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So, I will continue with my discussion of Mathematical Concepts, that we need to build 

up, the, this is a simplex algorithm, and let me, I had in the last lecture, I had defined, I 

had defined in linear independents dependents and then concept of a basis and so on. 

So, let me just go back to one of the things, which I sort of left out and we can come 

back to it. So, this is augmentation theorem; so, the idea here is that, if you have a subset 

of linearly independent vectors which do not form a basis, then I can always add some 

more vectors to it and get a basis formed, that means, if the number of linearly 

independent vectors is less than the dimension of this vector space, then I can always add 

some more vectors to it, so that it becomes a basis. 
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This is the idea of augmentation theorem and what it says, is that, suppose a 1 to a r are 

linearly independent linearly independent vectors in R n and r is less than n, then the set 

can be augmented by adding n minus R n minus r more vectors. 
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So that, the augmented set, augmented set, forms a basis for, basis for, R n; so, this is the 

whole idea, I will just give the idea behind it without actually giving you the proof. So, 

what is being said, is that, suppose you take two vectors, let me take the vector 1 0 0 and 

0 10 to take a simple example belonging to R n; we know that, these, these vectors are 

linearly independent, because if you take a linear combination then and it is equal to 0, 

then immediately see that your c 1 will be 0 and c 2 will be 0; if I take c 1 times, this plus 

c 2 times, this vector equal to 0 vector and it will always imply that c 1 and c 2 both have 

to be 0. So, therefore, this is a linearly independent set, I can augment it and what is the 

idea behind it the idea here, is that, you see, these two vectors, if you take this, see let me 

take three-dimensional things, so this is x 1or x 2 and x 3; so, the three axis and here 1 0 

0 1, so 1 0 0 is this, is the unit vector in this direction, 0 1 0 is the unit vector in this 

direction. So, actually any linear combination of these two vectors represents your x x 1 

x 2 plane fine all over. 

So, if I take any vector, any vector which is not in the plane, then certainly it cannot be 

expressed as a linear combination of these two vectors, figure it out, it is very simple; so, 

if I take a vector, what does it meant to have a vector which is not in this plane, that 



means, a vector which is not in this plane will have its third component non zero, that 

means, any vector of that kind 0 0 x 3 this also belongs to R 3 and 0 0 x 3, I am sorry, 

this should be 3, these both belongs to R 3. 
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So, this does not belong to, does not belong to the linear combination of the vectors 1 0 0 

and 0 1 0, so I have shown you this; so, if this is how one get go on augmenting a set, 

that means, if you have a set of linearly independent vectors, find a vector and since r is 

less than n, obviously this cannot be a basis, that means, it cannot be spanning set for R 

n. 

So, therefore, there will be vectors, which are not in the linear combination of these all 

vectors; therefore, I can find 1 add it to this set, that will be, that will remain linearly 

independent, again if r plus 1 is still less than n, I can find a vector which is outside 

linear combination of the augmented set and add that vector to it; so, that process move 

on goes on like this and the proof requires lot of time; therefore, we assume, the since we 

need the result, I am just giving it to you. So, to say that linearly independent subset, 

which does not form a basis for R n will always, it will be always possible to add vectors 

to it and a formal basis out of it. 

So, therefore, you see that, this is this and so what I am saying is that, 1 0 0, 0 1 0 and 0 0 

x 3 are linearly independent and since there are three, there is a form and forms a basis 



and form a basis for R 3; so, this is the idea behind augmentation theorem and later on 

we will show you, how we can extend basis for our degenerate basic visible solution or 

we can demonstrate, that they can be more than one basis correspond, but in more than 

one basis corresponding to one degenerate basic visible solution and so on. 
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So, this was your augmentation theorem; let us get to you some more concepts here; so I 

want to just quickly revise, because you have already, say for example, what do we say a 

close set, now they can be a closed set. What we mean by closed set, is that, all its limit 

points or in the set or we can say that, the you can also define the boundary of a set and 

you can say that, if the boundary is all in the set, then it is a closed set, whatever it is say 

for example, a very easy way of say if I have defined, if I define a set by saying that, s is 

equal to let say x belonging to R n, such that some a 1 x 1 plus a n x n is strictly less than 

b; suppose, I have split inequality, then you can see that, this is not a closed set its a open 

set, because the bound, that means, I can take a sequence here in its possible that the 

sequential converge to b, when I take this summation here add it up little converged b 

and so that, limit point of that sequence will not be in the set, because I am taking only 

all those points in s, for which this is satisfied is strict inequality. 

So, in other words, when you, when you take the set, when you take the feasible region, 

feasible region for the linear programming problem, we say x belonging to R n such that 

A x is equal to B x greater than or equal to 0; so, we have equality sign you have n 



equations here and you have n inequality equality zeros are also allowed value will be 

available can take the value 0. 

So, this will be a closed set, because I have equality, I am allowing equality constraints 

also, whereas here I am not, so I am not writing down rigorous definition for a closed set, 

but we can say the definition of a closed set would be, if all the limit point so f a set are 

in the set, we say it is a closed set, we say it is a closed set and the, and if all the limit 

points are not in the set, then it will be a opened set, a bounded set. 
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So, s contained in R n is said to be bounded, I said to be bounded, if norm x is less than 

sum m for all x belonging into x. We have already introduced the concept my R n, that 

was in my earlier lecture, when I was talking about the mathematical concepts I looked 

upon, I define the certain operations on R n and through inner product, we also defined a 

norm of a vector on a r n and so we are saying that, if a norm or the length of a vector is 

less than some a pre-specified number n, then or I can find an n, such that norm x is 

strictly less than m for all x and s and we say that the set is bounded. 

So, for example, if you, if you take the set, yes something like this, again I will draw it 

through that, the, suppose you have this. So, if I, my set is something like this, when you 

see this is extending to the infinity; so, therefore, if you give me any number, I will 



always be able to find another number, I will able to find a vector in this set, whose 

length is or whose norm is more than the number that you have given me. 

So, I will always be able to extend it. So, this is this is an unbounded set and now, let me 

go on to… So, the next point that we want to make is, look at, the, because again 

remember all my definitions and results are such that they relate somehow to mind in a 

programming problem. So, for example, if you look at this, now, let me defined a 

dimension of a subset, dimension of a subset s of R n. 

So, the idea here is see, so far when I defined the dimension of a sub of a vector which 

was of a vector space, that means, we had a notion of linear independent and so on and it 

was, we define the dimension of vector space or a sub space, but it had to be, it had to 

satisfied the certain criteria for or the vector space. 
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So, we want to defined the dimension of a subset s of R n; so, to do that, we need to 

defined the dimension of an affine space, because I can only define the dimension of a 

subset, through the dimension of a affine space, which can, now what is an affine space, 

this is the displacement of a subspace by some vector, that is, if q is an affine space, then 

q can be written as x naught plus w, where x naught in R n is some vector, a fixed vector 

and w is some subspace of R n, so, any affine space, that means, you are actually taking 

a subspace w displacing it by the vector x naught and then you get an affine space. 
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So, this, this stops of being a subspace, because obviously 0 vector does not belong it. 

So, then, now for example, you can see that if you take w to be straight line passing 

through the origin in r 2, then this is a subspace of dimension 1 and r 2; see, you take this 

straight line, which is passing through the origin; so, this is the subspace in r 2, w is the 

subspace; now I take a vector x naught a fixed vector and so I had displaced w by 

through the vector x naught. 

So, therefore, what we are trying to say here is that, any, if you take, now I just take 

some vector small w here and then, you want look at the vector x naught plus w. So, then 

see a complete this parallelogram, so this vector would be also w; so, then the sum would 

be given by the vector o p which is x naught plus w so w belonging to this. So, any point 

on this, displaced subspace, displaced straight line can be obtained as x naught plus some 

w in capital w; so, this is the concept of an affine space. 

And then, we say that the dimension of a, q of the affine subspace, q is the same as the 

dimension of the subspace w which is defining it and then, so here is an example of a 

affine space, which you already have come across is solution set of a non-homogenous 

system of linear equations is an affine space, because you know, you know, when you 

take the non-homogeneous system, you have a particular solution and then the 

homogenous part. 



So that, solution space is a subspace and so, you get the solution space of a non-

homogenous system, which now becomes an affine space. And now, you come back to 

the defining the dimension of a subset p of R n and that would be the smallest dimension 

of, the smallest affine subspace containing P; so, this is the concept which we have to 

also and of course, like which a smallest, I have not written it properly smallest. And let 

us, we will have to spend time here, actually telling you how to get this smallest, but 

when you come across the concept of defining a subset, dimension of a subset, I have, 

suppose, this will be clear and mainly, we would be dealing with a dimension of a, of the 

a, of these feasible region corresponding to a linear programming problem; so, there 

should be no problem and I will try to explain that here. 
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So, therefore, we want to find out the affine space which contains a subset, the smallest 

affine space and then the dimension of that affine space would be the dimension of that 

subset. 

Now, so, let us look at the feasible region for an l P P and the standard form this is your l 

PP then you will first look at the subset or the x equal to R n a x is b; now, this is the 

affine space, I told you, because solution space of a solution set of a non-homogenous 

system of linear equations is an affine space. So, this can be written as x naught plus w, 

where x naught is a particular solution; a x naught is B and w is the solution space of the 

homogenous system A x equal to 0, this is the subspace. 



So, the solution, space solution set here, can be obtained as a particular solution plus the 

subspace, which is the solution space of the homogenous corresponding homogenous 

system. 

Now, you can immediately see, that f is in s and s is the smallest affine space containing, 

because in F, now, you require the solution should be all non-negative t. And so, this will 

be the smallest subspace contain affine space containing F and therefore, dimensionof F 

will be dimension S, this affine space containing F and the dimension of S is nothing but 

dimension W, where we are saying, W is the subspace the containing of the solution for 

the homogenous system. 

So, this is what we, therefore, you know how to define the dimension of a, of the feasible 

region corresponding to a linear programming problem. A special kind of affine space 

which we will be using very often is a hyperplane and a hyperplane is defined by one 

non-homogenous equation, so for all x in R n which satisfy sigma A j X j equal to B j 

varying from 1 to n. So, this will be my hyperplane and we can immediately see that this 

will again be some x naught, which is, that means, which satisfies this, it is a particular 

solution a particular point in h and then plus solution space of homogenous a linear 

equation sigma A j X j equal to 0; so, this is only one linear equation norm 0, because 

our A j’s are not all zeros. 

So, therefore, the dimension of the, this dimension of the solution space would be what 

here; the dimension the solution space will be n minus 1 because only one linear 

equation, homogenous equation is describing the set. So, therefore, the dimension of the 

solution space is n minus 1 and so, dimension h is nothing but dimension solutions space 

of sigma A j X j equal to 0 which should be n minus 1. So, hyper planes are special kind 

of affine spaces, which have dimension 1 less than the dimension of the, of the space in 

which you are working. 

So, we would be talking of supporting hyper planes and so on; so, this would be idea and 

it helps to understand the geometry and of course, or the dimensions helps you to 

visualize the things better and so, the idea now you will go on to defining your three- 

dimensional polytopes and so on and then, we will restrict ourselves to three- 

dimensional, here of course, but you can have and then I will talk of different face sets 

and so on of the polytopes. 



So, now let us continue with the some more definitions; I am trying to give plus straight 

and so on, so break a just do not want to go on feeding you with definitions of the time, 

but it helps to collect together all the theory that we need; so that, we keep in referring 

that to it and then, when we develop the algorithm, we do not have to call the time go 

back and say this is what we have to define. 
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So, it is better, that I do it all in the beginning; so, now let me define another concept and 

that is the convexity; this is very important and you see how much this concept helps to 

simplify the concept of the whole theory that we are going to develop. So, first of all, I 

will say that. if you have let x 1, x 2 belongs to R n, then lambda x 1 plus 1 minus 

lambda x 2 is lambda x 1 plus minus 1 minus lambda x 2, for lambda greater than or 

equal to, need I say yes, I need to say, it is between 1 and 0, not just so this for 0 less 

than or equal to lambda less than equal to 1, is a convex combination, convex 

combination of the two points of x 1, x 2 and as you vary lambda you get all possible. 

So, in other words, geometrically it will see what it means, it means that, if this is a point 

x 1 and this is a point x 2 and as you vary lambda, you get all the points on the join of 

these two points is not it; the line joining these two points you get other points. Now, if 

lambda is 0, if lambda is 0, then you get the point x 2 that means, you get this end and if 

lambda is 1, then this is 0 and you get the point x 1 and for all values of lambda between 

0 and 1, you will get points on their join. 



So, this is called a convex combination of two points. Now, we immediately, we can 

defined a set to convex set and that is when, a set c R n is a convex set, is a convex set, if 

then only if and only if it contains all its convex combinations, all its convex 

combinations, so it is a convex set; if it contains all its convex combination, that means, I 

take any two points in c, I take the line joining the two points, that the whole line should 

be in c and this should hold for all points in c, then we say that the set is convex. Now, 

for example, if you take this set, then I take a point here, I take a point here and I join the 

two points, then see part of the line is not in the set. 

So, it will not satisfied this definition right, because there are holes indentations, 

similarly, if you take a ring, then and if you say that, this is your considering this set ring, 

then I take a point here, I take a point here, the whole line is not in the set; so, this is not 

a convex set, that means, a convex set has to be without any pose indentations, so a 

circle, that means, inside of the circle and if you include this, then this is a convex set, 

then you can also have, yes, so if you take this set you see, because its enclosed by the 

straight lines; therefore, there are no holes and I take any two points on the set the joint 

will be; so, this is the idea of a convex set. Now, you can also extend this notion to a 

finite combination and I said if and only if see here, that means, if a set is convex.  
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Then all convex combinations any two points in the set, must be in the set and,  the, if 

the set is convex, then this and if all convex combinations of any pair of points in the set 



or in the set, the set is convex, so it both ways, I can define. One can have a more general 

concept here also, you can extend this notion, you can also say that, convex combination 

of a finite number of points, of a points say x 1 x k, i have stop using the word, this sign 

of a vector, because it is now understood. 

So, is convex combination of a finite number of points, this is something like this lambda 

i x i, i varying from 1 to k, where summation lambda i is 1 and 0, i varying from 1 to k 

and this is for all, it is just extend the notion; for example, when k is 2, I get convex 

combination of two points and if k is more than 2, then I get this with the lambdas must 

add up to 1 and they must be both, they must all be lying between 0 and 1; so, this is a 

convex finite and you can see that, this is more general and if a set contains all possible 

convex combinations of a finite set of points, in the set, its convex and vice verse and by 

iteratively using this definition, you can show that, the two things or two concepts are the 

same. 

So, this gives you another way of defining convex set; now, the thing is that, therefore, I 

can state more general theorem and say that, if c contains, if c contains all it all convex 

combinations, so actually convex combination implies that you are taking convex 

combination of a finite number of points, but may be one can state it also if c contains all 

convex combinations of any finite set of points in it, then c is a convex set, convex set 

and vice versa same thing if and only if, for that is, if it c is convex, it must contain all 

convex combinations of any finite set of points in it and if it contains all finite 

combinations of convex combinations of finite set of points in it is convex. 
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Now, let me define another concept in which is convex hull; so, convex hull would be, it 

is a convex hull of a set S; so, S is in R n, then we say that this is the convex hull. 

Actually the notation, let me make the correction, because remember I have used this for 

all possible linear combination, so here I want to make, so maybe this, this would, so this 

a convex hull convex hull of S and this is collection of all possible convex combination 

of points in s, I have stop drop the word finite because its understood. 

So, if you take all possible combination convex combinations of points in s, that 

becomes the convex hull and by definition and this is a convex set by definition; see, 

remember I gave this definition for a convex set, then I said that at this is sort of a lemma 

or a theorem which says that, you, if you can also say that finite, if you take a convex 

combination of finite points in S and this convex combination is an S for all possible 

such combinations then c is convex. 

So, actually, I use this to prove this and now, because of this is or we can say that S is a 

convex set by definition or by theorem or whatever it is. This, is a, this is a convex set 

and convex hull of a finite number of points finite number of points, we would want that 

all the convex all possible convex combinations should be within the set, with within the 

convex hull. 
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So, here, if you take for example, say these are some finite number of points and like 

this, but we want all possible convex combinations of these points to be in the set; so, 

then, I will draw these lines, so to make sure that no convex combination of these two 

points is outside the set and this will be this and this is, so then this will be my convex 

hull of this given set of finite number of points. For example, for this one, for this one, I 

would, if I want to the convex hull, then I will have to include this also, so the whole 

thing, then it becomes a circle and this. Is a convex set; so, convex hull, what, when you 

take the convex hull, it actually fills in the gaps and all the holes and all the indentations 

that are there in the set they get filled up and it becomes a convex set. 
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Now, we can also define intersection of, intersection of any number of convex sets is 

convex; so, intersection of any number of convex sets is convex, it is very, by using the 

definition when immediately prove it and so by virtue of that, it will look at the feasible 

region for l p p and you have A x equal to b x greater than or equal to 0; so, how many 

convex sets you have. Each hyper plane is a convex set vice, so here you see each of the 

equations summation a i j x j, k varying from 1 to n equal to b i is the i th strain is the i 

th, is the i th, is the i th equality. So, this constitutes a hyper plane and it is a convex set, 

because if you take any two points satisfying this, then they join the, that is a concept of 

hyper plane. 

So, this is a convex set or it is the convex set so f and then when you take x i greater than 

or equal to 0, what do you get see here, I should have may be spilt it, this out that if you 

have let say taken this is x 1, x 2, x 3; so, when you take a plane hyper plane like this, it 

is a two-dimensional thing, you can imagine it sending like this; then this hyper plane 

actually gives you to half spaces also, half spaces. 

So, when you have that summation a j x j, j varying from 1 to n is equal to b here, then 

they will be set of points which satisfy the constraints as a j x j,  j varying from 1 to n 

greater than b and they will be a set of points which satisfy it with less than b; so, this is 

these are the two half spaces with a hyperplane defines and we can say that this is 



convex, this is convex, they are no poles, there no breaks and even analytically you can 

show that these are convex subsets. 

So, here you have m such a convex sets here, then each of the non-negativity constraints 

also gives you a half space, x i because x i equal to 0 will be a hyper plane and then x i 

greater than 0 is half other one half of the hyper plane and so, here you have, that means, 

f can be looked upon as intersection of m plus n convex sets and that gives you the, so 

that gives you convex set, so this what we mean intersection of any number of convex 

sets, is a convex sets; so, I showed you that the feasible region for linear programming 

problem is a convex set and in fact,  we and this is a special kind of a convex set which 

we want to give it a name in fact f is a polyhedron, f is a polyhedron, so we give it a 

name because this is a special kind of a convex set, because it is a define by linear 

equations and inequalities. 
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So, for such convex sets, we give a special name and in general, you can, you can also 

say, that I mean, a general form of a polyhedron; so, general form of a polyhedron can be 

defined as, so I am, let me call it p. So, I will distinguish between a general polyhedron 

and the polyhedron which corresponds to a linear programming problem; so, p x belongs 

to R n, such that a x is less than or equal to b, so what we are saying here, is that, even if 

there are some in equal, non-equal, non, non-greater than or equal to chi, this is the non-



negativity constraints, they can be part of this here, because and I will try to show you or 

you can write, because I can, I can multiply this by minus sign. 

So, this constraint, for example, can also be written as minus x i less than or equal to 0, 

so it is all the big deal, I mean, I can take these as the equations and inequalities put them 

together and whether the more concise way, you say that, this is your description of 

polyhedron. 

So, and we will mostly be dealing with polyhedrons, if a linear programming fine. And 

then if P is bounded, remember I define, that means, if I can say that, there are no this 

thing here, the, you can, you can bound the length of a norm of every vector in P; if P is 

bounded, then P is set is called a polytope and we will see the advantages of having a 

polytope also, because if a set is bounded, it gives you some special leverage to talk 

about the corresponding linear programming problem, then you can also define. 
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So, now, you have a polyhedron, that means, essentially because it so much convenient 

to draw this thing in, so a polyhedron what we are saying is something like this; so, it is a 

bounded by linear constraints straights lines in two-dimensions, in three-dimensions that 

will be hyper planes and so on. 
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So, this is the polyhedron; so, h now after having defined a polyhedron, let me now talk 

off subsets of polyhedron also and some of, some of them have a lot of significance in 

the development of the simplex algorithm. So, H S be a half space defined by hyper 

plane H and I talk to you about the half spaces and high and every hyper plane will 

define two half spaces and so, if h S is a half space. 

Then the set f which is P intersection H S; let me the intersection of P with the half space 

and it is a subset of H, then it is called a face of P and H is called the supporting hyper 

plane; let me give you an example here, see for example, if you have a hyper plane like 

this, suppose this is a hyper plane h naught, then you see the hyper plane has to half 

spaces on this side and this side. 

So, the whole of the polyhedron lies on this, in this half space and the intersection of the 

intersection or you can say that, I will look at this half space, so half space and 

intersection P is this point a and this point a is on the hyper plane H naught; therefore, I 

will say that, H naught is a supporting hyper plane for the polyhedron P and the face f 

just consists of the point a, this is the idea. 

Now, for example, if I take a hyper plane like this, suppose I take this hyper plane H 1 

then you see the half spaces are this and this and the intersection of, if you look at this 

half space, then the intersection of the half space with the polyhedron is all of this and 

not all of it lies on H1. 



Similarly, if you take this half space, the intersection of P with this half space is all of 

this polyhedron and again it is not a subset of H1; so, therefore, H1 is not a supporting 

hyper plane. Then, similarly, if I take a hyper plane like this, so I am just trying to show 

you different faces, that a polyhedron can have and of course, will give you more 

examples by better examples by a three-dimensional polytope and so on. 
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So, here you see, this is you take this hyper plane, then the intersection of the hyper 

plane with this half space, is only this part right, this line segment and this is part of H 2. 

So, again H 2 is a supporting hyper plane and B C will be A space of the polyhedron that 

I true. 

So, this is the idea of a supporting hyper plane and a face and then I will talk to you 

about, but before I start this more about special kinds of faces, let me first define the 

dimension of a polyhedron which is important and again here there are a little few a, but 

any way what we are saying, is that, the dimension of a polyhedron P and remember the 

general definition that I gave you was A x less than or equal to B, x in R n and then I 

have just defining a polyhedron by and so, I am calling these as the defining inequalities 

and I had told you that the defining inequalities also. 
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You know, there is a concept of a minimal number of inequalities that are defining 

polyhedron and those things are there, but anyways, so let us and hope that, we have a 

minimal representation and then I am talking of the dimension of a polyhedron. 
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So, if n is the number of variables, then the number of linearly independent inequalities 

defining P that are satisfied as equality by all the points of b, then I say that, the 

dimension of P is n minus this number, let me say all there are all points of P satisfy 

certain inequalities as equalities and I take them to be linearly independent, then I take 



that number and subtracted from n and then that gives me the dimension of P, because 

again if you can go back to I have talked about degrees of freedom and so on. 

Let me talk of a system of equations and inequalities; so, here, for example, for the, for 

the, if f is your feasible region for l P 3 and remember I am also referring to it as a 

polyhedron is a convex set; so, then we undertaking rank of the coefficients matrix to be 

m, then dimension of that will be n minus m because I am assuming that all. 

So, all the, see the feasible region, the first standard l P3 is an standard form; so, m 

equations are there and rank of a is m, so there all linearly independent and so, if the rank 

dimension of f for the l P3 is n minus m, now, if no inequality, if no inequality is 

satisfied as equality by some points of P, that means, that is there exists a point X naught 

in P, such that a x naught is strictly less than b; if at least 1 point is there, then we will 

say that dimension of P is n or that it is P has an interior or that P is a solid. 

So, these are different concepts which mean the same thing that we will say that P is a 

solid, because it has dimension n or it has in interior. Now, for the, for the, for the l P P 3 

you are for feasible region is not solid right, because its dimension is n minus m and so 

there are points which satisfy the first m equations; so, therefore, it cannot be a solid fine. 

Now, let me define a definition of a face also and then we will look at the examples here; 

so, f is A face of P, when there exists in R by n sub matrix of a prime of A, that means, 

you take some r rows and then A and B prime is a corresponding sub matrix of B, that 

means, here if I take the, suppose I take the first r rows, then I will take the first r 

components of B or whichever r rows, I take from here the corresponding components of 

B I will take; so that, that comprises of B prime. So, then f can be describe as set of all 

points which satisfy these are inequalities as equalities, so, a prime x is equal to B prime; 

so, every face will be satisfying some inequalities as equalities and then, in that case 

dimension of S will be set to be n minus r, where dimension of P is n. 
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So, for example, when we define faces of f, we will have to take in, in place of n, we will 

write n minus m assuming the rank of a is m. Now, let us quickly just give you 

definitions of some particular faces; so, the special kind of faces, that I was mentioning is 

a face t which has I mention 1 less than the dimension of the polyhedron. 

(Refer Slide Time: 45:38) 

 

An edge will be a face of dimension one and an extreme point or a vertex or a corner 

point is a face of dimension 0; now, I want to just translate this concept to the faces of 

the polyhedron of the feasible set for the linear programming three problems. We define 



so the, we know that the polyhedron f is define by A x equal to B x and greater or equal 

to 0 and we are assuming that the dimension of A is M. 

Therefore, this polyhedron has a dimension of n minus m, because the number of 

variables is n and then A facet has to have dimension 1less than the dimension of f; 

therefore, it must satisfy the dimension is n minus m minus 1 which implies that one of 

the x j must be 0, because for f, you see though inequalities or here so these are n 

inequalities, all these m equations have to be satisfied by all points of f. 

So, this is the n th, these are the n inequalities, so your facet must satisfied at least 1 of 

them as equality; so, this is it and they, that means, a facet will satisfy m plus 1 equations 

m here and one of them, one of these inequalities as equalities, then points for an edge, 

because the dimension of an edge is one, that means, it must satisfy n minus m minus 1 

inequalities from here as equalities, which means that, the number of components 

positive components, number of component that are positive for points on an edge will 

be equal to n minus of n minus mminus 1 which means m plus 1. 

So, for points on an edge the number of component that can be positive would be m plus 

1, because the dimension of an edge is 1; so, that means, it must satisfy the dimension of 

f is n minus m, so it must satisfy n minus m minus 1 inequalities as equalities and for an 

extreme point, because that dimension of an extreme point is 0, so it must satisfy n minus 

m, this number is, this is n minus m; so, n minus m components from here must be 0, 

because the dimension of an extreme point is 0, so n minus m minus of n minus m should 

be 0. So, therefore, the for every component, for every extreme point of f, the number of 

components that will be 0 has to be at least n minus m, of course, if it is a degenerate 

point, then the number of zeros can be more than n minus m extreme point of P of A 

polyhedron P. 
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Now, they can be, one way of course, actually who is that the extreme point is the face of 

P of dimension 0 or the geometrically also we can define, because you see, it is in a 

sense, since the hyper plane intersects it only at a one point; therefore, he can also have 

this concept of a vertex or a corner point; so, these are the other names x and so an 

extreme point is also known as a vertex or a corner point of P and we can give a 

geometrical definition of an extreme point, that is, if x belonging to P is an extreme 

point, extreme point P and x can be written as lambda x 1 plus 1 minus lambda x 2 if and 

x is this, for some x 1, x 2 belonging to P and 0 less than lambda less than 1, then x is 

equal to x 1, is equal to x 2, I hope you can read this, I will try to rewrite it x 2, say in the 

other words, x if it is an extreme point of P, it cannot be written as a convex combination 

of any two other points in P; so, this was the concept of a vertex and I showed you in the 

picture theta and of course, the other definition was that, it is a face of dimension 0 of the 

polytop .  
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 And so, let us look at this example, here there is a polyhedron described by these 

inequalities and I have drawn the diagram here in the figure, you can see that for 

example, the this case on which the points 0 to 2, if you look at 0 to 2, it satisfy this as 

equality when 0 3 by 2, 3 also lies on this phase and then this point 3 0 3, because 3 plus 

3 add up to 6; so, this here is the first constraint as a equality. And now, so according to 

our concept you see, this is, if I take this equal to 6, this will be a hyperplane and the 

whole of the polyhedron lies in those half space, which is because here this is less than 6 

so all points 0, 0 and everything this is in the half space which is less than 6 less than or 

equal to 6. 

This is the picture; then you can see that this face of the polyhedron is because x 3 is 3 

for all 3 points l; so this, this is the hyper plane. If you take the hyperplane x 3 equal to 3, 

then it needs the polyhedron in this face and similarly, this one corresponds to 2 x 1 plus 

x 2 equal to 6. 

So, this face, if you look at then I has shown you and this, this is another face which is x 

2 equal to 2, it was all the three points lying on it, have this is the second coordinate is 

equal to 2. So, this is your three-dimensional polytope and you can see that, if you look 

at the point, for example, 1 1 look at the point 1 1, then it satisfies all the constraints as 

strict inequality. 



2 plus 4 less than 6, this is less than 6 everything; so, this satisfies all constraint, all 

inequalities as strict inequalities, as strict inequalities, as strict, as strict inequalities and 

therefore, the first thing is therefore, dimension of dimension P is 3, because now P has 

an interior, so I talk to you about it, that if in case you can find a point in a polyhedron 

which has all which satisfies all constraints defining it as or inequalities as strict 

inequalities, then it is a solid and we say that, it is a same dimension as the number of 

variables defining it. 
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So, dimension P is 3 and we continue with this example, so I am now saying that you 

consider the hyper plane h 1, which is all points x in R 3, so that, x 2 is 2, if you take this 

hyper plane, then obviously we get 2 half spaces; one would be x x 2 greater than or 

equal 2 and the other would be x 2 less than or equal to 2; let me consider the half space 

x 2 greater than or equal to 2, then you see that x 2 greater than 2 is this side and P does 

not lie on it. And then, I am saying that now you consider the intersection of P with this 

half space and this comes out to be region A, B, C , because the half space contains x 2 

equal to 2 also and this is your hyper plane h 1 and x 2 equal to 2is satisfied by points on 

the polytope. 

So, when you take this intersection, of course, so here I am saying a non-empty and then 

this comes out to be the region A, B, C; you see that this is the region, because every 

point on this triangle has x 2 equal to 2, you can check that yeah convex combination of 



every point here of these three points will again have x 2 equal to 2, because every all the 

extreme points have the second coordinate equal to 2. 

So, you can see that very well and so this is the region A, B, C and this is a part of h 1. 

So, from our definition of a face of a polytope, if I can find a hyperplane, such that you 

know this definition is , then this is a face of P and by of definition by the dimension of 

A, B, C this would be 3 minus 1, because this is h is an hyper plane h 1or you can say 

that x 2 equal to 2, is the, this is the inequality which is satisfied as equality by all points 

on the region A, B, C and therefore, this is a facet of dimension, it is a face of dimension 

3 minus 1 which is 2; hence, so it is a facet. 

Now, in my definition earlier, when I had talked about a supporting hyper plane and so 

here you will say that x 2 equal to 2 h 1 is a supporting hyper plane 2, the polytope P. 

Now, in my definition, if I take the half space to the x 2 less than or equal to 2, then P 

would be in that half space and therefore, I do not have to write this. 

So, please check that in the when, when I was defining concept of a face and face of a 

polyhedron and the supporting hyper plane, I main, I may have not mention not equal to 

but see the understanding is at if you are taking the half space in which p lies, then 

obviously this will not be empty P intersection H S1. So, the whole idea I am trying to 

show you, is that, you take a half space and you take a polytope then the two just meet in 

this face, A, B, C and that is the whole idea. 
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So, whether you take the half space and which lies or which P does not lie does not 

matter, but basically they will intersect at that face of the polytope. Now, similarly, let us 

take another dimensional face of the polytope P; so, if you consider the edge A B, so I 

am taking two different definitions, I am trying to show you, now it is a intersection of 

the inequalities 2 x 1 plus x 2 equal to 6 and x 2 equal to 2 ,you can see from the diagram 

also; that means, every point on the, a line segment A B satisfies the second and third, 

the second and the third inequalities as equalities and so, by definition, we had two 

definitions of the, so by the dimension of the line segment A B is 3 minus 2 because two 

linearly independent inequalities, there is being satisfied as equalities and the dimension 

of the polytope, we had said is 3, so it is3 minus 2 which is 1; therefore, this will be an h 

of the polytope by our , but now here I also want to show you, that you can construct the 

supporting hyper plane and therefore, it will be a face; so, this supporting hyper plane I 

am saying consider the hyper plane x 2 minus x 3 equal to 2. Then you can again see that 

4 x 2 minus x 3 greater than or equal to 2, for all point I mean, if you take the half space 

this, then P does not lie in this half space and therefore, and the intersection of this half 

space with P, is this line segment A B which lies in h 2 and so, again A B is a face of P 

by our definition and the dimension as we said because two inequalities have been 

satisfied as equality. 

So, therefore, the dimension of this face is one. And now, you consider the point a, 

which is 2, 2, 0, this is the point of the polytope and this is a vertex and so we must have 

three inequalities that are satisfied as equalities by the point a, see look at these three and 

therefore, the dimension of this vertex is 0 which is what it should be that is why we call 

it a vertex and again just for the fun, see you can also try to construct some other hyper 

plane which is a supporting hyper plane to the polytope at the edge A B, then or for some 

other edge A B and then here for the hyper plane h 3 4 x 1 plus 3 x 2 equal to 1 4, you 

see that the point a satisfies this as equality and intersection of the half space P 

intersection h 3 3, here, of course, here again I am taking the half space to be greater than 

or equal to 1 4, then the intersection isthe point 2 2 0 and this would be this is contain in 

h 3; therefore, a is a face of P and the dimension is 1. 

So, therefore, you know, you can do the same exercise for all other edges like, for 

example, this is an edge, this is an edge, so try to for construct supporting hyper planes at 

these vertices as well as for the edges and see the show that, for example, x 3 equal to 3 



is a facet of this polytope which you can sit down and show that, you know you consider 

the hyper plane x 3 equal to 3 and so on. 

So, I think this should give you a good idea about the how to determine the dimensions 

of a faces or different faces of a polytope and the important kind of a faces that we will 

be a using when we want to give a geometrical picture of this simplex algorithm, which 

are the extreme points of the vertices and the facets supporting hyper planes. 


