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Today we are going to start this exciting journey on a subject call Convex Optimization. 

Convex Optimization involves, the Minimization of a convex function subject to a 

convex set C. Now, of course this is a very special class of optimization problems. This 

class is special and why it is important to applications, and why good algorithms can be 

constructed about it, that would be essentially the matter of this course. So, we would 

now like to refresh our knowledge about Maxima and Minima. 
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So, in doing so we will go back to high school once again, and we will concentrate on a 

function say from R to R, and let us see what we have learnt in high school and let us see 

what we mean by minimum (()). Of course, this minimum minimum is clearly 

understood, because A point x bar of R is called a minimum, if f of x is bigger than f of x 

bar for every x in R. So, you see here, let us draw a diagram to show you one such 

example. So, this function f x is a parabola, x square where you can see at x equal to 0, 

the function reaches a minimum, this function f x is the absolute value of x, and at this 

point x bar equal to 0, this also achieves the minimum. Both of these two functions, 

though we have not defined convex functions yet are also convex functions.  
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But, this is not the only part of the story, because one has to remember that I can give 

you a function, where this might not always be true. For example, let me look into this 

function, this function is nice continuous, but here I pull it down. So, this function 

becomes unbounded below. So, there is no lower bound. So, we cannot really speak 

about a global minimum or the minimum the as the way we had defined earlier. So, the 

question now arises, can anything be extracted from this picture, if you look at this 

picture carefully, look at this point x bar, if I want to call it x bar, look at this range.  

So, for all x which is bigger than x tilde here, f of x is bigger than f of x bar, this x bar is 

not really the global minimum, but then it could be helpful in many other ways and we 

call such an x bar a local minimum, more clearly if I want to define a local minimum, 

then let us do it in a more eluded fashion, point x bar in R is called a local minimum. 

Local minimum of f over R, if there exists delta greater than 0, such that f of x is bigger 

in value then f of x bar, for every x, this is the mathematics symbol for all, the what for 

all is symbolize like this, for all x in the open interval x bar minus delta to x bar plus 

delta. For all x in this open interval excluding these 2 points, x bar minus delta and x bar 

plus delta.  
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Now, this definition is there, and I would request you to look into this interesting thing, 

where I have a function which does not have either a local Minima or a local Maxima. It, 

is both unbounded below and above, this function f x is equal to x cube; this function 

does not have a local Minima, a local Maxima nothing, in fact nor global Minima nor 

global maxima. Of course you might be ask me I have been using the term local Maxima 

without defining it, but you can define local Maxima in the way I have defined local 

Minima or and global Maxima, in the way I have defined global maxima, but there are 

certain function which can be both unbounded below unbounded above and does not 

have any such things like local or global maxima. Once we have said this, let us observe 

on little fact that f from R to R that we have defined, is minimized or maximized over R. 

Can these maximization and minimization be done if we restrict this function over a 

subset. Answer is very simple, but before I go into anything else, let me tell you in the 

whole course we would be essentially talking about minimization of a function, because 

minimizing a function f x over x belonging to R is same as, taking the maximum of the 

negative and then take a Maxima again, to take a Maxima over the negative and then 

take a negative again to get the minimum. So, it is enough to speak about the minimum, 

once you talk about the minimum you can also talk about maximum. Now, let me tell 

you something interesting in the sense that, let us look back again at this function, f x 

equal to x square. So, if I talk about this class of functions f x equal to x square, then 0 

was the minimum over all over, but now let me say, let me pose you the problem of 



minimizing this function f x equal to x square over x restricted say to with the interval 1 

2. So, basically now you can easily see the minimum value here is achieved at x equal to 

1, actually is a global minimum. 
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 Now let us do a thing, let us go back look at again at this function f x equal to x cube, 

and if I restrict, if I call for minimizing f x equal to x cube, over the same interval 1 2. 

You will immediately see that the minimum is achieved. In fact, the global minimum is 

achieved at x equal to one. So, it clearly shows that the same problem which did not have 

a global Maxima, global Minima, local Maxima and local Minima has a global minimum 

at x equal to 1, and has a global maximum at x equal to 2. So, the whole problem 

paradigm changes once you add certain restrictions on the variables, such restrictions are 

called constrains, restrictions on the variable are called constrains. So, with this very 

basic idea, we will now expand our dimensions in the sense that, we will now look at the 

problem of minimizing a function f over x in R n. Of course, you know R n, the n 

dimensional Euclidean’s phase is a collection of vectors x, where x is represented 

through a n duple of n numbers, or other coordinates of n numbers where each of this x i 

belongs to real numbers set, there is each of the x are real numbers.  

R n as you know is an important phase and is equipped with inner product. So, it takes 

any x in R n, and any y in R n. This inner product is defined as follows, that is you take 

the first component of x multiply it with the first component of y, and then take the 



second component of y multiply them, add them together and keep on doing so. So, this 

inner product is basically a generalization of multiplication of two real numbers. We 

must now go and try to define what is the meaning of a local Minima, you know what 

how to define a global Minima, need not stress this issue of global Minima, we need to 

define a local Minima for a function from R n to R, but before doing so we need to speak 

about the notion of Neighborhood in R n. 
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I understand that this course for this lecture are been followed by a wide category of 

people rather, it is not that it is just been observed by mathematicians or people 

interested in mathematical optimization. I believe that it is also seen my engineers and 

engineering students and people working in operation research, people working in 

industrial engineering. So, the idea here is not to be to mathematically correct, to say a 

neighborhood in R n we can say mathematically as follows that if I take a point x bar in 

R n, then any open set which contents x bar can is defined as neighborhood in R n. 

But instead of doing so we will be slightly not so rigorous, but for us largely 

neighborhood would mean the following ball. A ball of radius r centered at x bar, it’s 

consists of all z in R n, whose distance from x bar is strictly less than r. You might call 

suddenly I have given this signs and I am calling this as distance between x bar and z. 

Now, this distance, the distance of the point x from the origin of the phase R n is often 

written like this, and refer to as the norm of x, but this norm actually of point in R n 



actually means the distance of x from 0, so how the norm is defined. So, for our case 

what we defined would be called Euclidean norm or a two norm, in doing so how do we 

define Euclidean norm, and that is done again done through a inner product. 

Suppose, I take the inner product of x with respect to x, so this would become by 

definition, this is simply a repeated application of the Pythagorean theorem and that 

would lead to the definition of norm x, because you see this is nothing, but the distance 

of x from 0 calculated by the Pythagorean theorem, or celebrated to result in Euclidean 

geometry which everybody seeing this course would know, because it is start in the 

school level. Now, the very definition of the norm, because it is a length we cannot put 

plus minus root over, we just have to put the positive sign. So, the norm as every criteria 

of a distance, because certain properties of norm I want to write down. So, norm of x is 

equal to 0, if and only if x is the 0 vector, if you scale up the vector x, whether you 

scaling it up through a negative number or positive number the answer is, where the 

length of the new vector is the absolute value of lambda times the norm of x. And then 

there is a famous rule which says that the triangle inequality, which is based on the fact 

that some of two sides of triangle are always greater than the third, this is called the 

triangle inequality, it would be quiet helpful. Now, once I have this idea of distance from 

0, of course we can define the distance between 2 points x and z or x and y. 
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Distance, between x and y in R n is given as. So, once this is done, once you know this 

you can actually draw a ball. Now, let me take x bar equal to 0 and let me take R equal to 

1, this is sometimes call as the unit ball. So, how would it look like, and of course take R 

n to be R 2, basically I am taking n equal to 2. So, if you look at this picture. So, you 

have 0 and anything which is within the distance one, but it should not be exactly one. 

So, it is look at this circular path the circle. So, points on the circle and not in the 

neighborhood, because the neighborhood has to be an open set. I am assuming that you 

have some idea about open and close sets. Any point here, this dotted part apart from the 

boundary, this dotted part is what is called, sometimes just denoted as this bold B. 

So, this is called the unit ball. So, if you take any ball centered at any other x bar, it 

would look like this of any radius R. Of course, you can define the close ball which is 

define like this, which is the closure of the ball that we have defined, it will be set of all z 

such that z minus x bar, of course z is in R n less than or equal to what we means that we 

are now considering the boundary also, so then this whole thing would become this one. 

Now how do I go about defining a local minimum. 
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The definition of a local minimum go that is follows, a point, see we are now what is the 

neighborhood as such, neighborhood is nothing, but generalization of the notion of a 

interval, a open interval around a point, let like we have said x bar plus delta and x bar 

minus delta, is just the generalization of that in higher dimensional phase. A point x bar 



in R n is a local minimum of f, if there exists delta greater than 0, such that the functional 

value of x is bigger than the functional value at x bar for all x in the open ball centered at 

x of radius delta. Just remember when we write this, we always said this balls, this is a 

center of the ball. Now, once you know this, you could now come in write down the 

definition for a local Maxima. You can now try to write down the definition of a local 

minimum for a constrain problem that is now we put restrictions on x. So, you might ask 

me what is your convex optimization, whereas your convex functions etcetera all this 

things vanished. 

See, convex optimization sub class of optimization of problems are very important sub 

class, but; however, it is imperative on us that we have a look at the basic facts about 

Maxima and Minima, because without understanding this very basic things it is not 

really possible to go get in to the depth of convex optimization. Good news is that when 

we do convex optimization we need not think about local Minima, we just have to think 

about global Minima. Because the importance of convexity or convex optimization from 

the fact that whenever we minimize the convex function over convex set every local 

Minima is a global Minima, there is nothing called a local Minima in convex 

optimization and that is why the subject is so powerful, so important, so important in 

applications. Now, we go for local minimum for a constrained problem. So, here we are 

looking at the problem of minimizing f x over x element of sum S, where S is a subset of 

R n which could be hollow R n, it could be a proper subset and f as before a function 

from R n to R.  

So, you see these functions are always mapping an element in R n to R, because then we 

can actually do the comparison. Of course there is a wealth of literature, wealth of 

optimization which talks about minimization of functions when functions are defined 

from R n to say R m. So, that is the whole of a difference subject call vector optimization 

which we would not discuss. So, here what we do is, we have to observe that when we 

talk about local minimum, we need to restrict ourselves to the set S. Suppose, this is my 

set S, suppose this is not really the thing, because this is just an abstract discussion. So, 

interesting part of mathematics is that just by doing certain abstract discussions, you can 

do upon certain very important points immediately to the focus of the discussion. You 

see if this is my x bar and I want to say it is a local minimum; then obviously, you 

assured that for every x in the set S, f x bar need not be smaller than f x. 



So, what we do is, to show that there would be a ball of radius delta; such that for this 

intersection of the ball with S that is on this part, for every x in this part function value at 

x here would be bigger than f x bar, that is x bar is a local minimum if there exist delta 

greater than 0; such that for all x in the ball surrounding x bar of radius delta, that is 

centered at x bar and of radius delta, S and also in c. So, all x which is in the in this 

particular set which is intersection of B delta x bar and c, f of x goes over x bar. So, you 

now take the responsibility of defining local Maxima and global Maxima, global 

Maxima is obviously, any of this definition over all x belonging to R n. So, once these 

basic facts are known, let us go ahead and also this question.  
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How do we find a minimum. So, in order to find a minimum we must first know How 

does a minimum behave, at if I have A local minimum, does it has have some property, 

if it has some property does it allow us to compute easily such a point which satisfies the 

property. Then the point that we get is it really a minimum. So, the few steps in finding a 

minimum the first thing that we have to know, how does a minimum behave; that is, 

does it necessarily follow certain conditions. When we compute such a point which 

satisfies such a condition, the necessary condition, we cannot just declare it to be a 

minimum unless we have certain additional checks. Can we have additional checks on 

the point which satisfies the necessary condition, to determine whether it is actually a 

minimum or not, these lead us to certain questions. The questions are just given enough 

it is very difficult to say what sort of a condition, this minimum, local minimum or even 



the global one follow. So, what we want to say is that, if you put certain additional 

conditions on f, something more you know about f, it might help, one such condition is 

Differentiability. 
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Now, when we are talking about Differentiability, it is very very important to note the 

following, that here we are going to talk about Differentiability of a function from R n to 

R, but most of us are usually habituated in talking about the Differentiability of a 

function from R to r. Now, how do we manage by some intuition to move from the 

definition of a derivative from R to R, to a definition of a derivative in R n to R. So, let 

us just go back and for the time being consider the standard case of R to R, and the 

derivative of this function if that exists at x bar, is defined as a limit as h tends to 0, 

where h is the increment of x bar. Now, I can write this thing in slightly more compact 

way. I can say, that look I can just bring in here, because now this is the constant 

function it, the limit will have no effect on it. So, I can write down the whole thing as. 

This is very clear, this manipulation is simple and now observe one thing, that if this 

quantity when divided by h, and as h tends to 0 in the limit gives me 0; such a quantity is 

called the small 0 of h, that is f of x bar plus h, minus f x bar, minus f dash x bar h is 

called the small 0 of h, this is the called the small 0.  

So, in general the derivative for a function from R to R would satisfy this expression. 

Now, how do I generalize this idea to a function for from R n to R that is the question. 



So, it is all about generalizing this idea, now let me tell you that the very beginning, I am 

not been extremely rigorous, 1 can be extremely rigorous and defining gatho derivative 

and Fre’chet derivative, and doing lot of all the things and showing relations between 

them, but in straight of that, I preferred to go by the intuition and that would really help 

you have some fun, and really get an hang off the answer, before you have logically 

figured things out. So, that a bit of fun we can always do. Now, here I will go back just 

go back for second, I would generalize this part for this case. Instead of going back to a 

different page, let me generalize it from here, how do I generalize. Now, instead of h 

going to 0, because h would be now vector not a real number, I can just take the norm of 

h is going to 0, and then I have f of x bar plus h minus f of x bar, minus some vector v 

which we call the derivative of f at x bar. 

Now, here instead of multiplication here would be change to inner product, because 

multiplication is generalized as inner product in R n, a high dimensions. This divided by 

norm h. This limit should be equal to 0. This is the same thing where I am writing this is 

equal to 0. Now, let us note a certain thing, this v here is called the derivative of the 

function from R n to R. So, we have just generalized this fact, just put in here. So, you 

can also write it like this. You can also put f of x bar plus h, minus f of x bar are equal to 

f of x bar plus v h, plus small 0 of norm of h. So, you can say this is the definition that 

there must be a vector v which satisfies this condition, and that v is called the derivative 

of f at x bar. Now, how does f of x bar look like, so that is the very important question, f 

of x bar. 
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Now, the derivative of f at x bar which is v, how does it look like, it would be a small 

exercise for you to compute that this is a vector consisting of the partial derivatives, 

because there are n variables which we write, and that this partial derivative is evaluated 

at x bar, and this is given as the symbol gradient of f at x bar. These are standard thing 

known to most of us. So, this is what the derivative is, and more a precisely it is call the 

Frechet derivative. From more mathematical point of view Frechet derivative named 

after the French mathematician Morris Frechet. So, we will not get in to so much of 

details, but just for us this is what we would use as a derivative. So, here you can now 

replace v with grad of f of x bar. Now, let us show something; now if I have this 

definition of grad of f of x bar, can I say something about the local Minima if x bar is a 

local Minima. 

Now, let us look at local Minima, see every drawing has to be R 2, drawings cannot be in 

R 3 or R n, R 3 sometimes, but it quiet difficult to really get a hang off, because we are 

ourselves in 3 dimension phases, we can only visualize things in 3 dimensional phases, 

but it is better to visualize thing the we can much easily visualize things in 2 dimension. 

So, that is why most of this drawings where even when people draw abstract sets, in say 

bench phases or topological vector phases, they thing are in pictures in R 2 . So, was x 

bar is a local minimum, now you have open neighborhood delta, that is open ball; p delta 

x, such that for every x inside this f of x is bigger than f of x bar. Now, what does this 

mean, so this is your vector x bar. Now, take any direction w, now move a certain 



distance along the direction w from x, so that is x bar plus lambda w, but I can make 

such a small movement, so that I can remain I can make take lambda greater than 0 to be 

small, so that I can remain within this set. You can take it less than 0 and come this side 

also does not matter, because of the symmetry of the ball. So, let me take lambda greater 

than 0, whatever w I take I can always move in the direction w, because you see moving 

in a direction parallel. So, I am parallel to w. So, I can move belong the direction w from 

x bar, but I can choose my lambda, so small there I can still remain in the ball B delta x 

bar. So, this is my. 

So, what I can do is that, this thing can always be kept in B delta x bar, x bar plus lambda 

w. So, when I choose my lambda sufficient is small, I can always keep this x bar plus 

lambda w which is this point inside the ball. So, by definition of A local Minima f of x 

bar plus lambda w minus f x bar must be greater than equal to 0. But, then you must 

observe a fact that now I can apply the definition of differentiation, once I apply the 

definition of differentiation, I will have from here gradient of x bar, x bar plus lambda w 

minus x bar which will just leave me with lambda w, plus order small 0 of norm of 

lambda w, that is greater than equal to 0. So, this would imply gradient of f x bar, lambda 

w plus 0 of lambda. Now, you might ask me where did this w vanish. You see how does 

what are these 0 h functions, a small 0 h functions. So, small 0 h functions, suppose I 

have functions like this h square plus h. So, this is the small h function, because if I 

divide by h this becomes h into h plus, sorry I will just. So, take the function h square 

plus h cube. So, now, what I can do, I can take h and here keep h square. Now, if I divide 

by h and take limit as h tends to 0, this will go to 0, because here h will go to 0 and h 

square root go to 0. So, this is an 0 h quantity.  

Now, if you see if I make multiply this by lambda here, 0 h, 0 lambda h here, I will have 

lambda square h square and lambda cube h cube. So, I can just take the lambda out in the 

similar fashion and divide by lambda and take lambda to 0, and get the same answer. So, 

instead of writing whenever you have lambda multiplied with a vector, it is same as 

writing the as if order quantity is same as the order quantity of lambda. So, you can 

always do this trick. Now, what I do because lambda is strictly bigger than 0, I can 

divide by lambda to get this condition. Now, I will take lambda going to 0 from the 

positive side, because lambda is positive. This is modern day symbolism lambda going 

down arrow 0. Now, this quantity by the very definition will vanish will go to 0 as we 



take the limit. So, as lambda tends to 0 we have. Now, you must note that, this thing that 

grad f x bar w is greater than equal to 0. But you should also note that this w was 

arbitrary, I could have taken any other w, I could have taken any other w, and I could 

have gone and have the same sort of argument and did the same calculations.  
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So, that would lead to the fact that, this is true every w you have in R n. So, now, I will 

put w equal to minus grad of f x bar. So, that would give me grad of f x bar minus grad 

of f x bar to be greater than equal to 0, but you see I can take the minus sign out just by 

the very definition of inner product, I can take the minus sign out. And then what you 

can do is that, you can now observe that this is, once you forget the minus here this is the 

inner product of x and x means not x and x 2 same vector. So, this by definition is the 

non-square of f x bar, this implies that grad of f x bar, but the distance is always non 

negative. Norm of x has to be non negative, because this the distance from 0. So, which 

means grad of f x bar square here, because it cannot be less than equal to 0, if it is less 

than equal to 0 the only option left is it has to be 0, and this would imply that grad of f x 

bar equal to 0, and this would imply grad of f x bar equal to 0, because norm of x equal 

to 0 if and only if x is equal to 0. So, grad of f x bar has to be the 0 vector.  
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And this is what is called the Necessary optimality condition or the Fermat’s Necessary 

optimality condition or the Fermat’s rule. So, if x bar is a local minimum, then. Now, one 

has to remember certain things here that this condition is a Necessary condition. I can 

show you a function like f x equal to x cube, whose derivative is 0 at a point, but that 

point is not A local minimum, because here if you observe if you calculate f dash 0, it is 

nothing, but 0 for this function. But, 0 is not a local or a global Minima. So, this 

condition is Necessary it is not always sufficient, but for some cases S if you take f x 

equal to x square. You see in this case when f x is x square, you have f dash 0 is equal to 

0, and 0 is the global minimum. So, if f is from R to R, it is left to you to decide what is 

this condition. This is the standard thing that you have learnt in school f dash high 

school, rather f dash x equal to 0.  

So, this condition is necessary this is very important, not sufficient. So, any point which 

satisfies this condition need not be a Minima. You have to put additional conditions to 

show that it is a minimum. Those conditions etcetera will not be as per say the discussion 

of our story, because for a convex case this condition becomes necessary and sufficient. 

So, tomorrow we are going to talk about convex functions and convex sets, and we shall 

show, we shall proof that f for a convex function every local minimum is global, and 

then show the certain additional property is which makes convexly important. So, with 

this very basic idea about Maxima Minima and the derivation of the necessary condition, 



and with the knowledge of the Differentiability of a function, we will stop our discussion 

for today, and tomorrow will start our discussion on convex optimization. 

So, before I go, I would say that you might ask me about some books to have a general 

idea about Maxima, Minima. The book that I would really prefer is a book call stories 

about maxima and minima by Vladimir M. Tikhomirov. Vladimir M. Tikhomirov is a 

great optimization theorist of Russian optimization theory; stories about maxima and 

minima published by A M S, now a cheaper addition is also available, but mind you need 

to have some sort of little mathematical maturity at least at the high school level to 

understand this book. 

So, thank you very much for your attention and we hope to continue tomorrow with 

convex optimization in proper thank you.  


