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Good evening viewers, once again we are back to this course on convex optimization.  
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Yesterday if you had remembered, we had just spoken about these facts that we have 

proved, what is called the Rockefeller Pschenichery condition, which is a necessary and 

sufficient optimality condition for a convex function f to be minimized over convex f c. 

Of course we have we have proved that this is necessary and the sufficiency is left as a 

homework to you, which you can do; today we are going to go back a bit more, and use 

this power of the convex calculus, that is how we will see, how we can exploit the max 

function. We had spoken yesterday about the max function, if I you can just go back 

here. 
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Here, we have spoken about the sub differential of a max function, where each of the 

individual f’s, which make up the max function that is max of f i x, f i x, that is this f 1 x, 

f 2 x, f m x each are convex and differentiable; and this function f is also convex, which 

is already well known, which we have spoken earlier. Then the sub differential, just a 

moment, is this.  
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So, today we are going to see that if I have to minimize a convex function f x over x 

element of c, but this time my c is defined by inequality constraints, and each of this 



constrains are themselves convex. So, I assume that this is - f is convex and 

differentiable and g i (x) are also convex and differentiable. Let me assume that this has a 

minimum, let x bar so this is my convex programming problem CP, and let x bar solve 

CP. So, x bar is feasible that it satisfies all g i x bar is less than 0 and for every x, which 

satisfies this constraints f of x is bigger than f x bar that is the meaning of x bar solves 

CP in the global sense of course, for a convex problem there is no local minimum. 

Of course, you can convince yourself that this set C, which is the feasible set of the 

programs of the programming problem CP is a convex set; once I know that all the 

function g i is the convex. In fact, it is also a close set, because each of the g i’s are 

defined from R n to R, and any function defined from R n to R is any convex function 

defined from R n to R is a continuous function. Now, so what information I have about 

this is convex and closed; now, once I know this facts, then I look into a following 

problem. So, if x bar is solving this problem CP, then x bar also solves mean f (x), 

subject to x element of R n, where F capital F of x is the convex function given by max 

of f (x) minus f x bar g 1 (x) g m (x), you can try out again as a homework to prove this 

fact that whenever x bar solves this problem x bar will solve this problem. Now, of 

course, all of these are convex functions. So, capital F is a convex function. So, as 

homework you figure out is F continuous and why? 
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Now once I know this, I can immediately write down the optimality condition that 0 

belongs to del of F of x bar; now F is a max function, then I can calculate the optimality 

conditions by applying the calculus rule for max functions. Now, once I know this, what 

shall happen; how do I now calculate the J x bar; set corresponding to F, so 

corresponding to my function F, how do I calculate the index set J x bar; in order to do 

so, I look into this fact that consider all index i, let us consider all index consider i, which 

belongs to any one of this indexes such that g i x bar is equal to 0. 

So, if you take some i, which for which this is satisfied, these constraints are called 

constraints, which are activate x bar. So, this would imply one important phenomena, 

important thing that I will collect corresponding to x bar, all the indexes I belonging to 

this index set that is this is one among the constraint indexes such that g i x bar. Now, if 

you look at this function, if I put F x equal to F x bar, this becomes 0; and for all the 

active indexes that is for all I belonging to the I x bar, I would immediately have g i x bar 

are also equal to 0.  

So, when x is equal to x bar and for all other x is g i (x) is strictly less than 0. So, f of x 

bar is actually is 0. So, this is something have to be very carefully noting down that F of 

x bar is actually 0, and this 0 is achieved at this point right, which I can write as g 0 if 

you want g 0 (x). So, this consists of J (x) consists of the index 0 as well as the active 

index set corresponding to x bar. So, J x bar consists of the index 0, union I x bar z, 

which is this. Once I know j x bar and I knowing that all these are differentiable, I know 

that 0 element of del F x bar, which is equal to the convex (( )) of grad of f x bar, this 

particular set union grad of g i x bar such that i is belonging to I x bar. So, which means 

you have to… So, 0 must be an element of the convex (( )) of these elements of these 

sets. So, there would exists some lambda naught, lambda 1, lambda 2 dot, dot lambda m, 

all non-negative that is all greater than or equal to 0; such that you have 0 equals to 

lambda naught grad of f x bar plus summation i belonging to I x bar lambda i not I i I 

here I should not put lambda 1 lambda 2 lambda m here I should put lambda i with i 

belonging to I x bar that is my correct sense lambda i grad g i x bar. 

Now, let us set lambda i is equal to 0, if i is not in I x bar, that is whenever g i x bar is 

equal to 0, lambda i would be equal to 0. So, now, I can write bringing this fact in a 

much simpler way. So, I can now put in lambda is to be 0, I can just put 0, 0, 0 for all the 

i s, which are not in I x bar, but then I have to account for this behavior of lambda i. So, 



there must be some additional condition that lambda is such that lambda i into g i x bar 

would be equal to 0. 
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So, these would lead to following condition that lambda naught grad f x bar plus lambda 

1 grad; so, we have two conditions now grad g 1 x bar. So, I cannot just arbitrary say that 

all the lambda corresponding to lambda i is corresponding to g i x bar strictly less than 0 

is 0; once I have assumed that to give this full expression, then automatically a condition 

arises and that condition is at lambda i times, g i x bar is equal to 0 that is both of them 

cannot have strict inequality at the same time that is this cannot be strictly greater than 0 

this cannot be strictly less than 0, this fact has to be always maintained by the Lagrangian 

multipliers or the Kuhn-Tucker multiplier has will soon call them. 

But if you observe here, there is also one important thing, which we have not stated; now 

these lambda naught lambda are elements form a convex (( )). So, an important thing that 

one should have stated here was that lambda naught plus summation i element of I x bar 

lambda i is equal to 1. So, basically 0 belongs to the convex (( )) set, which comes from 

the max function. Now, what does this mean? Each of them are greater than equal to 0, 

their sum is equal to 1. So, all of them cannot be 0 at the same time. So, for an of course, 

i not element of I x bar, we have taken everything to be 0. So, what I would also have the 

third condition is that the vector lambda naught, lambda 1, lambda m is not a 0 vector; 

this is a very, very important condition and the condition that you get here is called the 



Fritz John condition or the John condition; Fritz John conditions or the just the John 

conditions. 

So, Fritz John presented his condition where back in 1948 and he submitted it to the (( )) 

channel of mathematics, which was rejected and then published in conference 

proceeding, later on Karush-Kuhn-Tucker condition or the Kuhn-Tucker condition came 

from here in 1951. Now, let me assume something additional, which I have not assumed 

earlier, let me assume this fact that this set C, the feasible set has an interior. So, this is 

my additional restriction, why I want to put this additional restriction? Note that I have 

said lambda naught, lambda 1, lambda m, the whole vector is not equal to 0; but I did not 

say that lambda naught need not be 0; lambda naught could be 0; and if lambda naught is 

0, then we are in a very, very bad situation that we have a problem where lambda naught 

is 0 and grad f, which is gradient of the objective function it place no role in the 

computation, as a result of which things might not turn out as it as you want to want it to. 

So, the representation of f goes immediately from the optimality condition, which is not 

a fair thing. So, Kuhn and Tucker in 1951 impose certain conditions, which are not now 

called the Kuhn-Tucker condition qualification, which we are not going to (( )), but an 

important assumption was given in 1952 by Slater - Slater condition, which says C has 

an interior the feasible set, which means there would exists an x hat. 

So here, why this condition is imposed; that condition is imposed to stop lambda not 

from becoming 0. So, in the John conditions, which is this three set of three conditions; 

lambda naught could become 0, stopping the representation of f from the expression in f 

from the optimality conditions in order to stop that, that is in order not to make the 

optimality conditions look abnormal, you have this additional restrictions to stop lambda 

naught for becoming 0. So, interiority means there exists in x hat in R n such that g i of x 

hat; now once I know this let me make an assumption like this; and I will then show that 

lambda naught cannot be 0. 

Now, let lambda naught p equal to 0; even if Slater condition holds; now once you do 

this, when once would lambda naught is 0, you will have lambda 1 grad g 1 x bar plus 

lambda m grad g m x bar is equal to 0. Now, observe that lambda 1, lambda 2, lambda m 

cannot be all 0, because lambda naught is 0, so one of the one of the among the, this 

vector is non-zero. So, if lambda naught is 0, so the non-zero vector, non-zero 



component must lie among lambda 1 to lambda m. Now, we know that whenever i is not 

in I x bar, lambda i’s are anyways 0.  

So, I can write this as lambda i times gradient of g i x bar. So, i element of I x bar you 

see, because lambda since lambda i is equal to 0, for i not in I x bar, it would imply that 

this is equal to 0. Now, the non-zero components must lie among these i belonging to I x 

bar, because when i is not in I x bar anyway lambda is 0. So, we have lambda naught 0 

and all these are lambda is 0. So, remaining part the non-zero component must appear. 

So, there is a nonzero component here. 
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Now, how can I use the Slater condition? Let us see; now for any i element of I x bar, g i 

x bar is strictly less than 0; now look at the convexity equation, when functions are 

differential and look at this for this particular pair x hat in x bar, x hat is the point where 

the Slater condition is actually getting satisfied. So, this is bigger than gradient of g i x 

bar, x hat minus x bar. Now, g i x bar is for sorry I made a mistake; when g i is i is in I x 

bar g i x bar is equal to 0. So, g i x bar is 0, g i x hat is… So, what remains here in this 

expression; now g i x hat is strictly less than 0. So, what I get from the above is gradient 

of g i x bar x hat minus x bar is strictly less than 0, for all i element of I x bar. 

Now, among these elements, there is one lambda, which is non-zero at least to 1. So, if I 

multiply by that lambda with the corresponding, this corresponding that g i x hat minus x 

bar that would also remain to be a strictly negative quantity. So, that would imply in 



general, when a multiply by the lambda for lambda i for each corresponding I in sum up 

what I will get is summation lambda i gradient of g i x bar i element of I x bar x hat 

minus x bar is strictly less than 0. This is in contradiction with the fact that here I have 

this is equal to 0. So, if I take inner product with any vector, if I take the inner product of 

any vector with the 0 vector that will give me 0; so, but if I put this condition as the 

condition A, but from condition A we have, so here is a contradiction, here is a 

contradiction. Now, once you have this contradiction, so you declare that your initial 

hypothesis that lambda naught, lambda 0 is 0 is wrong and so, we conclude that lambda 

naught is strictly greater than 0. 

(Refer Slide Time: 21:30) 

 

So, now I have this equation lambda naught, grad f x bar plus lambda 1, this is called the 

Lagrange equation on the KKT equation, that is I know that lambda naught is strictly 

greater than 0; so, I can divide both sides by lambda naught. 

(No audio from 21:54 to 22:32) 

 So I will call lambda i by lambda naught has lambda i bar. So, what I have proved that if 

Slater cq holds and this is of course, greater than equal to 0, because each of them is 

greater than equal to 0, these greater than 0; if Slater condition holds, there exists lambda 

i bar greater than equal to 0, i from 1 to m such that number one, grad of f of x bar plus 

lambda 1 bar grad g 1 x bar lambda m bar grad g m x bar is equal to 0, and number two 

is lambda i bar g i x bar is equal to 0 for all i.  



Now, this third condition in the Fritz John one, this is no longer required, because 

lambda naught I have proved to be strictly greater than 0. So, lambda naught lambda 

naught is basically one. So, Fritz John KKT condition is Fritz John condition with 

lambda not equal to 1 under so this holds, if you have some additional condition. So, 

what we have got here is the famous Karush-Kuhn-Tucker condition, it now goes by the 

name of Karush-Kuhn-Tucker condition. So, I think one of the first papers who possibly 

gave this name Karush-Kuhn-Tucker condition was the paper, which was called the 

modern multiplier rules which appeared in 1980 1980 or 81 in the American main 

mathematical monthly is called modern multiplier rules; by B. H Pourciao, American 

Math Monthly, it is beautiful (( )) and its says that though Kuhn and Tucker have 

independently derived this condition. 

So, this was known to Karush, who a back in the mid end end of the 30s, early 40s I 

guess. So, now it is called the Karush-Kuhn-Tucker conditions or the KKT condition; it 

became famous in the 1951, seminar 1951 paper by Kuhn and Tucker, Harold W Kuhn 

and Albert W Tucker both from Springsteen; it is very important to remember that even 

if Karush had this ideas slightly ahead that does not diminish the value or the worth of 

the Karush-Kuhn-Tucker of the of the KKT condition on this paper by kuhn and tucker, 

because kuhn and tucker in that paper demonstrates with example why example where 

lambda naught become 0, and they did it even for just differentiable function, they found 

the necessary condition, not as we have done for convex functions, and they did not talk 

about Slater condition, which came slightly later; they spoke about a general geometrical 

optimality condition, geometrical constraint qualification or condition on the constraints, 

which is called the Kuhn-Tucker constraint qualification.  

And furthermore this famous paper had also given results for multi objective 

optimization and that is also very important. So, this paper has a huge worth in 

optimization community, as Professor Harold Kuhn once told me that once he was inside 

a conference, trying to he was told to introduce Professor Tucker and he said I am Kuhn 

and he is Tucker and that is all everybody knows what it is. 

So, now what we have got here is a necessary condition that he have given me a solution 

x bar and I have showed the condition that x bar should satisfied provided the Slater 

condition holds, we will approach arrive at this condition through various routes. So, 

there many, many different paths to the Karush-Kuhn-Tucker condition and you can 



immediately understand that 2011 was the 60 years of KKT condition. (No audio from 

27:06 to 27:18) Now, when the functions are convex, the question is this also necessary 

that is if there is an x bar and if there is some lambda bar, which satisfies all this is my I 

know, whether that x bar is actually a global minimum, answer turns out to be yes and let 

us see, how to do it. 
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Look at look at the definition of a convex function, when they are differentiable; now we 

have f x minus f x bar and this is of course, you know take any x in the feasible set, in C; 

now take for any I, for all i g i x minus say take the same x, g i x bar is again for each i. 

Now, you can multiply by lambda i, because lambda i is greater than equal to 0. So, there 

is no harm in multiplying this set by lambda i, and then once you multiply by lambda 

you add this inequalities what you will get is. (No audio from 28:33 to 28:56) So, I am 

multiplying by lambda i bar sorry summation lambda i bar grad g i x bar i element sorry i 

is equal to 1 to m, i is equal to 1 to m x minus x bar. 

Now, let us just apply these conditions. So, you know from this condition it is immediate 

that this right right hand side is 0, because this 0. So, what I have is f x minus f x bar plus 

summation lambda i bar g i x, so minus summation lambda i bar g i x bar, this is greater 

than equal to 0, and if you observe this second condition, which is called the 

complementary slackness condition, this is called the complementary slackness, which 

says that both of them cannot be slack at the same time, that is lambda i cannot be strictly 



greater than 0, and g i x also cannot be strictly less than 0 at the same time, both of them 

can be 0 at the same time, but both of them cannot be having strict inequalities at the 

same time. 

So, now this is 0, from this condition; condition 2, this part is 0. So, what I will have is f 

x minus f x bar taking this thing to the other side, now as x is in C that it is feasible, g i x 

is less than equal to 0 for all i; this would imply, because lambda i is bigger than 0, i is 

equal to 1 to m lambda i bar g i x is less than equal to 0, but I have put a minus sign. So, 

what I would finally get is that this is greater than equal to 0. So, this would imply for all 

x in C, because x was an arbitrary element in C, f x minus f x bar is greater than equal to 

0, showing that x bar is indeed a minimum. 

 


