also positive definite; it 



is not just positive semi definite it is positive definite. There are many aspects of 

convexity which can be put in homework form and which I will supply very soon.  

But let me tell you that tomorrow we are going into going to very important aspect called 

the separation theorems for Convex Sets, that is given two Convex Sets in R n or in say 

R three which are disjoint that is they have no intersection that is disjoint, then you can 

draw a plane or put a plane in between them so that one Convex Set is in one part one 

side of the plane and another Convex Set is in the another set of plane, this whole thing is 

essentially what optimality is all about. The optimality conditions are applications of 

separation theorem and that is what is very very important, and optimality conditions are 

the soul of algorithms. So with this homework and with this little introduction to what 

we are going to do tomorrow I will tell you good night and good bye. 

. 

 


