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 Welcome back again to the course on Convex optimization. A course on Convex 

optimization is not feasible, unless you have some idea what Convex Sets and Convex 

functions. Now, we had already spoken over Convex Sets and Convex functions in the 

previous lecture, but let me tell you a bit more details study about Convex Sets, what are 

their important examples, and Convex functions, what are the important examples, what 

are the important properties, would lead us to understand Convex optimization better. 

Here, our aim is not necessarily to give a proof on each and everything that we do, 

except possibly the major once. But, here our aim is essentially Convex optimization and 

not really Convex analysis as per se, and what we are going to do here now is a part of 

Convex analysis. I would begin with by showing you a very very important book on this 

subject, is called the fundamentals of Convex analysis by Hiriarturrut Claudelemarechal. 

This is book on Convex analysis, has beautiful chapter on Convex Sets and Convex 

functions, possibly one of the best exposition of the subject, and I strongly recommend 

this books. So, we go back and re learn our notion of the Convex Set. 
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A set is Convex, if for any x y which is in the set c, and any lambda that is choose 

between 0 and 1, lambda times y plus 1 minus lambda times x must also belong to the set 

c. We have given several examples last time, even showing that the human body is not a 

Convex Set. And here we would look into, from more of the geometrical perspectives 

and right down some important examples of Convex Sets, before that I will just extend 

this idea of bit. Let us first define the notion of a Convex Combination, Convex 

Combination of vectors. Now, consider x 1, x 2, x k, some k vectors which are given in 

R in. So, what you do is, we are bothering about the question of defining a Convex 

combination. So, Convex Combination of this k element is an element z which is return 

as a lambda 1 x 1 plus lambda 2 x 2, I am assuming this is the known to everyone vector 

addition, lambda n x n, sorry this should be lambda k x k with lambda 1 greater than 0, 

lambda 2 greater than 0, all the lambda as a greater than equal to 0, and the sum of the 

lambdas are equal to 1. Because like lambda plus 1 minus, lambda some to on each of 

the lambda are greater than equal to 0, because the lying between 0 and 1. So, how do 

you define all possible Convex Combination from set c. You take any collection of finite 

number of elements from a set, do there Convex Combination, keep on changing the 

lambda. So, you will generate new combination; keep on changing the number of 

elements that you take from the set. A very fundamental and very basic result about a 

Convex Set is following.  
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 Every Convex Sets contains all its Convex combinations, before going to very specific 

example of Convex Sets and important one, we would like to sate certain specific 

properties this properties become important when optimization is a handled. So, let us 

look at certain basic properties, because when we have set, what are the properties you 

look for. See, when we have set, when we have class of set. So, Convex Set of all 

Convex Sets if form of class of sets in Rn, and what you look for is what happens if I 

combined to set that is if I take the union of two sets. So, if my c 1 is Convex Set, and c 2 

is a Convex Set, the question is, is this Convex. You would be obviously sad to know 

that the very first property that we are considering here turns out to be negating property. 

So, c 1 union c 2 is not Convex.  

Let us see, take a square here, take this square and take this square in naught two. 

Obviously, I am putting the x axis y axis for your convenience, but that is really not 

required. So, this is my c 1 and this is my c 2. So, this whole set that looks some sort of 

beta of zigzag. This whole set is like this, this is my c 1 union c 2, but then this whole 

set, so take any point here, and any point here and join it, it is outside. Any point here 

any point here, its line segment goes outside. So, c 1 union c 2 is not Convex Set. So, if 

that satisfies you, we will give you positive result. What about c 1 intersection c 2. So, if 

both of these are Convex Sets, then this intersection itself is a Convex Set. Very simple 

again take this one and take this square. Squares are obvious examples of Convex Sets, 

suppose this is y c 1 and this is y c 2.  

So, this is an area which is an intersection, and of course this is c 1 intersection c 2. You 

can easily see that it is a Convex Set. I leave you as a home work, those who are listening 

to the course also have a bit of pen and paper with you, as you need to just figure 

something, everything will not be figured out, because I do not want, due to lose out on 

the fun. So, homework; prove c 1 intersection c 2 is Convex, or is a Convex Set. Let me 

tell you any mathematical subject, like this fascinating subject like Convex analysis, 

Convex optimization, cannot be understood unless you do prove things yourself. Prove is 

an integral part of mathematics, how mathematical discourse and of mathematical 

understanding. So, without understanding proves or whether learning to proof things, the 

fun over object is almost lost.  
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So, these are the good properties, now I will describes some other property which is 

essentially when you study optimization, is sum of two sets, assume for us that they are 

Convex Sets. So, assume c 1 and c 2 to be Convex, and I am asking the question what do 

you mean by term sum of two sets c 1 by c 2. Now, here you have to realize that c 1 is a 

subset of the vector space R n, c 2 is the also subset of the vector space R n. So, 

whenever I am talking about c 1 plus c 2 is the most natural definition is to consider all 

elements of the form z, such that z is equal to x plus y, where x belongs to c 1 and y 

belongs to c 2. So, this is sometimes calling the Minkowski addition of two sets, after the 

famous mathematician Minkowski. I do not want to define c 1 minus c 2, because you 

can define it likewise, by the difference of two vectors.  

The critical thing to observe here is twice of c, if you have two sets c, you can add c plus 

c, but then twice of c is always a subset of c 1 plus c 2. Think why, and find then 

example where this is a proper subset of c 1 and c 2, and find an example where this is 

equal to c 1 and c 2, so another piece of homework. So, one thing that you can observe 

that, what is twice c you are taking the same element then adding them, but c plus c does 

not mean that you take the same element from c and take the same element from c. It 

means take just one element from and c can take another element c which could be 

different to the element that you have chosen before, and then add them. So, find an 

example where this is the proper subset, so this home work is find examples, and also 



find an example where this equals. So, these are the two things that you try to figure out, 

you will have lot of fun doing so, just bring on which sets in naught 2.  

Now, once I do this, I would also try to define the notion of a cone. Cone is an important 

class of set use in optimization, and Convex cone is what will be of at most importance. 

So, what is a cone you can understand what is a cone, because if you taken a ice cream 

cone, you call it ice cream cone that what it is look like, but in mathematics this cone is 

not just, it ends up to the bream of the ice-cream, but you know just keeps on extending, 

when extend the whole thing in the imagination. So, cone is a set S such that lambda 

times x is element of S, if lambda is element, if x is element sorry if x is element of s and 

lambda is greater than equal to zero. So, for example, you take an example take any ray 

going out of the origin, this is the cone. A pair of rays is a cone, but as you can 

understand this not a Convex one, that is not a Convex in general. So, any cone which is 

Convex is called Convex cone, this is the cone. So, you can observe, you figured out of 

this definition is what I given will be satisfied. So, Convex cone, not a Convex cone. So, 

this is very basic thing, and now we go on to some important examples. The first and 

foremost example which is very important optimization is of the set R n plus.  
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So, this is a Convex Set, is a set of all x, which is return as x equal to x 1, x 2, x n, but I 

should is id as the column. So, I give at as transpose T where x i is greater than 0 for all i 

from 1 to n. So, in our setting this is R 2 plus. So, the interesting fact is that, this is not 



only a Convex Set, important Convex Set, this is a Convex cone. Another important 

Convex Set is the space of all symmetric positive definite matrices, is a set of all x 

element of S n; such that x n, such that x is p s d that is positive semi definite or in other 

words, you can right it like this with an lower and ordering. So, how do you prove that 

this is a Convex Set. So, you take 1 x 1 from S n, and another x 2 from S n, infact S n 

plus. Now, what do you need to do is to show that lambda x 1 plus 1 minus lambda x 2 is 

also in a S n plus. So, you take the lambda of x 1 plus 1 minus lambda of x 2, in order to 

show it is in S n plus we need to show that this metrics is positive semi definite. So, what 

do you do is just do, take this by linear product.  

So, you can write this as w, you must put a bracket on the standard, this metrics 

operating on this w, w times lambda x 1 into w, plus w times 1 minus lambda x 2. So, if 

you look at this, this is nothing, but lambda times. Now, both of these are in S n plus. So, 

both of these are the greater than equal to 0, because w is any element in R n. So, both of 

them are greater than equal to 0, lambda is greater than equal to 0 and 1 minus lambda is 

greater than equal to 0, because to show the Convex Combination lambda is obliviously 

chosen from 0 1, which is oblivious fact, which you need not even state repeatedly. In 

Convex analysis lambda is always between 0 and 1 when unless until mentioned. So, 

what you see here is this fact, that now all of this whole thing is greater than equal to 

zero. So, let me not write and just put this greater than equal to 0, implying the fact that S 

n plus is convex. We will have more opportunity talk about S n plus in the future.  
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And let me talk about another class, important class of sets called affine sets, which are 

sub class of Convex Sets. So, what is an Affine Set. Affine set if you take two points say 

naught 2, the line segment joining game is a Convex Set which I do not have to tell you, 

because definition simply tells that. Definition line segment simply tells that this is a 

Convex Set. Now, think of the line which passes through these two points. Now, this line 

itself if you look at it, is a Convex Set. Now, it’s very important to know that, how do I 

define such a line or if you have a plane or a say a figure like this, triangular triangles, 

what a 2 d triangle in 3 d, then I can a put it on a plane. So, how does that plane is a 

Convex Set. So, how do I define such as set. So, such sets like this, like the line passing 

through two points is the class of Convex Sets call affine sets, which as the following 

definition, and a set C is called affine if lambda x 1 plus 1 minus lambda x 2 is element 

of c for any x 1 and x 2 element of c, and lambda element of R.  

Note that lambda no longer has any sign here. So, of course this is true for any lambda 

between 0 and 1, signifying that this is also Convex Set, but every Convex Set is not an 

Affine Set, because if you take say this set this. So, take two points here, take the lining 

passing through them. So, the line passing through them does not reaming inside the sets 

c, if this is my set c the line passing through any two points does not reaming the set c. 

So, this set is not affine while this Convex, this is affine and important class of Affine 

Set is the straight line, so you can write such straight lines as follows. So, take the set L, 

say set of all x in R n. So, the set of all x which satisfies his equation, where a is a 

member of R n and b is member of R. Now, what is important to me at this stage, is very 

simple to prove that this is an Affine Set, just by a properties of the inner product. Now, 

what is the geometry of this particular type of sets. So, if you look at the R 2 geometry 

for this particular case, if n is 2 then you are basically looking at some line like this. 

Now, if you look at this line what is the nature of a n, does a have anything to do with the 

line itself. 

 Now, take any line point x 0 on the line, then what would happen. Then of course, if x 0 

is element of L, we can call this as linear Manu fold, so that is more technical term but 

forget it. So, if x is not a element is well than what happens is a of x naught is equal to b. 

Now, if that happens than I can replace in this equation b with a of x naught and then I 

can right L, as the set of wall x such that a of x minus x naught is equal to b. So, what 

happens is that if you take this x and take any x here. So, if this is my x naught vectors 



and this is my x vector. Now, this is your x vector and this is some x vector, if you take 

any x. So, this vector is your x minus x naught, and what does this equation say that this 

a is, this should be a mistake a x 1 x naught should be equal to 0, because you put b equal 

to a x naught then you transfer it. So, what it says on the x minus x naught vector. So, x 

minus x naught obviously is lying in this plane. You, can understand that this vector x 

minus x naught a is perpendicular the to the vector x minus x naught, but since x minus x 

naught lies along the plane from the geometry. So, which means that a is perpendicular 

to the plane itself. So, what does it mean.  

So, what it shows that a is perpendicular to the plane itself x minus x naught, that is 

exactly what is the nature of the element a. So, a is an element, if you look at x minus x 

naught, this element is in the orthogonal complement of the vector a, it is in the 

orthogonal complement of the vector a naturally, that is what we had just say 

geometrically. So, which means a x is element of x naught. So, but if you take any 

element which is x naught plus a tilde, then of course, immediately will get this, x in R n 

which satisfies, that x is an element of x naught plus a tilde, a which is orthogonal 

complement orthogonal complement of a. This is terms only linear algebra which you 

are supposed to know orthogonal complement of a. So, any x which satisfies this, is 

satisfying this and satisfying this and hence L can also be described like this. So, this is 

also a Convex Set, but this a other in a Affine Set a very important class of affine set.  
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So, if you look at this L, what does a straight line do. So, if I call this as a x equal to b. 

Now, this straight line is dividing a plain into two parts. Any point that you take here 

would satisfy a x greater than equal to b, because this is equal to b any move up, it leaves 

the value of b and become bigger, any move down it leaves the value b and becomes 

smaller, and this part is called a x less than equal to b. So, basically I have divided this 

line a x equal to b, has divided the plain into two parts which we call H U and this is 

called H L. This is called upper half space, is a set of all x in R n such that a x is greater 

than or equal to b, the lower half space a H L is given by the set of all x in R n and L is 

the of course, H U intersection H l. So, we have now got a fairly decent amount of 

explanations about, or fairly decent amount of introduction to Convex Sets. So, after this 

will talk about certain important properties of Convex Sets than start describing Convex 

functions. Now, we have shown here that L is H U intersection H l, but of course, as a 

Home work I would ask you to show that H U and H L are Convex Sets and by knowing 

that the intersection of to Convex Sets is Convex you can immediately deduce that L is a 

Convex Set.  
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 Now in important property of Convex Set is the following; if you look at the interior of 

a Convex Set, if you take a Convex Sets c and look at to interior. I am sure all of you 

know the definition of interior. In case you do not look of any standard book of analysis. 

So, if c is Convex then this set, the interior of the c is also Convex Set. Similarly, if you 

look at the closer over set c, if this is Convex this is the sets c, sets c itself, if this is 



Convex then so is the closer. The prove of this is a very simple, that is take sequence z n, 

take sequence z n element of c going to element z in the closer. So, you see whenever 

you have z, you will have a always have a sequence z n going to z that is the definition, 

using this definition actually prove that the closer is also Convex Set. So, you take two 

elements z 1 and z 2 in the closer. Now, what would happen is, that you would have z 1 

n, and z 2 n, this two sequences where z on an convergence to z 1 and z 2 n convergence 

to z 2. So, now, you make Convex combinations. Now, these are elements in c.  

So, make Convex Combination lambda z 1 n plus 1 minus lambda z 2 n where lambda is 

between 0 and 1. Now, what happens, because these are elements in c this is also element 

in c, it is belongs to c. Now, when you take the limit, of course you can fix of lambda 

and take such sequences. Now, if you fix of the lambda that is you want lambda z 1 plus 

lambda z 2. So, you fix up of particular lambda and then take this sequence, if you take 

the limit, because it is a linear function. So, it will immediately give me at this whole 

thing convergence to lambda set 1 plus 1 minus lambda z 2. So, whenever z 1 and z 2, 

but since this is in c where the very definition of closer, this is also belonging in to the 

closer c. So, whenever z 1 and z 2 belongs to the closer, this also belongs to the closer 

proving that the closer c this Convex. Now, what is important is how do prove this to be 

a Convex Set.  

The proofs of this realize on very important properties is call the interior property of 

Convex Set. I am assuming that this Convex Sets c has an interior, every Convex Sets c 

need not have a interior, we will just speak about that. So, take this set in naught 2, 

whole thing inside and with the boundaries. So, it is close Convex Set . So, you have this 

part, the white part as the interior of the set. Now, if you take any point in the boundary, 

see you take x in the boundary, and you take y in the interior, and you join them by the 

straight line. So, any point in x y, take any z from x y, such that z is not equal to x, then z 

must belong to interior of c. This is a very fundamental result, if you take any z here, 

which is not equal to x it must be in the interior. This is the very fundamental property it 

will be used to prove this, and many other things. So, as I told you that every Convex set 

need not have an interior.  
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How do a support my statement. Let us take an example, in mathematics it is imperative 

if you want to say something does not told just given example, but if you want to 

something holds, then you need to have proof. So, you take the straight line, line segment 

joining these two points x y. So, this line segment is obliviously a Convex set. So, my 

question is whether this has an interior. Now, what do you mean by an interior in R 2, 

remember x y is viewed as set in a R 2. Now, if I take any point here, then by interiority 

means I have to take a ball, we have already described what is a ball. A ball around this 

point; such that whole ball should be in x y, but these does not happen, you take any 

point accepting the point x y. Take any point it does not happen; so x y, if you look at the 

interior, if I say int; the interior, this is empty, but then what is not. Is there something we 

can speak about its interiority, because if I look at x y for 1 dimension view point as an 

interior.  

Then how do I speak about some sort of interior of this set x y, this brings us to two 

important notions, the affine hull and the Convex hull. So, keeping in with the tradition 

of Convex analysis and Convex optimizer. I will first define what is Convex hull, but 

affine hull is what would be a help here. You take any set a non-convex one; Convex 

hull is the smallest Convex Set which contains this set c, now this is my set c. Now, this 

set obliviously is not Convex which is very clear, but you see if I take this last two end 

points and join them up; and this new set, this boundary, this new set becomes convex. 

So, Convex R is a smallest Convex Set c containing, Convex Set containing the set c. So, 



you take any set c like this. You, take any Convex Set c, like this you take any Convex 

Set containing the set c, set c is here with this whole thing.  

This is one Convex Set, say s which contains the set c. Similarly, you can take another 

Convex Set which contain the set c, and similarly go on the intersection all such set 

would be finally what we require the Convex hull. So, Convex hull; if I have to define it, 

is a smallest Convex Set containing c, containing a set c. So, which means if you have 

set c, the Convex hull of c which we define as Conv s, Convex hull of the set c which we 

define as the intersection of all the sets c s, where s is Convex and c is a subset of s, but 

these are only very quilted if things, means is there any way to represent. In mathematic 

representation of sets become very important issues, especially when you do Convex 

things like optimization. These representations help when you are a doing theory and 

also in computations. So, how do you represent the Convex hull over set c.  

So, I hope you remember the beginning of the lecture as spoke about Convex 

combinations over set c. The, Convex hull over set c is the collection of all the Convex 

Combination of the set c. So, Convex hull over set c consists of all element z, of the form 

z equal to lambda 1, x 1 plus lambda k, x k where x i is element of c for i equal to 1 to k, 

and lambda i is greater than equal to 0 for all the i and summation over i lambda i is 

equal to 1. Now, this k is the element of n, there is this k can vary, so you can just take 

any finite number of elements from the set c, and make their Convex Combination put 

them aside in one set, the set that will be found is Convex hull, but you see here k can be 

changed, and this is the bad factor in the representation that there are infinite such k, it is 

very difficult to really visualize such a set. This problem was solved by this beautiful 

result of Caratheodory.  
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Caratheodory Theorem says, that if c is the subset of R n, then the Convex hull of c is a 

set of hull z. So, the z is equal to summation lambda i x i, i is from 1 to n plus 1, now 

here fixed it up, you just take n plus 1 number of elements, in lambda i is greater than 

equal to 0 summation lambda i is equal to 1, i is obliviously from 1 to n plus 1, and all 

the x size element of c. Here is a beautiful representation I do not have to this number, k 

which will arbitrary change with every z, take a z your k will change in general. Here, 

you take a z your k will change in general. Here, you take a z your k will not change and 

this is very fundamental result in Convex analysis. Proof is essentially for a 

mathematical audience and not really for the audience set we are targeting here. For 

proof you can see any book on good book on algebra or any book on Convex analysis, or 

books which engineer preferred is this one; Introduction to Non-linear Optimization or 

Non-linear Programming by Bazaara Shetty and Sherali. It is a Wiley publication, 

second edition is 1993 and I think there is also third edition.  

So, that chapter two has a proof of, there is simple proof of this fact. So, now, what is an 

affine hull, you can obliviously make up the definition very simply. So, the affine hull of 

a set c is the smallest affine set containing the set c. Now, let us see what is the affine 

hull of that straight line, or the line segment that we drawn, not really straight line, a line 

segment. So, the affine hull is the smallest Affine set. This whole space R 2 is an affine 

set, so obvious it contains this one, and the next Affine Set, by the very definition of 

Affine Set you can understand in a Affine Set in the whole lines have to be in the set not 



just line segment. So, this line, that is passing through this two points x y that is the 

affine hull, that is the affine hull of. Now, look at this fact that if I take this x points some 

point z, and I take or pole of radius say delta.  

Now, even though is not contained in the set x y, this set c equal to x y, this Convex Set 

x y, but if you observe it carefully, the intersection of this ball, center at z of radius delta 

is intersection with the affine hull of the set x y, or affine hull of c. This is contained in c. 

So, if such a point z where this thing happens, is called a point of, is a relative interior 

point. So, z is called relative interior point. Now, here instead of this straight line if I take 

this square, so it is a two dimensional set, no longer a one dimension set in or two. Here 

it is two dimensional set, if this is my c what is the affine hull. So, affine hull or a f f is 

denoted as a f f c, like con c Convex hull a f f c is affine hull. The affine hull of the set c 

in this particular case is nothing, but whole space R 2. So, what happens here is the 

following, is that once you dimension goes down, when you are a low dimension set, but 

in a high dimension space, your affine hull is a also lower dimension, and those are the 

sets where you do not have the interior, but you have to something like a relative interior. 

So, very important result in Convex analysis following. 
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Every Convex Set has a relative interior; set has a non-empty relative interior. Relative 

interior is nothing, but the collection of all relative interior points. So, this is a very 

important statement, because if you take any full dimension Convex Set, like three 



dimensional Convex Set in R 3, then it always has an interior and this fact is extreme 

importance to Convex optimization. This is what is call as status consent qualification 

which is of extremely fundamental importance to the study of optimality condition in 

Convex optimization, and because those optimality condition are used in a algorithm. So, 

they this whole factor in a very meaningful role. So, now we have fare idea about what is 

the Convex Set, the Convex hull, the affine hull, the very basic facts about Convex Sets. 

Let me just tell you a fact about Convex cone. How do you characterize a Convex cone. 

Let us go back to this whole issue of cone. Now, the Convex cone that you know, two 

important Convex cones that we have spoken about is R n plus and S n plus.  

Now, how do you characterize a Convex cone. A cone c is Convex iff and only iff, this is 

the short form iff at only iff, if and only if, for any x and y in c, x plus y is also in c, 

check it out with this. So, this is your home work to many home works today, what you 

need to figure out these simple things, to have a better idea. You take any points in R n 

plus. You see this point is also in R n plus, here of course, or demonstration as I always 

told you would be with n equal to 2, and of course you will take S n plus. So, if you take 

two element x and y, with x positive semi definite and y positive semi definite is a very 

simple fact or a very simple prove that this also p s d. So, with this basic fact we stop 

speaking about Convex Sets, and in tomorrow’s lecture we would view part two of this, 

we will speak about Convex functions. What I warned you that, we would really talk 

about Convex functions which are extended valued. Of course you know what is 

definition a Convex function and few important property, that every local minimum is a 

global minimize a Convex function over a Convex Set.  

But we have not yet considered with all important, the notion of Convex functions which 

are extended value, and we really have to do it and we have no other choice, because 

functions, Convex functions which naturally arise in optimization or of this nature, and 

we cannot say no to it. So, with this we stop today’s lecture, which was essentially on 

Convex Sets with their basic properties, next lecture would be on Convex functions and 

we would speak about them in part two of this lecture, and part three which would again 

will come back to Convex Sets, but it will essentially be a combination of Convex Sets 

and Convex function, which is of extremely fundamental thing of all separation of 

Convex Set, because as many mathematicians think that optimization theory is a long 

corolla you have separation theorem, possibly it is, but not exactly so. So, we would like 



to go into on the third lecture, this is the first part, second part and the third part is on 

separation of Convex Sets in which we will do some proves. 

 


