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As we had said in the last lecture, today we are going to talk about certain basic facts 

about convex optimization itself that is we are going to discuss today. The minimization 

of a convex function f, subject to x belonging to a convex set c. So, this is what I call a 

convex function, and this is what I call a convex set. 

Now, of course, the question is what is the convex function and what is the convex set. 

Now, before I start the full fledged discussion, let me tell you that, I would like to show 

you a book, which I think everybody should have a look at it. This book is called 

optimization Insights and applications written by Jan Brinkhuis and Vladimir 

Tikhomirov, and I have spoken about a book called stories about maximum minimum 

written by Vladimir Tikhomirov. This book is a fabulous book whether you want to do 

convex optimization or even a non convex one, has a huge amount of insight. It is 

published by Princeton University press in the Princeton freeze in applied mathematics, a 

quite a recent publication and it is just a mind blowing read in. In fact, it is something 

everybody who wants to do anything with optimization should have a copy in their desk. 



So, going back we will first define what is the convex set. Simply, put convex set means 

that if I take a set in generally in R n, but as always we will look into the pictures in R 2 

and take two points x and y in this set, any two points and join them by a line segment, 

and this line segment should also remain inside the set. Now, if you look at this set 

whatever points you take, whenever you join them they remain inside this set. You take a 

set like this. I take a point here, I take a point here, I tried to join it, that goes outside or 

set like this, it is more clear if I take these two points and I join them, a part of the line 

segment is outside the set. So, this set is convex, these two are non convex. If you look at 

your own body, your human body; the human body is non convex, because if you take a 

point here I take a point here you join them, it is completely outside the body. So, human 

body is non convex thing, is a non convex set. 

Now, how do I formulize this definition that if I join any pair of points by a line segment, 

the line segment has to be in the same and that is that sort of set is called the convex set. 

So, to begin with I will talk about the given any two points x and y in R n, the definition 

of a line segment. The line segment is usually denoted as with this symbol, is the set of 

all z, which is expressed as lambda times y into 1 minus lambda times x, where lambda 

is a number between 0 and 1. So, it means if I take this two points x and y, and if I put 

lambda equal to 0 here, I am getting x and if I put lambda equal to 1 I am getting y. So, 

as I vary lambda from 0 to 1, we move along this line from x to y. So, it is clear that this 

is nothing, but the simple geometric line segment that we know. So, even when you are 

talking about two points in three dimensional spaces, we are talking about this line 

segment. 
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Now, formally a convex set is a set, such that for any x y in the set x y and segment is 

also a subset of the set. So, this is just the thing in English language which you now 

understand very well. Now, what is the convex function. a convex function can be 

defined from R n to R, or it can be defined from a set, convex of set C to R where c is a 

subset of R n and is convex. Now, the most original or the most or I would say the 

earliest definition of a convex function was due to Jensen, W B Jensen, and Jensen gave 

this definition which says that, if we consider from R n to R or even from C to R, so f of 

lambda y plus 1 minus lambda x. See this is very well defined if you take a convex set c 

and y in x 2 elements of c, then lambda y plus 2 elements of C then lambda y plus 1 

minus lambda x, whenever lambda is written 0 and 1 is elemental c. So, this functional 

operation is well defined this has to be less than lambda times f y plus 1 minus lambda 

times f x, for all x y in R n or C and lambda in 0 1. 

This is the definition of Jensen, but much more modern definition can be given in terms 

of epigraph. Epigraph over a function f is everything that lies above the graph. So, if this 

is the function f and this is the graph then epigraph is the dotted portion along with the 

outer curve, anything above the graph is called the epigraph. So, this is the epi f, 

epigraph of f. So, the epigraph of f which we denote as epi f, is the collection of all 

elements x alpha, where x is in R n and alpha is in R; such that f of x must be less than or 

equal to alpha, which is very clear from the diagram.  
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Now, what you can prove is that a function is convex, if and only if its epigraph is 

convex. Now, proving this is a simple fact, because you look at this function whose 

epigraph is convex, and you can prove that this definition satisfies the definition that we 

had given on this page. So, going ahead that we tried to prove that if f is convex then 

epigraph of f is convex. So, let us assume that f is convex, now you considered two 

elements x 1 alpha 1 and x 2 alpha 2 from the epigraph of f both of them. Now, if you 

make a combination lambda x 1 alpha 1 plus 1 minus lambda x 2 alpha 2, where lambda 

is some number between 0 and 1, then this just means lambda x 1 plus 1 minus lambda 

of x 2 comma lambda time’s alpha 1 plus 1 minus lambda time’s alpha 2. 

So, I have said that epigraph of f is convex, now since f is convex I have to prove that 

epigraph of x is convex. Now convexity of f tells me that lambda x 1 plus 1 minus 

lambda x 2 is less than lambda f of x 1 plus 1 minus lambda f of x 2, you must remember 

1 thing if a lambda is attached here your f x 1 lambda gets attached to f x 1, if 1 minus 

lambda with x 2, 1 minus lambda on this side gets attached to f x 2 , but since x 1 alpha 1 

is in epigraph, f of x 1 is less than alpha 1, and since x 2 and alpha 2 is in the epigraph, f 

x 2 is less than alpha 2. So, which means that f of this would imply that f of lambda x 1 

plus 1 minus lambda x 2 is less than equal to lambda alpha 1 plus 1 minus lambda alpha 

2, by the very definition of epigraph, go back once again, check the definition look at this 

definition f x is less than equal to alpha, all such x alpha for which this occurs. So, this is 

an x, this is an alpha, this is in R n and this is R, and then this would imply that lambda x 



1 plus 1 minus lambda x 2, lambda alpha 1 plus 1 minus lambda alpha 2, this is in the 

epigraph. So, I have taken two arbitrary elements from the epigraph and showed that 

their convex combination lies in the epigraph, which proves that epi f is convex, or is a 

convex set to be more precise. 
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Now, suppose I want to go back and prove that given epi f is convex, then f is convex. 

Now, by the definition of epigraph if you take two points x 1, then x 1 and x 2, x 1 f x 1 

and x 2 f x 2, both these points are in the epigraph, they belong to the epigraph of f, both 

of these two points are in the epigraph, and you know that epigraph f is given to be 

convex. So, which means that for all lambda, you take between 0 and 1; for all lambda 

between 0 and 1, lambda x 1 plus 1 minus lambda x 2, lambda f x 1 plus 1 minus lambda 

f x 2 is in the epi f. Again, by the definition of epi f it simply means that epi f of lambda 

x 1 plus 1 minus lambda x 2 is less than lambda times f x 1 plus 1 minus lambda times f 

x 2. So, in many cases the modern definition of convex functions are given in this way 

that, a function is a convex function if the epigraph is convex set. So, here we go back to 

the user definition of a convex function, I just rub this to make it  

Now, let me tell you about the text from which you would be able to know convex c t or 

convex analysis at its best. So, I would refer to the most legendary and classical text in 

this area called convex analysis. It was published by Princeton University in 1970 and it 

was republished in 1994 as Princeton landmarks in mathematics, and this is by one of the 



famous mathematicians in this area Ralph Tyrrell Rockefeller, whose name is almost 

synonymous with convex analysis. So, anybody who is an optimization student, who is a 

graduate student in optimization should have this book with him, and as a my own 

researcher in optimization that even if I am stuck with some difficult in convex analysis 

in my research, I just have to go to the book of Rockefeller hang around for few hours, 

and the answer you can actually figure out the answer. 

So, that is the power of this book. Now, let me tell you one thing is that, this book is not 

a book which has to be had from cover to cover, no mathematics books are actually, they 

are not story books that you read from cover to cover. You can follow if you read the 

places where you want, but this book specifically is not a cover to cover book as written 

by the author himself in the preface, that you really to this book is something which is to 

help you when you are in trouble, but this is book is a must for all optimization 

researches and graduate students in optimization, I would write here strongly 

recommended. Now, if you look into this book, I will just digress of it. I understand that 

here I have a diverse audience as I realized, whether I had said in the last lecture, because 

of this diverse audience. I would like to reduce a bit rigger that is required to do the 

mathematics of the subject, but however to give the taste or what convex analysis is or 

convexity is, we need to go away and understand the idea of an extended value function. 

If you go and open this book convex analysis, in the very first chapters dealing with 

convex functions 

(Refer Slide Time: 17: 00) 

 



You will see that Rockefeller speaks about convex functions which are defined from R n 

to R bar, where R bar is R union, the two infinities; minus infinity and plus infinity, it 

looks strange, but this is called the extended real line. Now, why you need to speak about 

extended real line, the reason is essentially as follows; you will realize as we go on that 

the unconstraint problems where there are no restriction on the decision variables, such 

problems are much more easy to tackle, then the problems which have restricted on the 

decision variable, like we saw last in the last lecture. So, how do I theoretically convert a 

problem, which is a problem with restrictions on the variable to a problem which does 

not have restriction in the variable.  

To do this if you look at the problem that we are dealing with minimize f x, x element of 

c, then this is a constant problem. This has a restriction that x is expressed to C then 

considered this function, which takes the value f x when x is in C, and takes the value 

plus infinity when x is not in C. Though, you might find it bit difficult in the beginning 

to appreciate this, but those who know some optimization has read, they have an 

exposure to under graduate non-linear optimization. They would realize possibly that this 

is what is called a penalization, that if you violate the constant I impose infinite penalty 

on you theoretically, and this is nothing, but theoretical model of the penalty function 

method which is quite a method in solving constant optimization problems.  

So, this f naught if f is convex, then this f naught is an extended convex function, but 

when you define extended convex functions you have to have certain rules on infinity 

and minus infinity. So, we will not get in to all this at this moment, we will come into the 

rules as and when required. So, when we will study convex functions and convex sets in 

detail we will start from tomorrow, we will go into a bit of this issues. So, that even if 

you get in to this books like convex analysis or further books that I will say, you will be 

comfortable enough to handle this things. So, now let me get back straight into the 

modeling of this problem. 
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Now, this problem which we will start referring to as C P, where f is a convex function 

and C is the convex set, is called an abstract version of the convex optimization problem 

f, because though f has a representation C does not have a representation. This is a 

convex function and this is a convex set. Now, let me tell you very simple thing is that, 

the set C in most applications is represented as a set of all inequalities usually, that all 

these g i s are themselves a convex functions. This is the standard thing, you might ask 

me what about equalities, equality constants are quite well known to you possibly in 

calculus, when you learned Lagrange multiplier rule you talk about the quality constant. 

So, where is your equality constant. Let me talk about a set C.  

So, I talk about this set c hat, and then I talk about in naught 2, so that you visualize it, x 

y naught 2 such that x square plus y square minus 1 is equal to 0. So, if you look at this, 

this is a convex function, and then if you try to sketch this set, this set is nothing, but this 

1 only the circle nothing inside, only the circular ring, but then if you take a point here 

and take a point and join it, except these two point the whole line is outside the circular 

ring this is not a convex one. So, if you put convex equalities here you are not going to 

get in general convex set. So, what happens, what sort of equalities you need to put in. 

The equality constants that need to be put in to have a convex set at the end has to have a 

particular form, they are of this particular form, they are called affine function. So, they 

are usually written in this form for a given a. 



So, this is in R n and this is in R. So, a linear function plus a translation, for it is a 

translation over linear function. So, basically linear function you see, this is the linear 

function y equal to x, any linear function has to pass through 0 in naught 2, and then you 

just translate it down. So, this is or this or that which you want to translate it that. So, this 

is an affine function, this affine function need not be linear, but every linear function; 

obviously, is affine. Every affine function is a convex function, because you can just 

figure it out when you do not have to really too much work in figure in this out. Now, if 

you additionally define a set C, set of all x such that, of course x is in R n, I do not have 

to tell you repeatedly, g i x is less than equal to 0 for all i from 1 to m, and h j x is equal 

to 0 for all j from 1 to k, where this is convex and this is affine, then this set C is a 

convex set, and that is what we essentially want at the end of the day. Now, let me go 

back to straight to the optimization issue. 
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What I want to show you now, is that every local minimum that is the convex program C 

P, convex programming the term why I am calling it a program, as a historical basis, but 

I will tell you that history later on, but let me just go in and do the math, that every local 

minimum is global. There is as no global minimum, every local minimum is a global 

minimum. So, if I take the problem C P and consider a local minimum x bar to be a local 

minimum, if I considered x bar to be a local minimum what I am supposed to do, it 

means that there must exist a delta greater than 0; such that for every x which is in the 



ball center at x bar of radius delta, and whose points also line see that, this set the 

intersection of C and B delta x bar, for all such x f of x is bigger than f of x bar.  

Now, this is my convex set, let this may this x bar my local minimum, what I have 

showed that, there is at there must be by definition, there must be a very bad drawing, 

delta and for any points in this intersection. This is a set C, for any points in this 

intersection f x is bigger than f x bar, this is the definition of a local minimum. Now, you 

take any arbitrary point y in this set C. Take any arbitrary y, now join this y with x bar. 

Now, if I am supposed to do. So, if I am to join spelling does not look very nice it is j o i 

n. Now let me construct the line segment, so any point on the line segment connecting y 

and x bar can be written as lambda y plus 1 minus lambda x bar, which means when 

lambda is 1 I have y, when lambda is 0 I have x, x bar. So, that means, there is lambda is 

equal to 1 and that is lambda is equal to 0. So, when I am moving dropping the value of 

lambda from 1 to 0, I am actually moving along these line segments.  

So, as I move along this line segment I will come to this threshold point, whose lambda 

is say lambda naught which cause most to Z, corresponding Z naught corresponding to 

lambda naught y plus 1 minus lambda naught x bar. If, I reduce the value of lambda from 

lambda naught, all the points lye in this line. So, what I can say is that there exist a 

lambda naught, element of element of the interval 0 1; such that for all lambda between 0 

and lambda naught or Z lambda Z defined by the lambda, lambda y plus 1 minus lambda 

x bar. So, now, I am considering only those lambdas which are lying in this interval, this 

must be in b delta x bar intersection C, this is clear from the geometry here from the 

picture here. Now, once I know this what would I have that f of z lambda is bigger than f 

of x bar. Now, which means f of x bar is less than f of z lambda means f of lambda y plus 

1 minus lambda x bar, but now this lambda is still lying between 0 and 1. So, by 

definition it is lambda f of y plus 1 minus lambda f of x bar.  

Now, if you do the manipulations f x bar cuts out from here, and because lambda is some 

quantity between 0 and 1 which excludes 0 and x excludes one. So, lambda is the 

positive quantity I can divide both sides by lambda, because this f x f x cancel off to get 

0 on this side. I would simple have this fact, it would imply that f of y is bigger than 

equal to f x bar. Now, you observed that y was just an arbitrary element; y was just an 

arbitrarily taken element in c. It need not be inside this, it could be in either else. So, for 

any arbitrary y I have been able to prove that f of y is greater than equal to f of x bar. So, 



it is true for all y in c thus proving that x bar is a local, not just a local minimum, it is a 

global minimum of the function f over the set C and thus it shows that for a convex 

function every local minimum is global, and you must have observed that here we have 

not bothered about the different ability of the convex function, we are not really caring 

whether the function is differentiable or not, and this fact is a very important fact and you 

will see how important it is as we come on and as we proceed along and study more 

about convex optimization. 

So, we have just learned about the very important fact that for convex problem every 

local minimum is global. So, this fact is very fundamental, and you will see how it helps 

us in rest of the talk, but it is very important as I have already mentioned that this class of 

problems convex optimization problems which have huge applications. Now, instead of 

going into specific applications, because that would be talking about domains which are 

not my domain rather than, basically if I am talking about, say problem in electrical 

engineering or problem in mechanical engineering, there are lot of problems which can 

be modeled as the problem C P. Now, instead of that let us look into some of the most 

important forms of convex optimization problems, and these forms, these are the classes 

which has played a major role in application, because these are the classes of problems 

which appear repeatedly in applications. 
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So, one of the most important class of problems is the one which is possibly known to 

many of the viewer’s viewing this talk, is the class of linear programming problems. In 

this class of problems, you seek to minimize a linear function, say linear function you 

have only this part you do not have a translation. Every linear function can be expressed 

as inner product which is a very simple fact from linear algebra, and I am just assuming 

that everybody knows what is the definition of a linear functioning, in case you do not, 

you can take any function from R n to R, this function is said to be linear, if these two 

properties hold; first is the property of antiquity that f of x plus y is same as f x plus f y, 

and the second property is homogeneity that if I take any real number lambda and scale 

of this vector, scale up or scale down and this is same as lambda f x where lambda is in 

R. So, this is the definition of a linear function, also you minimize this subject to linear 

constraints, also in most practical problems there is a requirement that, all the x is are 

greater than equal to 0. Now, of course this is the convex optimization problem, because 

I can pose this as. So, here I have m inequality constants and also some other group of 

inequality constraints n inequality constraints, which are heard as minus x i or x 

whatever it is j you want, so the m plus n constraints. So, you can actually put this thing, 

put this a i x minus b i this whole thing inflammatory form 
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And you can write this as here when I am writing less than equal to 0, I am meaning that 

the component every component of this vector is less than equal to 0, and then I can also 

similarly write it like this or even equivalently write this as. So, what is this matrix a, this 



matrix a is a matrix whose rows are the vectors a 1 transpose dot a m transpose, this is 

actually the matrix a. Now, what you can do is you can actually add an additional slag 

variable, that is you can add an additional S and you can get a equality. So, the standard 

form of a linear programming problem is to minimize c x subject to, this is called the l p 

in standard form, and all linear programming book study this problem. We will have a 

scope to talk about this problem in detail, more from a convex optimization prospective. 

Of course, this is the sub class optimization.  

The interesting part of this problem you see all these are nothing, but this is clubbing 

together of a class of affine functions and this is of course, minus each x i is a convex 

function, because minus x i itself is an affine function, linear function rather. So, this is 

you see, there are convex inequalities and affine equality. So, this visible set is a convex 

set. The set c which is in this case set of all x in R n such that, A x is equal to b and x is 

greater than equal to 0 component wise, then this set is a convex set. Now, this problem 

is interesting in the fact that this linear function has to be always minimized over a 

constraint set, you cannot minimize it over, just the whole R n, for example if you take 

the whole real line R, and you look at the constant function f x equal to x. These are 

linear function, but it does not have maximum nor has a minimum.  

So, it is unbounded on the whole real line, unless you would say a constraint. Suppose, 

you restrict variables about this interval, then you know this is the minimum point, this is 

the maximum point, this point where minimum is achieved, this is the point, but 

maximum is achieved. So, the linear programming problem is essentially a convex 

problem which is a constraint problem, you have to have some restrictions like the set c. 

This problem linear programming problem was first studied during the time, and during 

that time it was a air force which had given certain problems to a team lead by George 

Danzig in the U S in the rand corporation, and they modeled those problems as linear 

programming problems, the type of problems that we had seen, so Dantzig was yet not 

sure what to call this problems, what name to be given to this problem.  

So, one day he was walking with the famous economist T C Koopmans, and then he said 

you know all this problems have come out, they have all problems have to minimize near 

function under some linear or affine constants, and Koopmans said you see this is what 

you are doing, this is the program of air force and you are trying to solve their problems, 

you solved a part of their programs, so why do not you call as the linear programming. 



So, it became this term became came to invoke linear programming which had, then 

translated into in general optimization finite dimension is also known as mathematical 

programming, which lately has been now called mathematical optimization. 
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So, another important class of convex optimization problems is a class of quadratic 

optimization problem under affine constraints that is minimized. of course a is again just 

before like in the last one, this a you can easy understand this in m cross in matrix, when 

we were studying linear programming it is taken to be a full rank, but that is really not 

necessary when you discuss a theory. So, A is again in m cross m matrix and b is; 

obviously, R m which I do not have to tell you. Now, this problem is a Quadratic 

problem, you see there is a quadratic form here where this is the matrix defining the 

Quadratic from. This function, this part only, is a convex function that is if you take just 

this part. Then this is convex if Q is positive semi definite, positive semi definite 

matrices are true generalizations of non negative real numbers, that is if Q satisfies this 

condition and this is convex function.  

Now, if you take two convex functions; f 1 and f 2, and if you add them, they remain to 

be a convex function. So, this is a convex function, because this point is affine function 

and you have added it to a convex function. So, this becomes convex. So, if you want to 

have a convex programming problem, then you have to assume that Q is positive semi 

definite p s d is the short form of our positive semi definite used everywhere in the 



world. So, this problem is called a convex Quadratic optimization problem under linear 

constraints. It is a very important class of problems, because for example, in the 

sequential Quadratic programming method, this problem is the class of sub problems that 

is solved, and these classes of problems are repeatedly solved. So, trying to solve this 

problem is a very important thing to do.  

So, our problem is called Quadratic problem and affine constant or linear constants, 

Quadratic convex problem with the affine constants. Now, these problems where always 

studied in the 60s and early seventies, and convex optimization was people was thinking 

that was almost going to end. It was the time of eighties or nineties for the rise of non 

convex optimization with people talking about (( )) function and trying to handle them, 

but they soon realize possibly that it is not so easy game to handle on convexity. Then 

came in the horizon in a class of optimization problem which completely change the 

phase of optimization, and till date they remain it to be a thriving area of research, and it 

has again brought back convex optimization to the central and core or rather into heart of 

optimization theory and current optimization research. 
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So, what I am going to now talk to you is some class of problems, called Semi definite 

Programming problems. On the phase of it when I write it down, it would look as if I 

have just copied the linear programming problem into a scenario, where my decision 

variables are no longer vectors, but matrices. So, we will start by considering the space S 



n of all n cross n symmetric matrices. Of course, you know of symmetric matrices of the 

one whose cross the elements A i j is equal to A j i. Now, if you take the class of all 

square matrix, n cross n square matrix. If you stack up, if you take the first column and 

then stack up the second column below, third column below the second column and so 

on, if you stack up all the n columns. So, you will get vector which is having n square 

components.  

So, which means every matrix; n cross n matrix corresponds to some element in R n 

cross n. Now, this class where you have this matching between a i j and a j i, is actually 

isomorphic not to R n cross n, but to a sub space of that, which is R n into n plus 1 by 2. I 

will not take of the fun; I would let you try to figure this out. Now, S n plus is a set of all 

matrix A in S n. See, this is also finite dimension space, because it is isomorphic to this 

R n into n plus 1 by 2, this is actually the dimension of S n actually. So, A element of S n 

such that a is a positive Semi definite matrix is a p s d matrix. So, S n plus this set is the 

collection of positive semi definite matrices. So, if a is positive Semi definite, it is often 

written like this. This is called the lowered ordering. Now, let me go back again to this 

linear programming part. 
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Now, when I am writing x greater than 0, what is the set it is representing. It is the set of 

all x in R n, such that all the corresponding components excise, each of the components 

is greater than equal to 0. This set is called R n plus, and you might observe, because 



positive Semi definite matrices are actually generalizing non negative real numbers. We 

have given the symbol S n n plus quite in harmony with R n plus. Now, once I know this, 

I am in a finite dimensional space you might ask me what is the inner product between 

two symmetric matrices. 
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So, if I take a symmetric matrix x, another the symmetric matrix y, what is the inner 

product between two symmetric matrices. This is trace of x transpose y, but for 

symmetric matrix x transpose is equal to x. So, this is equal to trace of x y.  
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Now, what would I do, you will see I will write down a problem like this minimize C X, 

where C is; obviously, in S n and then take all the a is in S n and X is obviously in S n. 

So, all this a is are in S n and i is obviously from 1 to m. So, I am just (()) the linear 

program, and x is either I write it like this or in this lowered ordering form, just I have 

written x greater than 0 in the linear case I have written like this. I can write it like this or 

this whatever same thing. So, this problem is called a Semi definite programming 

problem, ultimately the decision variable has to be a p s d matrix Semi definite 

programming problem. You might ask the question what a big deal, we have just 

changed the space from the space of vectors we are in spaces matrixes. Is this is a linear 

program in the problem in the space of matrix, but symmetric matrixes. 

But, the answer is no, in general a Semi definite programming problem is not a linear 

programming problem. Why it is not a linear programming problem is a question that we 

can only give and learn something more about convex sets that we will start doing 

tomorrow, and we will show that this is not a linear programming problem, but a convex 

programming problem in general. So, thus this class of problems cannot be handle by the 

methods of linear programming like simplest method, and it new set of methods has to 

be developed for them, and the Semi definite programming problems are now showing 

great power in solving a class of problems called polynomial optimization problems, 

which are actually very difficult n p R non convex optimization problems, and they are 

showing great power in very far in order to solve such problem, these things are showing 

great power in order to get approximate solution very fast.  

The powers of these problems are very lately coming up and they are coming up in many 

applications, there are commercial software’s now to solve this class of problems. So, it 

is very important for us that in this set of lectures in convex optimization, we will spend 

a little part with Semi definite programming problem. So, with this basic introduction 

about convex optimization, about the very basic facts, about convex functions minimize 

over convex set, that every local minimum has to be global, and telling you some three 

important classes of convex optimization problem; first is the linear programming 

problem, second is the quadratic optimization problem with linear constraints, and third 

is a very important modern class of convex optimization problem; the Semi definite 

programming problem. 



So, if you want to know more about these classes of problems, I would suggest you a 

book called lectures on modern convex optimization by Bental and Nemirovsky, it is 

probably by SIAM society for industrial and applied mathematics. So, with this very 

basic introduction to convex optimization, that is what the title of the talk says today 

what is convex optimization. I stop here, but let me tell you this is the mathematicians 

point of view or lecturing, I have not given concrete examples, I cannot claim to be 

expert in each and every different discipline, but if you look into these books, this book 

in particular you will see the lot of important engineering applications in this book, 

which can be modeled as either linear problem or a quadratic problem or Semi definite 

programming problem. So, than you very much. Goodnight. 


