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So, let me now defined another entity that we need to consider various kinds of 

structures that a polyhedron can have. Now, here let me defined a direction of…, and I 

am doing it for a polyhedron direction of the polyhedron; and here I will do it for this 

particular one, so I will take it for the…, I will take up the polyhedron that corresponds 

to the feasible region of a linear programming problem that we defined in 3 which I have 

been calling as LPP 3. 

So, here you have Ax equal to b, x greater than or equal to 0, and of course, x belongs to 

R n, so this is my polyhedron in dimension; and we say that a vector d belonging to R n 

is said to be a direction of the above polyhedron; if Ad is equal to 0, Ax equal to b, so Ad 

must be 0, and d non-negative, all components of d are non-negative, and d satisfies the 

condition that Ad is 0, fine now you see what do we mean by this, the idea is the 

direction, the idea is that if I take any…. So, let x naught belongs to F, remember I am 

calling the feasible region, that means, all x which satisfies this condition and a non-



negative condition, the they are the collection of all these feasible solutions, I am 

referring to as F. 

So, if x naught belongs to F, then x naught plus lambda d belongs to F for all lambda 

non-negative, because if you take A of x naught plus lambda d, then A of x naught plus 

lambda Ad, but Ad is 0, so Ax naught will be equal to C, and since all components of d 

are non-negative lambda is something positive non-negative, all the components here 

also non-negative; that means, for any lambda positive, this is also feasible solution; and 

so, that means, that I can continue proceeding in the feasible region, because as lambda 

goes becomes higher and higher this vector also becomes of your length higher and 

higher, and so I continue to remain in the feasible region; and no matter what the value 

of lambda is, as long as it is non-negative, it is a positive number; so, this is the idea, that 

means, you can move in the feasible region along it direction. 

Now, of course, you can have your description of the polyhedron as less than or equal to 

b or greater than equal to b, or then this I will leave as an exercise for you to sit down; 

and of course, I will demonstrate through this particular example to show you the 

concept of direction and how do you go about a locating it fine. Now, see for example, if 

you have this polyhedron, so and then another thing is that if a polyhedron has a 

direction, then we it cannot be bounded. 
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So, what I am said trying to say is that, may be presence of a direction in a polyhedron 

implies that the search is not bounded, because I will not be able to find, since no m 

greater than 0 exists such that x naught plus lambda d norm is less than M for all lambda 

greater than 0, because you give me a M, I will choose a value of lambda higher then 

what it is now and then violate this inequality. 

So, this set is not bounded, so the presence of directions implies that your feasible region 

or your polyhedral is not bounded. So, let us look at this example here; now, since I do 

not have all equalities, of course, I could convert it to standard from, and then talk 

about…, but I want to demonstrate that how you can modify this definition and even you 

have when all the constraints are not inequality or of the quality type. 
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So, here that means, to find a direction for the given polyhedron d has to d which is d 1, 

d 2, d 3, remember I will write it as a row vector does not matter, but I understand it is a 

three tuple. So, d is given to find a direction for this, this should satisfy…; so, here it will 

be, for example, minus d 1 plus d 2 equal to 4, after this one it have to be d 1 minus 2d 2 

plus d 3 less than are equal to 0, sorry I am sorry this is 0, because obviously since I want 

this constraint to be satisfied for all values of lambda is less. 

So, if it is less than are equal to 0, this condition this can will remain feasible; so, just 

check it out for yourself, and then here it will be that d 3 is greater than are equal to 0, 



and of course d 1, d 2, d 3 are greater than 0. So I would like you to sit down and just 

make sure that this these conditions are enough to define a direction, that means, what 

you because I am assuming non-negativity, so all you need to verify is that. 

(Refer Slide Time: 07:30) 

 

For all values of lambda such a point for all values of non-negative values of lambda, 

this point will remain feasible, so please do this exercise for yourself; now, here you 

want to look at this and let see what will be the… 
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So, if you want me to let me draw the thing for you; so, this is 1, this 2, and this is 2, 

third axis when you have d in this this implies that d 2 is d 1; and so, here that gives you 

this thing here, this is the line d 2 equal to d 1; now, add these two, fine, because this one 

has given me d 1 is equal to d 2, I should have done it this way, no I do not need to write 

this yes so from here d 1 equal to d 2. 
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So, if you if you put d 1 as d 2, this gives you minus d 2 plus d 3 is less than or equal to 0 

right; so, this says that, d 3, this implies, d 3 is less than or equal to d 2; so, the set of 



directions that we have finally obtained is all d 1, d 2, d 3, where these components are 

non-negative, and d 1 is equal to d 2, and d 2 together are greater than or equal to d 3, so 

this is the set. 

And you see that I have marked with the arrow, the region in which any direction would 

satisfy this condition, and therefore this becomes a cone, you see it is a cone of all the 

directions with any vector lying in the direction in that arrow region would be direction 

for the set. And now, I am also talking about extreme directions just like we have the 

concept of the extreme points; so, here you see 1 1, 0 upon root would be unidirectional, 

it is also a direction, because see here d 3 becomes 0, and d 1 and d 2 both are 1, 

similarly because you can have d 2 and d 1 both greater than or equal to d 2. 

So, you can also have the direction 1, 1, 1 divided by root 3, and so I have marked those 

two directions; so, then any direction that they form the two sides, the extreme sides of 

the cone and any direction in this cone would be then near direction of the feasible 

region right; and so, I have shown you that you take a non-negative combination, and C 

1 proceed 2, C 1 plus C 2, C 2 and this would be because C 1 C 2 are non-negative; so, 

these can satisfy the condition that, d 1, the first component and the second component 

are the same, and they are greater than or equal to third component; therefore, you see 

that the feasible region that we were considering is not bounded, because they are 

directions in the feasible region 
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So, now, let us continue with some more results of the of the simple for the simplex 

algorithm, that means, I am trying to develop the theory; the thing is that, we have so 

far…; let me now say something about the geometry and the algebra that is running 

parallel; see I first define for the for the LPP 3 that I am calling, I had the problem as 

minimize c transpose x subject to Ax equal to b x greater than or equal to 0 right; so, I 

have defined your feasible region F as x belongs to R n implies that Ax is equal to b x 

greater than or equal to 0 and I call this this set of feasible regions; then I showed you 

that if f is non-empty, then it will always…, and then of course we define the concept of 

a basic feasible solution; and I showed you that if f is non-empty, it means if f has a 

feasible solution, and it always have a basic feasible solution. 

So, this basic feasible solution came through the idea of selecting m linearly independent 

columns here, then we will call that as a basis, and then I put the remaining variables as 

0, and I solve the reduced system, and I got A so this was a completely algebraic 

concept. Then I have also been looking at F as polyhedron F as a polyhedron, because F 

is being described as intersection of finite number of hyper planes and finite number of 

half spaces, so this becomes a polyhedron; and then I have defined an extreme point of F 

also, because F is a polyhedron. 

So, what I am trying to say is that, on one hand we talked of basic feasible solutions that 

form part of the feasible solutions which are collected in F, and then I have also looked 

upon F as a polyhedron, and then we have the notion of an extreme point of F. Now, in 

the result that we are going to prove shortly; I want to show you that these two notions 

even though they have been defined separately are actually one and the same, that 

means, a basic let me write down this theorem here, I am not going into the technicalities 

of you know, because if you define a polyhedron, then you talk of a dimension, so here 

of course since these are all equalities, so the dimension of this polyhedron particular is n 

minus m, because I am assuming that rank A is m. 

So, therefore, the dimension of f is as a polyhedron is n minus m, and so what one can 

have a representation for F in which you only require n minus m variables, but we are 

not discussing that here; my basic idea is that, you want to show you that this concept of 

basic feasible solution and an extreme point are one and the same, so theorem is that, a 

corresponding to basic feasible solution x bar belonging to F there is an extreme point. 



Now, actually, again I should not be saying that, there is an extreme point, a basic 

feasible solution is an extreme point, and vice-versa, basically this what you want to 

show; so, corresponding to a basic feasible solution x bar belonging to f, there is an 

extreme point. 

So, when I see there is an extreme point, that means, when I am looking upon F is a 

polyhedron may be in a smaller dimension, the corresponding dimension of F, so 

corresponding to a basic feasible solution x bar belonging to F, there is an extreme point, 

and vice- versa; maybe I should rewrite the theorem. Essentially, what I want to say is 

that, if and only if it is an extreme point, so maybe you will allow me to rewrite the 

theorem, I will just erase this x bar belonging to F is a basic feasible solution of F, if and 

only if it is an extreme point, it is an extreme point of F. 

This is a better way of what I going to say, what I said earlier is also correct, but then we 

would have to be more technical, so I want to just give you the basic result here, that is x 

bar is a basic feasible solution of F, if and only of it is an extreme point of F; start 

moving the theorem I will of course take the definitions here, if you look at the proof. 
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So, x bar is a basic feasible solution; so, I consider x bar belonging to F is basic feasible 

solution, this and this implies that, Ax bar is equal to b, x bar greater than or equal to 0; 



and sigma A i X i bar i varying from 1 to r is equal to b, where after where after 

renumbering the columns of A I have made the first r variables as the positive ones. 

So, x bar is a basic feasible solution, it may be degenerate, I do not know; but so, what 

we are saying is that, if the r components of x bar are positive, then I renumber my 

columns as I have been saying it earlier, I renumber the columns, and the first r columns 

when correspond to the positive components of x bar; suppose, x bar is not an extreme 

point, this implies, there exist x 1 and x 2 belonging to F, such that, x bar can be written 

as lambda x 1 plus 1 minus lambda x 2 for 0 less than or equal to lambda less than or 

equal to 1. 

See, my definition of an extreme point is that, it cannot be expressed as a convex 

combination of any other two points of the set, so I start with the basic feasible solution, 

then I am saying that suppose it is not an extreme point, then I must able to find two 

points x 1 and x 2 in F, such that, x bar can be expressed as a convex combination of 

these two points right fine. 

Now, the thing is that x i bar is 0 for i varying from r plus 1 to n; remember, I have 

renumbered the columns and the variables, so my first r components of x bar are 

positive, the remaining and n minus r are 0s, which means that x bar i is 0 for i varying 

from r plus 1 to n. Now, since lambda is greater than or equal to 0, x 1 and x 2 are also 

non-negative, what do you get from this equation; you see this is 0 here for a for any 

component of x bar, which is after from r plus 1 to n, for any such component here if you 

become this component wise sum. 

So, here everything is non-negative. So, when can this equation be satisfied, this will be 

satisfied, this implies that, x 1 i equal to x 2 i are 0 for i for i varying from r plus 1 to n, 

that means, the last n minus r components of x 1 and x 2 must also be 0, otherwise this 

equation will not be satisfied. 
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We are starting with the assumption that x bar is not an extreme point, so I can find x 1 

and x 2 such that x bar is expressible as a convex combination of these two points; but 

then since the last n minus r components of x bar i are 0, it implies that the last n minus r 

components of x 1 and x 2 must also be 0 right; therefore, B x bar B - we are referring to 

the first r components - is equal to B x 1 B is equal to B x to b is equal to b, because both 

x 1 and x 2 are solutions to your…, they are in the feasible region, so they must be 

satisfying this these equations, the last n minus r components of x 1 and x 2 are 0. 

So, this system reduces to B x B bar, where B is the basis, where b is the…, there is a 

little problem here in the sense that B I am assuming only r components positive, so let 

say that we have extended the basis, where B is the extended basis is the extended basis 

for x bar. I have explain this concept also to you that if you have a set of linear 

independent columns which is less than the basis size, then you can always add few more 

columns to it, that it so that it becomes a basis; so, b is the extended basis; so, then I have 

this equation which implies that x B 1 is equal to B inverse b is x B 2, and this is equal to 

x B bar right; and since the last n minus r components of the three vectors are the same. 

So, this implies is that, x 1 equal to x 2 is equal to x bar, and so our assumption that x bar 

is not an extreme point fails right, because I have shown you that if you start with this 

assumption, then you have no choice but to say that it, but to conclude that x 1 and x 2 to 



have to be x bar, so therefore x bar cannot be an extreme point; so, I stated with the basic 

feasible solution, and I have shown you that x bar also has to be an extreme point. 
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So, now, we have do the other way which I started writing earlier; now, the if part, that is 

if x bar is an extreme point of maybe I draw a line here an extreme point of F, it is also a 

basic feasible solution. Now, here we will say that x bar is an extreme point, and I will 

again say the same thing that…, so x bar is an extreme point, and it is in F, therefore Ax 

bar is b x bar is greater than or equal to 0. 

And suppose, x bar is not a basic feasible solution, and remember our definition of a 

basic feasible solution is that the columns corresponding to the positive variables in a 

feasible solution, if they are linearly independent, then I can always call it a basic 

feasible solution. So, suppose, x bar is not a basic feasible solution, this implies that, 

summation y i A i i varying from 1 to r is 0. 

So, here again I am assuming that, I have renumbered the column just as there; so, the 

first r columns correspond to the positive components of x bar, and so the corresponding 

column are linearly dependent right, this all y i(s) are 0; let me sum, then I do the same 

trick, I multiply this by theta and add here. 
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So, if you write this in expanded form it will be A 1 x 1 bar and so on; so, without 

working out the details, so I will say that 1, and this is 2, so 1 plus theta into 2 imply that 

summation x i bar plus theta y i A i i varying from 1 to r is equal to b; see I am trying to 

show you I am trying to…, so here the idea would be abstracted with the assumption that 

x bar is an extreme point; and now, I want to show that it is an basic feasible solution. 

So, I will try to show you that, if x bar is an extreme point, then x bar has to be a basic 

feasible solution; and since, I am starting with the assumption that, x bar is not a basic 

feasible solution, therefore I will have this. So, using this I will try to contradict the fact 

that x bar is an extreme point, and so since I have assume this I am this is given to me, 

that means, I should be then able to say that x bar has to be a basic feasible solution, so 

this will be the idea behind the proof by contradiction, as you say I am proving the result 

by contradiction. 

So, this is this. Now, let us see why I can be positive negative are 0s right, now if and I 

am taking theta, here I should have said for theta positive, let me take or no nothing I am 

not saying anything yes, so in the second part. So, this is I have this mark here. Now, 

consider all y i(s) greater than 0, so for all y i(s) then I should my theta there will be limit 

on theta, because I want x i bar plus theta y i greater than are equal to 0. 



So, that means, what we are saying…, this is non-negative, this is positive, this is 

positive; so, if theta is positive then no problem, but I am trying to find out how far can 

theta can go as a negative number; so, this is this; this implies theta has to be greater than 

or equal to minus x i bar upon y i which is a negative number, because this is positive, 

this is positive, so this is the negative number. 

So, let me take theta to be this thing as max of minus x i bar upon y i, because i if I take 

this as max y i greater than 0, so among all y i(s) which are positive, I am taking this 

corresponding ratio here, and then choosing the maximum. So, if theta bar, so if theta is 

bigger than this theta bar, then you see the corresponding numbers here will all remain 

non-negative if my theta is bigger than theta bar, then it will satisfy all these inequalities, 

and so the corresponding number here will remain nonnegative, and this is what I want 

to ensure. 
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So, let us continue with this proof here, so theta bar you see if I choose theta greater than 

this, then I am because these numbers will not become negative; similarly, for all y i less 

than 0 x i bar plus theta y i greater than or equal to 0 will imply that theta see here y i is 

negative. 

So, when I write the inequality theta y i greater than minus x i bar, and then when I 

divide y i it is a negative number, so the inequality will reverse implies theta should be 



less than or equal to minus x i bar upon y i; for all y i negative in order that this number 

remains non-negative, I should have theta satisfy the condition, which means that if I 

choose theta bar as the number which is minimum of minus x i bar on y i less than 0. 

Again now this is the positive number, and once my theta if my theta is greater than see 

this is less than or equal to…, so if theta is less than theta upper bar, then all these 

numbers will remain non-negative, so here theta bar we decided we selected theta bar as 

this, and your theta lower bar was max minus x i bar y i with y i greater than 0. 

So, we choose this, and then the idea here is you see if I draw this line here this number 

theta lower bar because y i is positive x i is also positive, so this number will be negative, 

so your theta lower bar, therefore this number is 0 here, and this is theta lower bar, and 

theta upper bar is somewhere here, because theta bar is a positive number, y i less than 0. 

Now, the thing is that I want to satisfy both the conditions, because for whatever the 

value of y i positive or negative my components here it should be non-negative fine; 

therefore, for example, if theta bar is less than theta upper bar theta lower bar, then I will 

choose this interval right, and I will call it therefore; and if theta bar upper bar is smaller, 

than this then I will accordingly choose an interval around 0, so that this interval is a 

subset of the interval theta lower bar theta upper bar the whole idea is to… 
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So, therefore, what I am saying is, let us select, so, let theta naught as minimum of if so 

then for and you can now verify, because of this diagram, it is an existent for 0 less than 

or equal to theta less than theta naught, the two since vectors x bar plus theta y and x bar 

minus theta y are feasible, so your LPP 3 that is what we have been discussing, and they 

are both in F. So, now, if I choose a theta which is in this interval, then x bar plus theta y 

and or it may be just to be safe, we will take into be strictly less than theta naught, it does 

not matter; so, then these two solutions are feasible right and x bar can be written as half 

x bar plus theta y plus half x bar minus theta y. 

So, that means, I started with the assumption that x bar is an extreme point of F, and then 

I have been able to construct; and then with the assumption that x bar is not a basic 

feasible solution I could construct two feasible solutions such that their convex 

combination is your point x bar, which contradicts the fact that x bar is because we 

started in the assumption that x bar is a base is a an extreme point, so this contradicts the 

fact that x bar is an extreme point F. 

Therefore, our assumption that the columns corresponding to positive components x bar 

are linearly dependent is not correct fine; and so, the columns corresponding to positive 

components of x bar are linearly independent, and if they are m in number fine, because 

then x bar is a basic feasible solution. 

(Refer Slide Time: 34:53) 

 



Otherwise, we will extend; so, if necessary, extend this set of columns set of linearly 

dependent columns to form a basis B. So, we have seen in this process, so many times 

that in case you have a feasible solution and the corresponding and the columns 

corresponding to positive components are linearly dependent; and we can always say 

that, it is a basic feasible solution, because we can extend the set of linearly dependent 

columns to form a basis, and then it becomes a basic feasible solution by our have 

definition. 

So, this is what, therefore, the theorem is complete now, because I have now shown you 

that there is one one correspondence between a basic feasible solution; well, one one in 

the sense that, if a feasible solution is there which is a basic feasible solution, then I can 

show that it must be an extreme point and vice versa. But we have also no seen that when 

you have degenerate basic feasible solutions or a degenerate extreme point, then you 

they can be more than one basic feasible solution corresponding to the same extreme 

point; so, this is what…; and now, let me in continuation of this only show you discuss 

one of the pathological cases. 

So, before that I will like to…, so a pathological case, let me just to say this, so here so 

far we have defined it for a equality constraints with non-negative variables, remember 

our definition of the basic feasible solution. Now, suppose consider the system of 

constraints, what shall I say Dx plus Ey equal to b where and where x is it this is greater 

than or equal to 0, and what we are saying is that D is m by n 1 and E is m by n 2 n 1 

plus n 2 is equal to n. So, the total number of variables are n, but you have first n 1 

variables satisfying the non-negativity constraints, second set of variables, the n 2 

variable this are not are free. 

So, now, obviously the definition of a basic feasible solution will change; though again 

you can…, and what I am going to do will tell how to always reduce system, I have also 

discussed it earlier with you that, if you have unrestricted variables, you can always 

convert them the system to a restricted except that the dimension goes up anyway, so 

here I will just straight away define the this thing. 

So, a basic feasible solution, so you say that x y is a basic feasible solution of 1 if the set 

of columns set of columns D j said that x j greater than 0 union all columns E i i varying 

from 1 to n 1, this all columns, this are linearly independent; that means, for the 



unrestricted variables the corresponding columns all must be linearly independent, and 

here for the positive for components of x or the corresponding columns, so all these 

called together should be linearly independent, this is the definition. 
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Now, if we look at the…, now look at the equation or the constraint x 1 minus x 2 equal 

to 1, let us say, x 1 x 2 belonging to r 2 fine; consider this feasible region; consider this 

feasible region. Now, you could draw it in the r 2 plane, this is x 1 x 2, when this is 

passing through the point 1 0 and 0 minus 1, and this line exceed the feasible region is 

this line which is extending to both the direction to infinity in both the directions; so, no 

extreme point right. 

So, you can see it from geometry, but if you apply this definition or not it is no but; and 

if you apply this definition, this gets verified, because here remember you are in r 2, 

there is only one constraint, so what are the columns, and they are known no x j variables 

in the sense that no non-negativity constraints variables are here, both the variables are 

free to take any value; and so, in this case, your columns are 1 and minus 1, these are the 

two columns, its one-dimensional, so your n is 1, therefore this is 1 column in this; so, 

these are linearly dependent, because one can be written as one this can be written as 

minus time this. 
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So, these two columns are linearly dependent; therefore, there will be no extreme point 

to this feasible region as we have can be verified by the definition of zone; so, I will 

transform this region, which is a straight line extending to both sides, and hence 

therefore has no extreme points by this transformation; so, x 1 gets replaced by x 1 plus 

minus x 1 minus, x 2 get replaced by x 2 plus minus x 2 minus, and all them all these 

four variables are non-negative. 

So, this is the new constraint now; so, I have embedded this two-dimensional thing in to 

a four-dimensional region; now, you see since a single constraints of the rank of the 

coefficient matrixes again 1, so I will again have a basic feasible solution corresponding 

to 1 column, and a single turn non 0 vector is linearly independent vector, that is what I 

am using here, I should said this set is linearly independent, that is.., so then column a 

one corresponding to this if I choose and I will put all these three equal to 0 and my 

solution would be 1 0 0 0. 

So, this is the basic visible solution; similarly, here because of non-negativity I cannot 

choose these, so I will choose this one; so, if I choose A 4 as my basic column, then I 

will put the first three variables to 0, and then that will give me x 2 minus as equal to 1, 

so this would be the corresponding basic feasible solution; they are distinct basic feasible 

solutions, and hence they are two extreme points to this system. 



So, you see by the non-negativity constraints on the variables are necessary for the 

theorem to be valid; the theorem that I was still talking to you about correspondence 

between a basic feasible solutions of an extreme point. So, here you have a…, because of 

non-negativity of the variables, you could then compute find out two basic feasible 

solutions and hence there are two extreme points, so this was the thing. 

Now, another word of caution that is needed here is that, the correspondence is not 1 1, 

that means, the theorem or the lemma that I wrote in the beginning that by proof to you 

showing correspondence between basic feasible solutions and extreme points; so, here 

you see if degenerate basic feasible solution is there, then you can have more than one 

bases corresponding to this same degenerate basic feasible solution. So, to think that you 

have…, and therefore there may be more than one bases which is giving you the same 

basic feasible solution, and hence the same extreme point right; therefore, this is I want 

to…, I thought I will through an example I would show you this. 
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So, look at this example; and here you have five variables all are non-negative, not non-

negativity constraints are there; now, I wrote out the this thing column here, and I choose 

the basis B 1 as A 1, A 2, and A 3 are may be I did the row operations here, and finally I 

reduce the matrix this form; so, you see, you can read from here, I could have made 0s 

here also, but that would not make a difference to the basic visible solution, because this 

is 0. 



So, when I subtract this from here, and twice this from here, this these numbers will not 

change, so that is why I did not do that arithmetic; so, here, we can read from here 

anyway; so, this is a set of linearly independent columns, three independent columns, 

and so they form a basis, and the corresponding basic feasible solution is 5 1 0 0 0, and 

so there is an extreme point also; corresponding extreme point and r 5 which will be 

given by this; but then you see from here from this tableau that if I can remove a drop a 

three from my basis and then I can take A 5, because A 4 again is linearly dependent on 

A 1 and A 2, because there is A 0 here. 

So, therefore, A 5 is the other column, which together with A 1 and A 2 will make a 

linearly independent set, and so this forms a basis; and see, because there is a 0 here, so 

even when you pivot on this, you see if you pivot on this, you will divide by minus 2, so 

it becomes a 1, this will not change, and again when you make 0s here, these numbers 

will also not change. 

So, trying show you that, when you have a degenerate basic feasible solution, there is not 

a unique basis which corresponds to the basic feasible solution; therefore, B 1 and B 2 

give you the same basic feasible solution, and hence the extreme point will also not 

change, because your basic feasible solution has not change, the corresponding basis 

have changed. 

So, in the lemma I have said that corresponding to a basic feasible solution, there will be 

extreme point, but then when you talk of a basic feasible solution you have a concept of 

a basis corresponding to it; so, essentially what I am saying here is that, they can be more 

than one basis corresponding to the same extreme point under degenerousy; so, the 

correspondence will be 1 1 only if you have non-degenerate basic feasible solution, and 

they corresponding extreme point will also be non-degenerate, and therefore that 

correspondence will be 1 1. 
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So, essentially, I had told you that there is a upper bound on the this would be n c m, out 

of that means, if you if you rank of the matrix A is m, then you choose m columns for 

forming a basis, and so the number of a basic feasible solutions that you have the number 

bound will be n c m, because out of the n columns you want to choose m columns and 

hopefully I mean if they are linearly independent then of course they form a basis; but 

then again having a basis may not always lead you to a basic feasible solution, I have 

gone through all this with you; but in any case, this is an upper bound on the number of 

basic feasible solution or the number of basis that you can have. 

And therefore, this is also an upper bound, and the number of basic feasible solutions 

you can have; and therefore, we also said that this is also a upper bound and the number 

of extreme points that you can have; so, this is the kind of count, and I was just wanted to 

caution you that the correspondence we have to understand what we mean by this 

correspondence; and essentially, I am trying to say that under degenerousy they can be 

more than one basis which will correspond to the same extreme point. 


