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In the last lecture, we had spoken about how to compute the newton steps, that is the 

delta x, delta y, and delta s for solving the system, rather for solving the newton system 

or the system the system or equations associated with the relaxed KKT condition, this is 

what we had already spoken of.  
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Now, what is important for us is that to know the the important step for us to know that 

this is positive definite so, it has an inverse, because the inverse of this was used. Now, I 

had told you to figure it out as an complete the rest of the computations, whether how to 

prove that this is positive definite. 

So, one thing is that you have to first show it is positive definite look, this is I I can write 

XS inverse in this form, because given any positive definite matrix positive PSD any 

PSD matrix. So, Positive Semi Definite matrix there always exist a matrix A, which is 

also positive semi definite, such that B is equal to square of A or A is written as square 

root of B. So, there is nothing like B to the power half, but just it is the symbolism. So, 

here I can write this into these two parts, and I have in this way, and I put it here in this 



place. And then I take the transpose this is the symmetric matrix, so transpose is the 

same thing then A A A B transpose is B transpose, A transpose, and this is how the 

things happen. 

So, now this is nothing but the norm square and you have this greater than equal to zero, 

what you can show is that this matrix this is anyway a full rank matrix into A transpose 

this has full column rank, has a full sorry has a full row rank sorry not column rank, row 

rank is same as column rank, but full row rank. So, once you can show that these are the 

full row rank. So, this equal to if this is equal to this is if and only if this W becomes 

equal to 0 if this has full row rank and it has if it is simple to show that it has a full row 

rank and that is exactly what you have to show to show that this matrix is positive Semi 

Definite. Now, once we look into the main primary dual framework  
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Let us, go to the story once again you know we have to solve this equation. We have to 

solve this equation that is the relaxed KKT system. So, you know that so, the relaxed 

KKT system if you have forgotten let me write down once again. So, this is the system 

that I have we are intending to solve of of course, we are intending to have this, but this 

thing automatically means that I will have this strictly bigger than z 0 this. So, as I told 

you that it is very difficult to really satisfy this equation. 

So, you want to find some solution which will approximately satisfy this, this may be 

that x i s i for every I need not be equal to mu, but some number very near mu that would 



be enough for a purpose. So, for any (x, y, s) which is in F naught which is nothing but F 

naught p cross F naught D e for any any such thing we will define the duality measure, 

see what the the finals approximate solution that I will get will not give me x i s i is equal 

to mu, but they can then I will try to see on the average what is the value taken up by the 

product. 

So, we will define the duality measure tau as follows,: tau is equal to 1 by n summation x 

i s i is equal to 1 to n or inner product so, this same as a inner product. Now, this tau is 

central to developing the algorithms, because then solutions of the approximate solutions 

of these equations will not give me x i s i equal to mu. So, they would not be exactly on 

the central path. So, what I get is instead if this was my central path what I will get is 

something here nearby. So, I want to look into take those x and s and try to see. So, I am 

looking for let me look at the whole thing in the x s space which is much more simpler x 

1 s 1, x 2 s 2. 

Now, any point on the central path would be projected back on this path in a x in the x s 

space x into s space. So, unless the point x 1 and s 1 or a x 2 s 2 x 3 s 3 whatever that x 

and s they lie on the central path x s 1 be equal to mu. So, the x s point would not be on 

the straight line. So, it is somewhere may be here, may be here and may be here. So, then 

what is the corresponding average value that point is satisfying that is what we call the 

duality measure, our aim is to drive the duality measure to 0. So, our aim is to drive tau 

down to 0, that is do this now, the whole all the algorithms what we will do we will plan 

to drive tau to 0. 
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But can we really drive tau to 0? That is the question that we want to answer. So, what 

we do at every step, we solve this approximate system approximately get the x i s, x i s i 

and try to develop the algorithm in such a way that every step at every each and every 

step, the mu values sorry the tau values would continuously decrease. Now, can we 

really get finally, reach up to 0 the answer basically is not really true, because it may not 

reach you might not reach 0. 

So, what we essentially want is that we fix up a small epsilon naught greater than 0 

which is called the precision parameter and then then stop the algorithms, whatever 

algorithms you have stop, if your tau so, that x i s i of course, they are strictly bigger than 

0 you you will stop the algorithm there. Now, what you would get is an x i s i which is 

whose product x i s i where both of them are strictly greater than 0. So, will you will you 

really get a point on the boundary may be not you have not got a point on the boundary. 

So, what you have done here is that if this is my so. So, you have stopped someone very 

near a boundary point and then there are certain approaches which will not discuss in 

detail here, you can move on to the boundary you, can basically if this is not the B F S 

you can move on to the next B F S, you can know that if I excise this is my where I had 

stopped. Let me go to on to the next B F s by taking of m minus n points I put 0, then 

what what is the solution what what is the value of x is. So, you are you can find so, you 



what you do you find the near there is a technique of finding the nearest vertex to that 

point and that is that is the required solution. 

So, but all of these works in polynomial time means, all these work within a reasonable 

amount of time. So, what I am going to do here is to solve an equation of this form. So, 

is we are trying to solve an equation the in exact heraldic condition, but we know that it 

is not possible to find mu e in mu every time, for every x i s i cannot be equal to mu 

every time, for every i so, what we do is say I do not care I take the duality measure, I I 

take some tau which is a there is a initial starting tau. The starting point that you have 

take take is duality measure and then so, if you have x, x naught s naught, you you take 

tau equal to now basically tau depending on say x naught s naught. So, this will be your 

starting tau tau. 

So, then you use that tau in the equation and so, for tau you do not you cannot have 

exactly tau exactly for every x i s i need not be tau. So, what you do you put in a 

centering parameter basically instead of putting mu epsilon in the equations what you 

will have is, you will have x s e minus sorry sigma tau. So, you have not bothered this 

sigma tau is acting like like your mu, the sigma tau is acting exactly like your mu. So, 

this is acting like your mu here, the sigma tau the sigma tau where sigma is between 0 

and 1 is acting like your mu. 

So, I cannot find everything exactly equal to mu, but so I am computing the system that 

everything is not exactly equal to mu, but some some fraction of the average, the fraction 

of the duality measure. So, instead of mu using mu I am using sigma tau. So, when sigma 

is equal to 1, then tau is exactly my mu and then sigma is 0 of course, then I am I am the 

exact solution. So, sigma is lying in between and that is not exactly mu, so it not giving 

me a point exactly on the central path, but somewhere as we showed that nearby. So, this 

is the basic framework, the sigma this term this is acting like a so called so, sigma is 

called an affine scaling direction or is acting like a pointer which points towards the 

central path. 

So, there put sigma tau is equal to mu. So, my sigma is 1 by times mu is not exactly mu, 

but tau is 1 by sigma times. So, mu is some fraction of this tau. So, I am exactly not on 

the central path, but somewhere else that is exactly what we are trying to say. So, this 

sigma tau, this sigma is 1 then at tau is mu then I am on the central path if sigma is not 



equal to 1, if sigma is equal to1 then we are on path, we are on the central path, if sigma 

is strictly less than 1 then we are not on the central path. So, this called an affine scaling 

direction. 

So, whatever solution we have here of this system, suppose we call this solution we can 

write this as x sigma tau. So, whatever solution we have that is basically, there is a 

mistake here I should have written, just have to rewrite this a bit I think there is a small I 

have forgotten the Newton step, this is equal to of course, this is 0 0, because we have 

taken our points are all coming from my starting point also be an interior point x naught, 

s naught, f naught is belonging to f naught, the interiority conditions holds. 

So, any solution delta x, delta y and delta z from there you can create a new solution that 

is adding delta x to x k, delta y to y k, delta s to s k by putting in certain controls over 

here, that is you for example, you take x of x plus alpha delta x is my delta x plus the 

new one new new thing. So, whatever you get this x plus y plus z plus which has 

solutions to the final solutions and after you get the delta x this is the new point, that I 

have these points are pointing in the direction of the Newton solution, pointing in the 

direction of the central path right. So, this is called sigma is also sometimes called sigma 

is also called the centering parameter. 

So, it is trying to force the points to go towards the central path and keep them near the 

central path. So, let me write down the general framework of an IP algorithm. So, that 

will give you a fair idea of what we had just discussed.  
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So, the general framework of an IP algorithm of an interior point algorithm so, starting 

vector so you start with some we assume the starting vector, is element of f naught that is 

given to me, accuracy requirement I need, there is a precision, these are given initiation 

of the algorithm. So, we will start with initialization step that is you first initialize x, y, s 

with the value x naught, y naught, s naught starting values. 

And compute the initial tau which is 1 by n, x s in a product. While so, we will have a 

while do loop, while tau is bigger than e epsilon, solve and you know how to solve it if if 

I put sigma tau equal to mu we have already showed you in the last class how to solve 

this system or equation how to get delta x, delta y, delta s. So, you can just write a 

computer program simply behind which which will solve it out somehow you can try it 

at home by writing a computer program, but of course, you have to take matrices of 

smaller sizes, because you know unless you get just you guys are working on a PC there 

may be lot of overflows. 

Because when you try to take the inverse inverting is the very difficult operation is a 

very costly operation a machine. So, I am telling you from my own experiences of trying 

if you trying to take slightly larger matrices try to take, very small medium size matrices 

here 2 by 3, 3 by 3 and try to check it out. So, this is what you need to solve where sigma 

is the centering parameter or the pointer is between 0 and 1. Now, at every step the new 



x, y, s would be nothing but x, y, s into this into x, y, s is assigned the old x, y, s plus 

alpha times delta x, delta y, delta s. 

So, the alpha is called the scaling direction, scale scale parameter or the scaling scale. So, 

this scale parameter alpha has to be chosen between 0 of course, it cannot be 0 that is not 

fair, zero means there is you are going talking about exact solution that is not possible. 

So, alpha is between 0 and 1 which is interval excluding zero and this denotes my 

suitable scale parameter or step size. So, it is also called step size. So, it is a while do 

loop, while do this solve this and once you get the new value x, y, s again assign to tau. I 

think you should have assign to tau the new one. So, end y end. 

So, what you do is again you check if tau is so, my new x, y, s is this you my new tau is 

check whether tau is this and again go back and solve this and continue. So, when tau is 

less than equal to epsilon, stop the whole thing. So, what would be a suitable step size? 

So, that depends suppose this sometimes alpha in the short step path following method, 

which will start studying tomorrow you will have alpha is equal to 1 and that that will be 

giving you a lot of so, sometimes for when I am not writing an algorithm algorithm you 

can write this assignment parameters and so, it looks like program. 
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But in general, I would what people would do people would write x alpha or x plus does 

not matter, y alpha it depend on the alpha, s alpha is nothing but equal to x, y, s plus 

alpha times delta y delta. Now, in order to study the algorithms it is very important that 



we make certain estimates, this estimates will tell us whether what we were doing is true 

is correct. So, if I design an algorithm I have to show that if I run my algorithm I will 

finally, go and get what I desire, I will get tau strictly less than epsilon in certain step that 

has to be that is what is called the convergence analysis. 

So, every algorithm we need to do we need to do a convergence analysis, in the sense 

that whatever algorithm I am writing it has it is making sense, that it is working has to be 

proved mathematically. So, let us look it and estimate that will require quiet often is this, 

what is this now how do I go about solving this, look if I look at the equation then what 

do I have if I look at the equation this one. So, I would have A transpose delta x plus 

delta y equal to zero and I will have A transpose delta A a a I am sorry I will have a 

transpose delta y plus delta s equal to 0 I will have A transpose A delta x equal to 0. 

So, from the Newton’s equation from the Newton system so, I will have A transpose 

delta y plus delta s is equal to 0, also I am having A of delta x is equal to 0. Now the 

from the newton scheme from the so, I will now write this as this newton scheme as the 

star scheme that is the main scheme, from the Newton scheme star. So, what I what 

would I have now, this means delta s I can write from here which is nothing but minus A 

transpose y. So, this A transpose delta y. So, I instead of delta s, I have written this 

taking the minus sign out so now, I can write this as A of delta x and what is A of delta x 

it is 0. So, I get 0. 

So, we have this conclusion that if you take the newton steps of x and s first and third 

variable you get 0. Now an interesting question is, can I compute can I compute the 

value of tau alpha? Tau alpha of course, means so can I relate see tau alpha has to be 

such that at every it has to be smaller than tau, because my tau has to go down that is 

exactly what I want, because I want to drive my tau towards 0 and that is the whole ball 

game, can I relate tau and alpha with tau? So that we can be sure, that the value of the 

duality measure is coming down. So, let us see how can we do this? 

Look at the last row of the equation this row s of del x plus capital X of del x is this.  
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So, so I want to compute I want to compute tau alpha, let me look at the last equation. 

So, it will give me s of delta x plus x of this from the star equation from star. Now, I look 

at it component wise so, this is a vector x 1 s 1, x 2 s 2 these are vector sigma mu sigma 

mu sigma mu now I also want to look at this component wise this will become this s 1, s 

2, dot dot dot and it is s 1 delta x, s 2 this delta x 1, delta x 2, delta x 3. So, let me look at 

it component wise what will happen right. 

So, s is a diagonal matrix consisting of s 1, s 2, s n in the components. So, if I look at that 

let us see what actually happens, if I write this in a very broader way I would have. So, 

here if I write it down more clearly. So, first equation here would be s 1 delta x 1 plus x 1 

delta s 1 to minus x 1 s 1 plus sigma mu. So, here there is a mistake this sigma tau 

epsilon. So, it should be sigma tau if you look at the equation its sigma tau not sigma mu, 

sigma tau here so, sigma tau and sigma tau and and so on. So, I can write s n, x n delta s 

n, sigma tau sigma tau. 

Now, let the definition of sigma tau and then you you immediately see this will give me 

sum up sum up all sum up all all the all these equations, see if I sum up all these 

equations we have we have a following that is, s of delta x, x is a vector s 1, s 2, s n plus 

x of delta s is minus x s plus now you add so, it will be sigma n tau, n tau is again sigma 

x s by n. So, we will get sigma x s, that is what it is now I will do n into tau alpha is 

equal to x alpha, s alpha that is the definition. I will write down what is x alpha, x alpha 



actually for me means x plus alpha into delta x, s plus alpha into delta delta s. So, I will 

now do there do there detail computation  
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Let let us let us let us compute out let us compute tau n n tau alpha. So, what I have is n 

tau alpha is equal to I am just repeating what I wrote in the last thing, s plus you will see 

the estimate delta x into delta s will be useful here. So, now what I will have is x plus 

alpha delta x into s plus x plus alpha delta x into alpha delta s. So, I have x of s plus 

alpha times delta x sorry delta x into s, I just using the properties of inner products plus x 

alpha into x delta s plus alpha square times delta x, delta s. 

Actually it is this it was important to estimate this, because we needed to find out tau 

alpha, that that was the reason to actually estimate this. In real research this thing came 

much later first wanted to compute this and then the other this thing was computed. So, 

that we know that we actually have to drive this part to 0. So, anyway we now know that 

this is 0. So, we have x s plus alpha times, s delta x plus x delta s and this is something 

we have just computed, we have just computed this to be x s plus alpha times this is 

nothing but minus x s plus sigma x s. So, it is so it is becoming x s minus alpha x s plus 

alpha sigma x s. 

So, what I can write here is x s, I can take out that x s as a common thing. So, I will have 

1 minus alpha into 1 minus sigma x s, but what is x says it is n into tau. So, it is n into 1 

minus alpha times 1 minus sigma times tau. So, n into tau alpha is this.  
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So, what I would now have is tau alpha is 1 minus, again go back alpha into 1 minus 

sigma alpha into 1 minus sigma times tau. Now, alpha is a quantity between 0 and 1, 

sigma is also a quantity between 0 and 1. So, this is less than one, this is less than one, 

this product is less than one. So, one minus this something is bigger than 0. 

So, into tau, so tau alpha is a fraction of tau. So, what we have concluded that tau alpha 

is a fraction of tau and that is what we require the value should come down. Now, how 

does the algorithm behave, if we are claiming we claim that that our algorithms our 

algorithms of the interior point type or the IP type are of polynomial time what do we 

mean by this this is something we really have to concentrate on now. So, what we have 

shown that in our general framework of IP algorithms we can reduce the tau alpha the 

duality measure which is of fundamental importance. 

So, we have already on we have already built up something. Now what we want to show 

is that we can develop some framework, in this current framework we can put in some 

sort of little conditions which will immediately lead us to a polynomial time game, 

because in the sense that sorry it will show us that I can give you the number of steps in 

which your algorithm will terminate and that number of steps is not arbitrary, that 

number of steps is bounded on that above by a polynomial. So, if you know your number 

of variables in the division variables you can tell me in what number of steps you will 

lead to the solution. 



Now, this is what we are going to discuss tomorrow, how can we show that our general 

framework of the IP algorithm which we have done which is actually this one this one is 

called the general IP algorithm. So, algorithm is polynomial time basically the idea is 

this you have a fixed x naught, y naught, s naught that you have epsilon F naught and 

now you start the algorithm, you start with tau naught and you are now going pushing the 

tau naught towards 0. Now, this is your epsilon is a precision parameter, now find the 

number of steps steps say k. So, that in k steps we have tau is less than sorry this is just 

tau. 

So, I start with this and I have to show under what situations I can have or I can compute 

the number of step size k and we can show, that that number of steps that k that is 

required till we required come do this is actually bounded by a polynomial which can 

which can which tells us that this is the maximum number of steps, you would require to 

reach this. You can you would not need anything much more such a thing cannot be 

guaranteed for the simplex algorithm though it is amazingly effective in practice. So, 

tomorrow our first job would be to start with proof of the polynomial proof of 

polynomial time proof of polynomial time. 

And then once, we have the proof of polynomial time we will start with something called 

short step path following algorithm. We will do its convergence so, the number or 

methods that we learn here are following: a short step path following, a long step path 

following of course, and there is something called the predictor corrector method and 

then once we know about the predictor corrector method, we will also give a brief 

outline of Sanjay Mehrotras predictor corrector method which is the most useful 

predictor corrector method that is used in algorithms. 

We will try to if time permits to briefly touch on what is called the potential deduction 

algorithms, which is also a type of IP algorithms. So, with this we end the talk here, and 

tomorrow we will start with proving the polynomial time, and then get in to these 

algorithms. So, there we would need around three, four more lectures to have a brief idea 

about these things, and we will give references from which you can do your further 

studies. 

 


