
Convex Optimization 
Prof. Joydeep Dutta 

Department of Mathematics and Statistics 
Indian Institute of Technology, Kanpur 

 
Lecture No. # 22 

  

Welcome to this course on convex optimization once again, and to this parallel little sub 

course which I am calling the pleasures of linear programming, because this is something 

which we can handle so well. And tell you a lot of things there is beautiful convex 

geometrical structures involved. So, in the last class or the last lecture we had shown that 

every BFS or basic feasible solution of a linear programming problem in a standard 

form, can be corresponded with a vertex; that is that corresponds to a vertex on the 

convex polyhedral and vice versa. 

Now, what we are going to show that. So, every vertex is corresponding to some BFS; 

what we are going to now show that, if I know beforehand that my original problem has 

a solution, has a lower bound - lower bound is immediately guaranteed by the feasibility 

of the dual which we had learnt by through weak duality, which we had learnt earlier. So, 

once I have a lower bound, I can prove that it is a solution, and that solution would be 

one of the vertices. But in order to prove such a fact, we need to know certain more facts; 

so, we recall certain things for example, we recall polyhedral sets. Polyhedral sets are 

very very important, because polyhedral sets are the basic structure of a linear problem, 

because a linear problem is nothing but minimization of a function, linear function over a 

polyhedral sets. 
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So, we come and have a recollection of the polyhedral sets. So, a polyhedral sets is 

intersection of the half spaces, and it could be bounded or it could be unbounded; it is 

bounded for example, here. So, any bounded polyhedral set which is also called a 

polytope, can we written as a convex hull of its vertices. So, you have v 1, v 2, v 3, V 4, 

v 5; in this case this is a convex hull of this five vertices. But if there could be 

unbounded polyhedral sets two which has a vertex, but this whole thing is not a convex 

hull of this vertex naturally. So, for example, R n plus is an unbounded polyhedral set.  

(Refer Slide Time: 02:50) 

 



Now, we will go into the notion of what is called a polyhedral cone. So, polyhedral cone 

C can be written as set of all x in R n such that a i x is less than equal to 0, there is b i is 

equal to 0. Polyhedral cone for example, is like this. If you take R 2, R 2 plus or R n 

plus; R 2 plus is a cone and is a poly hull is polyhedral at the same time. So, R 2 plus is 

an example of a polyhedral cone. Similarly, R n plus is also an example of a polyhedral 

cone. Now, you can easily prove that that set C is a cone prove. 

(No audio from 03:41 to 03:50) 

On the other hand, there is is an also an another definition which came up a literature; as 

a finitely generated cone. Let me just draw a few more polyhedral cones, and three d for 

example, if I take. 

(No audio from 04:09 to 04:17) 

 This is an example of polyhedral cone, because any point, you see these phases are the 

sides of the cone actually a hyper planes which are passing through 0. So, this is an 

example of polyhedral cone; this is the polyhedral cone of course, it is coming up like 

this. So, going up to infinity, but we do not bother about that in the drawing. But a very 

important cone like this, like the (( )) cone in three dimensions. 

(No audio from 04:48 to 05:00) 

Also called the second order cone; this cone sorry I had write it has a lorange cone l, as a 

huge impact in something call second order cone programming which will come later on. 

So, if I take l here, and the let me describe this it consists of all x 1, x 2, x 3 such that 

root of x 1 square plus x 2 square is less than x 3, where x 3 is greater than equal to 0. 

So, this is a non-polyhedral cone, because here I have quadratic inequality, not a linear 

inequality. So, it is not a polyhedral cone. So, this is non-polyhedral. In fact, the set of all 

positive semi definite matrices S n plus can be mapped in a natural way to this cone. 

So, in that way many problems which are actually semidefinite programming problem, 

can be posed as second order conic problem about which we will come in detail later 

when we study semidefinite programming. 

So, this is an example of a non-polyhedral cone, but if this be in a convex cone; if you 

look at any point in this polyhedral cone, you will observe that any point can be written 



as a positive linear combination of these 1, 2, 3 vectors right. So, these vector are 

essentially called the generator of the cone, and that lead to the definition of notion 

called finitely generated cone.  

(Refer Slide Time: 07:03) 

 

A cone C is finitely generated, if any element z in C can be written as z is equal to 

summation lambda i a i, say a where lambda i is greater than equal to 0, and a 1 to a m 

are given. So, this a 1 to a m this things are called generators of the cone. Now, 

interesting fact or a very very important fact in convex geometry is the following; a cone 

C is polyhedral, if and only if its finitely generated and that is the fascinating thing. 

(No audio from 08:00 to 08:13) 

Now, also I would like to recall, before you have very familiar notion of a cone 

generated by a set a, this consists of all the points x; such that x is equal to lambda z 

where z is an element of A, and sorry and lambda of course, is greater than equal to 0 

this called the cone generated by A. Of course, you can also define the convex cone 

generated by A. So, for example, if you take these two lines only, and call these two lines 

the union of these two lines has A, then you can these two lines these to fork is what is 

the cone generated by A. 

But the convex cone generated by A is the convex hull of the cone generated by A. So 

basically... So, I will say like this convex cone generated by generated by A. Now, if you 



take a full dimensional convex set like this; then you always bound to get a convex cone 

when any cone that is generated like this, any cone that is generated in this fashion has to 

be a convex cone. So, these notions are slightly different; and now why are we all doing 

this. Because once we have this idea, we would be able to make a interesting 

representation of any polyhedral set, and this representation can be carried over to the 

feasible set of a linear programming problem, and that would that would lead to what we 

want at the end. My next important interesting result is representation of polyhedral set. 

(No audio from 10:23 to 10:37) 
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Now, once I want to how do I represent it. The interesting fact is that any polyhedral set 

can be represented as the Victoria sum of two sets. One of them is a convex poly tope, 

and another is a finite regenerated cone. So, the cone takes in unbounded thing. So, when 

you are talking about just the polytope, then this cone is nothing but the 0 vector. So, if P 

is when we say P is a polyhedral set; obvious its convex which I am not writing. 

Polyhedral set then P can be written as P hat plus D. a P hat is a polytope which is 

another name for bounded for bounded polyhedral, and if this is a finitely generated 

cone.  

So, going back these a i are called generator of this cone. So, sometimes it is convenient 

to write finitely generated cone, as a cone generated by the vectors a 1 to a m, in could be 

any number it is not fix, some fix number. 



Now, which means that there would exist vectors v i from 1 to k, and d j say j from 1 to l 

such that P is the convex hull. So, any polytope can be represented as the convex hull of 

its vertices v 1 this opposite as k vertices, then v 1, v 2, v k plus the finitely generated 

cone; generated by the generator d 1, d 2, d l; this facts some of proofs (( )). Now, you 

might ask me what is the proof of this, we are not getting into the proof of this; because 

of to prove this, it would force us to prove the fact that every polyhedral cone is finitely 

generated and vice versa; which is a time taking process, and we will not getting to this, 

because again we have to remind you that those who are in mathematics they can go, and 

we can tell you a book which you can read. 

See if you want to know the prove, and the detail of this I will suggest you two books; 

Barwein and Lewis which I have already mentioned earlier, convex analysis and non-

linear optimization; and second book is foundations of optimization by Osman Guler 

recent one. 

(No audio from 14:01 to 14:13) 

 Now, this by springer, this also by springer. So, a publisher is springer; costly books by 

the way do not worry, none of them as Indian addition. So far so, you need to go to the 

libraries. 

Now, once I know this how can I use it, to prove what I intend to prove; that once a 

linear programming problem l p has a lower bound, this is just fascinating, it will always 

have a minimizer. Now, what I would do instead of the proof, I give you is due to Osman 

Guler from foundations of optimization, and I would like to state that the prove is given 

for a optimization - linear optimization problem in a much more different form than you 

have. So, what I have what Osman Guler has done is to consider a problem of this form. 

(No audio from 15:10 to 15:21) 
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He has not put in any restrictions on the variable. So that, the most general form with an 

inequality. So, I can write this again into an equivalent form, if each a i is a vector 

representing the roles of A, and i can write this as say A is same in m cross and matrix 

and all those things which you all know quite well. Now, we will assume for this 

particular problem l p 1 I am calling it, I do not know why I am calling it one, but just 

calling it one. So, l p 1 might be take this problem l p 1. So, let l p 1 have a lower bound. 

Now, look this set C here. 

(No audio from 16:27 to 16:42) 

This is the polyhedral set. 

(No audio from 16:44 to 16:51) 

Now, this very very important to understand that this set could be bounded could be 

unbounded; if its bounded its fine, if it is not bounded then we have to use the 

representation that we have just seen. Now, l p has a lower bound. So, let the lower 

bound is m which means that is C transpose x is less than equal to M, for all x in C; that 

is exactly what is the precise, one is the precise meaning of the lower bound.  

Now, if that is the case let me put now C by the previous result, this result can be 

decomposed in this way, I am just checking this decomposition. So, C can be written as 



convex hull of vertices v 1, v 2, v k plus the finitely generated cone generated by d 1, d 

2, d l. 

Now, once I know this what could I possibly do. So, if I take the convex hull of v 1. So, 

any element here, take any element z here, z in C z in C; this can be written as lambda i v 

i phi is equal to 1 to k plus mu i sorry mu j d j, j is equal to one to l; where your 

summation lambda i, i equal to 1 to k is 1, and lambda i is obliviously lying between one 

and 0 that is the convex combination and mu j is greater than equal to 0; for all j equal to 

1 to l. So, that is exactly what you want. So, any j can be represented there would be 

some lambda is some mu j is any lambda can be represented like this. Now, what would 

happen suppose, I take lambda equal to 1; say lambda one equal to one and put all the 

other lambdas to be 0. 

And I take some for some j. So, take a j and corresponding first take, corresponding to 

that j put mu j as some number, and put all the other mu j is to be 0. Then what from here 

what can I conclude that v 1, you could take any i also. So, I am just taking with v 1 

simplicity. v 1 plus t of d j; for all t and all j means every... So, what you do, you first 

take one j say say d 1 stay put. So, v 1 plus take any fixed t whatever you want, say v 1 

plus t of d 1 is element of C; v 1 plus t of d 2 is element of C n. So on. 

So, this is an element of C for all t bigger than equal to 0, and for all j is equal to all j 

running from 1 to l. So, this is simple just you have to note this representation, put their 

proper values, put here basically putting all lambda is equal to 0 except lambda 1 which 

you put 1, and here take any t whatever you want, take any j you want the remaining all 

you put puts to 0; and then then by this is of course, an element of C just by this 

representation. 
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Now, once I know this what can I do; now, because this in C by my very definition of 

bounded the bound m. 

(No audio from 21:09 to 21:11) 

So, this is what I have, what I would have this simply just go back and recollect this 

definition; this is the meaning of the lower bound. Now, I can write this as C of v 1 plus t 

times C of d j is bigger than equal to m. Now, as t tends to infinity; now let me see what 

would happen as t tends to infinity. Now, if C of d j if one of them is less than 0, 

negative and I can make t go towards infinity. So, there will be a minus component 

which will become bigger and bigger and bigger and bigger. 

So, finally, it will just over power this C v 1 and can go into completely into the minus 

domain. And can the value can continue to decrease the value of this will continue to go 

down, because C v 1 is fixed, and it can go just below m. So, as... So, as t tends to 

infinity, because of this bound; it would imply that C of d j has to be greater than equal 

to 0 for all j, this is what I have. Now, once I know this fact, I can look into the original 

problem in a slightly different way. So, I have this problem. So, I can now write this 

problem as following. 



Now, I have any x, any x here, is belonging to this set which I have an any element in 

this particular set C is represented like this. So, I can have that L P 1 can be equivalently 

written as. 

(No audio from 23:16 to 23:38) 

This where subject to of course, lambda i greater than equal to 0 for I equal to 1 to k, mu 

j is greater than equal to 0 for j equal to 1 to l, and the summation that must be equal to 

one. So, the problem L P 1 can be equivalently written like this. Now, knowing that this 

is greater than equal to 0, what should I get; I should get the following. I should get, 

because if what is happening is the following; and if you look at this, to this quantity 

lambda i C i we have added a positive quantity, non-negative quantity. So, this quantity 

is actually bigger than the previous term. 

(Refer Slide Time: 24:22) 

 

So, which means that summation i is equal to 1 to k lambda i C v i plus summation j is 

equal to 1 to l mu j C d j, because now this is the non-negative quantity; then if I add 

some non-negative quantity to a given number, I actually increase that number. So, this 

whole thing must be bigger than summation i is equal to 1 to k lambda i C v i. Now, I 

will allow ask you to prove the following, show as homework the following, show as 

homework the following the minimum value obtained by solving this problem. 

(No audio from 25:40 to 26:14) 



So, this minimizing this is same as minimizing very important, you have to minimize on 

two variables. So, here observe the minima here is transform from x to this two variable 

lambda if’s, and mu if’s lambda in r k plus lambda in r k and this is in r l. So, basically 

we are changing over from minimization on x to minimization on this multipliers. So, 

just let me oh my god… 

So now, what I can prove, because of this fact; and because of this is greater than equal 

to 0. Then, this thing is nothing but… 

(No audio from 26:58 to 27:16) 

Now, this is quite intuitive, because this quantity is nothing but this quantity with putting 

mu j is equal to 0 here. So, I can always put mu j is equal to 0, because mu j is greater 

than is equal to 0 it is your choice whether you put it equal to 0 or greater than equal to 0 

it is up to you. Now, hence whatever way we try the functional value has to be always 

bigger than this, and which is also one of the functional values. So, the minimum 

achieved by minimizing this functional values will be obviously less than this one. 

So, but again the fact that we are minimizing over this objective would actually bring in 

this; it is just a simple writing down thing, using this put the minima on both sides then 

noting that; that minima of this has to be less than, the minima of this has to be less than 

this. For whatever lambda i this has to be less than equal to this. So, the minima of this 

have to be less than equal to this for whatever lambda i. So, you can minimize. So, you 

get inequality, but so, I will not do this work for you, your supposed to do this equality.  

First note, once I have this I can operate minima on lambda mu minima on lambda mu 

here mu is irrelevant. So, minima of this is bigger than the minima of this fine. But now, 

for whatever lambda mu you take the minima over this the indium value is less than 

equal to the infimum value of this is less than equal to this, because this is nothing but a 

particular feasible choice lambda if’s, some lambda if’s and mu joss are all 0. 

So, minimum value of this is; obviously, less than this. The minimum value exists 

indium exists, because we are assumed the lower bound of L P 1. So, but then for 

whatever lambda I choose combination, the minimum value of this is always less than 

this. So, the minimum of a lambda is always bigger than the minimum over this, and 

hence these two are equal which is absolutely simple. Now, the question is noting that 



summation lambda equal to 1, show as homework this is nothing but minimum of C v i, i 

is equal to 1, 2. So, you are this is exactly linear programming’s game, that you are 

computing the objective function value at the vertex and taking the minimum one. So, 

show this equality as homework. 

You see just try it out; it is going to be fun. And you would see that mathematics really 

works, and that is why it is so beautiful. So, what I have proved that the minimum value 

of L P 1, because now here I have only finite number of them m. So, one of the C v i 

values say C v j is the minimum; say this value is equal to C v j say or C v; say let me 

take C v r - for some r element of 1 to m which is; obviously, true just you have finite 

number of finite some few numbers, you have to choose the minimum; we will choose 

the minimum. 

So, what happen the minimum of L P 1 which is this is obtained at this, is actually this 

value where v r is nothing but a vertex. So, for an L P. So, for L P 1. So, in general I am 

writing for or L P problem or L P in the standard form. So, for an L P optima or the 

minima in this case is obtained at the vertex, obtained at a vertex. 

Now, these vertices these vertices v 1, v r these are also elements of the set C, but these 

are these are vertices of a polyhedral cone. So, actually what how do you represent the 

polyhedral set; basically, you take the vertex of the polyhedral sets, and make a you take 

the vertex of the polyhedral and make a polytope; taking the convex hull. And then add 

to it the finitely generated cone. So, these are actually vertices of the original polyhedral 

naturally; these are actually vertices of the original polyhedral. So, once you know this. 

So, for an L P optimum or the minimum is obtained at a vertex, and thus every optimum 

or every minimum is a b f s by the previous stage result.  

Now, before I end this today’s lecture, and after the next lecture we will start with the 

simple method which we will do in more of the non-linear programming style; now, 

what I have done - I have proved this fact for L P 1. Now, I have something more to tell 

you, can you prove this fact for L P, prove the above result for L P for the standard form. 

So, here L P is the setting of C would change is the same thing, you just do not have to 

worry about homework’s, small modifications are needed which you should try to carry 

out, because it be fun and may be a good idea is that; this when you take this, these 

actually are vertices of C, and can you prove that these are actually vertices of C. 



So, prove proving this to be vertices of C is not a very bad idea; that actually works that. 

These are not just some arbitrary points you have taken which are vertices of this 

polyhedral, but this is also they are also vertices of C. So, I can show that you cannot 

have two elements which are different from each other, and whose convex combination 

with lambda between 0 and 1, would give you v 1 or v 2 or v 3 or v k. So, that is 

something very very important. 

So, if that is so, then they are those things are all equal. So, that can be done quite quite 

easily quite quite easily. So, let us not get too much about with that, but it is a good idea 

to try it out that, these are also actually vertices of set C. So, we have proved quite bit 

stuff today and tomorrow’s class or the next class would be on the simplest method. So, 

with this I would like to end today’s lecture, and because if I want to start simplex 

method, we will get into too much complications today; and we would not be able to 

finish the foundation, because foundations of simplex method or quite, heavy to lay 

down. And unless I do it start, and complete it is meaningless to just start and leave it off 

for today. 

So, it will be good if we start in a separate lecture. So, what we have now is quite a broad 

view of optimization; you have learned about lagrange multipliers, saddle point 

conditions duality theory, convex analysis as well as a focus on as as well as, what we 

are doing now focusing on the most important class of problems; the semidefinite 

programming problem and the linear programming problem. 

Semidefinite programming problem is so, so powerful which are extremely important 

applications at present, into into understanding quadratic programming, non convex 

quadratic problems in understanding polynomial optimization problems; so, we would 

thus focus ourselves on these two classes of problems, that would lead us to much better 

understanding a modern convex optimization theory, because modern convex 

optimization theory is essentially, the story of semidefinite programming; though they 

are many many other things which like bundle methods and all those things. 

So, whatever we find time, we will try to push into in these forty lectures. One can think 

of an advance state of lecture later on, but let us just concentrate on these two important 

aspects, and do them in detail. So, that especially the engineering people here, who are 

listening to this lecture should know that L P, and semidefinite programming (( )) SDP or 



semidefinite programming per say is extremely important from the point of view of 

applications in engineering; extremely important. I think, so is important on my part to 

really concentrate on these two aspects of the subject. Thank you very much. 

 


