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Let me discuss assignment six, which is based on transportation problem with you. This 

assignment should have been discussed earlier, but anyway. So, let us go through these 

problems. In the first problem, I want to show you, how complementary slackness 

conditions can be used for the transportation problem. 
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So, in the table below, balanced transportation problem is given to you. Energy as usual, 

the entries are the cost and the right hand side and the row below is the demands and the 

column on the right hand side is the supply. 



Now, I have given you dual feasible solution u bar, which is equal to this, regard this 

infinity here, because, you have u bar corresponds to the row. So, this is minus 7 8 

comma 3 comma 0 and v bar is minus 4 minus, minus 3, 2, 1, 4. 

 So, this is a dual feasible solution, you can verify for yourself and now using 

complementary slackness conditions, you see, you will only allow those x i j’s to be 

positive for which the c i j minus u i minus v j is 0, because of the complementary 

slackness condition. 

So, if you can find an x bar which is feasible from among the cells for which the dual 

constraints are satisfied is equality, and then you will have a primal dual feasible pair. 

And using complementary slackness conditions, again you can show that the pair x bar, u 

bar, v bar, which is a primal dual pair of feasible solutions will also be optimum. So, this 

is what you have to do in problem one, and if there are alternate optimal solutions, then 

also find them. That means, for if for some non basic cells, your dual constraints are 

satisfied this equality or the relative price is 0, then you can enter those cells into the 

basic feasible solution and get an alternate optimal solution right. 
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So, this is problem 2, problem 2 transportation problem below given below, feasible 

solution is indicated yes and what is happening is that, you see the number of the supply 

points are 4, number of demand points are 6 obtained. So, you should have actually 9 

basic cells; in any basic feasible solution, there should be 9 cells. 



But, here we have 3 3 6 9 and 12; this is the feasible solution, but not a basic feasible 

solution. So, I was first want you to find out basic feasible solution from this given 

feasible solution and you know that because, the number of cells is more than 9 or you 

will have quite a few theta loops and so you have to get rid of the theta loops and then 

obtain a basic feasible solution. 

So, do that this thing and then check if the basic feasible solution obtained is optimal. 

Now, let us go to problem 3, this is here, you see, I am just trying to for (( )) unbalanced 

transportation problems. 
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So, I have given 2 of them here, and I want you to reduce them to a balance 

transportation problem and we will discuss how. So, here for example, in the first 

problem here, the supplies the supplies add up to more than the demand, it is the 

demands. 

So, therefore, what is happening is that, your supply constraints will be satisfied as less 

than or equal to because, you will not be able to use all the supplies, since the demand is 

less than the total supply. 

So, therefore, your supply constraints will be written as inequalities and in the second 

case, the second problem the you have given that the maximum amount available, so that 



means, again the all the supplies need not be used up and the demands are not exact; that 

means, you minimum requirements are given. 

So, you may ship more than what is required. So, here actually you have inequalities for 

supply points, supply constraints as well as for demand constraints. So, both kinds of 

inequalities you have to handle here, and we I will try to show you, how to handle these 

two types of unbalanced transportation problems. 
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So, let us see in the. So, for the first problem, I am giving you a basic set and I am asking 

you to constitute an optimal solution when the supply at source 4 S 4 is 16. You see, if 

you if the supply if S 4 is 16, then the sum of s i’s is equal to sum of d j’s. So, then it 

becomes a balanced transportation problem and so, you can immediately check whether 

the given set of cells they constitute a basic feasible solution, and then verify that they 

are are they also satisfy the optimality criteria. 

So, this is the optimal solution, now I am saying that we have to obtain optimum solution 

for the given problem which is the unbalanced. So, so just go ahead starting with starting 

with the given basic feasible solution, which is optimum for S 4 equal to 16, you have to 

obtain an optimal solution now. So, go ahead and do it, fine. 
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For problem 2, again I am giving you a basic set of cells and I am saying that you can 

obtain basic feasible solution x i j bar for the given unbalanced transportation problem. 

Reduce it to a balanced transportation problem by adding a 6 market, and the cost will be 

C i and plus 1, in in our case, n plus 1 is 6 and then you have D 6 is 2, so the difference 

between sigma x i and sigma d j that is 2. 

So, make that difference equal to 2 and so, the demand D 6 will be right and then I am 

telling you how to obtain the C i n plus 1 here, right and the formula I have given to you. 

So, you have to take the minimum of, so, if this formula you can go through. So, once 

you have these costs given to you, now with this cost, you have a balanced transportation 

problem. The number of markets is gone up to 6 and then I am asking you to first obtain 

x i j bar is is an. So, actually these basic sizes that I have given to you in the beginning, 

they constitute an optimal solution. 
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So, verify that it is an optimal solution. So, once you have an optimum solution x i j bar 

for the balance transportation problem, then I am now asking a giving you a formula for 

constructing a solution x i j hat and the formula is given here, where, the three formula is 

given here. And now, you can show that x i j hat is optimum for the original unbalanced 

format. That means, you have now verified the optimality criteria for the balance 

unbalanced transportation problem. So, the optimality criteria does not change even 

though the constraints are now not equality constraints, but less than or equal to kind the 

optimality criteria will remain unchanged. 

So, once I have given you this x i j hat, just check that the given solution is optimum for 

the unbalanced transportation problems. So, this is how I am trying to give you the 

treatment for unbalanced transportations problems and in fact, it will be interesting to 

look up the literature, for example, K G Murthy’s book only and you will find many 

other variations of the unbalanced transportation problems. 

But, since once you know your balanced transportation well, you can always reduce all 

these variations to a balanced transportation problem and get the optimum solution 4. I 

am just taken this again transportation paradox from K G Murthy’s book and it is a 

modified version. I have modified the problem. 
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So, essentially what I am telling you is that, S and D is 1 set of supply and demand S hat 

and D hat is another set of supply and demand for a transportation problem and S is 

greater than or equal to S hat and D is greater than D hat. 

 This is the, these are all vectors; that means, component wise, each S i is greater than S i 

hat and each D j is greater than D j hat right. So, now, I am defining Z S D as the 

objective function value for the transportation problem. So, the cost remains the same 

right with S as supply vector and D as the demand vector. 

If C i j’s are all non negative, then, one would expect, see this, what I am saying here. 

So, one would, if if all C i j’ s are non negative, then one would expect that, since the 

volume of traffic for S comma D is more than S hat D hat, you would expect that the 

objective function value for S, D; that means, Z S D will be greater than D S hat D hat. 

But, actually this is not what is happening. It is possible that, even though you are 

transporting more goods or whatever it is, the traffic is more, your cost may still be 

smaller right and I am giving you an example here. 
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So, in this case you see, this is a table and I have the 10 plus delta is the demand a supply 

at source 2 and 25 plus delta is the demand at market 2. then I am, so now, the solution 

shown in this tableau is feasible for delta between 0 and 2 and you can also verify that it 

is optimal for all values of delta between 0 and 2 right. 
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But, you see that the cost, optimal cost is 1 1 2 9 minus 19 delta; that means, as delta 

increases, the cost will decrease. So, this is the kind of paradox I am trying to show to 

you. and then, Now, I am asking you further to work out the situation when delta is 



greater than 2 and you will see that for delta between 2 and 27, the cost continues to 

decrease as delta increases, because, in the optimal cost, the coefficient of delta would be 

some negative number. So, the cost will continue to decrease as delta increases as long as 

delta is between 2 and 27. 

So, this is what we mean by a transportation paradox, but surely you can try to 

rationalize why this is happening. Now, problem 5, I want to make a point here and this 

is see, I have been saying that for a a simplex algorithm to combat degeneracy, which 

means cycling, you apply Bland’s anti-cycling rules. 
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 And then you get the, you can avoid stalling; that means, you can avoid cycling right. 

So, the same thing we will do for the transportation problem also; now Thapa and 

Dantzig. I have given you the reference in the book this has been taken, it has given a 

transportation problem which cycles, if we use the ordinary simplex algorithm right. 

Now and then, I gave you an epsilon perturbation method also, which I feel and afford of 

course, many other practitioners feel is faster, one faster than Bland’s. 

So, now, here I want you to apply and Bland’s anti-cycling rules to the transportation 

problem, for that problem which is given in Thapa and Dantzig and see, then, count the 

number of iterations and compare with the because, I have solve the problem with an 

epsilon-perturbation. 



So, you should be able to compare. Of course, one problem is not enough to judge the 

performance of, but I just want to demonstrate to you that the Bland’s anti-cycling rules 

become the make the algorithm slower for a specially structured problem like 

transportation problems, because, these problems have a special structure. So, the 

epsilon-perturbation method is supposed to be faster. 
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So, I hope you enjoy doing the cycling. So, let me get back to strongly feasible basis and 

I thought I should have an one or two more examples to make you more familiar, 

because, we do not use them so often. So, here again, I am trying to give you an 

example. see show you suppose this is a strongly feasible basis a tree, because, as you 

see, you can send positive flow from every node to the root node; this is your root node, 

right you can just check. See here, everything is this fine. 

So, now suppose I will show you an iteration, when suppose, you with the arc 8 9 is the 

entering arc, I mean, sorry, what I want to say here is that, here suppose the flow is 3 3 

and I have to reduce the flow on. So, to reduce flow on arc 8 9, so, that means, the 

orientation of the cycle is going to be this. right This is the orientation of the cycle 

because, I have to reduce the flow and you can see that, for example, here, the flow can 

get reduced by, so this will be by 1 unit right here, the flow can go up by 2 units. Then, 

here again, the flow can decrease by 1 unit, the orientation is like this. Here, the flow can 

increase by 1 unit by 1 unit and by 1 unit right. 



So, essentially, your delta comes out to be 1. So, let me or if you want to, right what I 

mean is that you are going this way. So, here is minus delta and this will be also minus 

delta this will be plus delta and so on, you can write down. 

So, now let us see what are the blocking arcs, here, blocking arc, this is the blocking arc, 

right then, this is the blocking arc and these are all blocking arcs 3 5 5 7 7 9, because all 

of these limit the increase of the flow by more than decrease of flow more than delta by 

more than 1. right is it? 

So, and this is the orientation. So, how do you decide the exiting arc? exiting arc What is 

the exiting arc here?. So, remember we said that we will star, and this is your apex node. 

right Because you have these 2 nodes, you take the path and then they meet bo[th]- path 

towards the root node. So, they meet at 3, this is your apex node. So, from no[de]- apex 

this, you start along the orientation of the cycle, because, the orientation is like this. 

So, you start from here and then you go on. All these are blocking arcs you come up 

here, then, here, this is the last blocking arc or else this will be the last blocking arc right. 

So, that means, I will exit this one and you see then, the tree will hang by like this, and in 

that case, you see if this goes up by, this becomes 5 6, you will still be able to flow more 

than. Because, see now, what will happen here, the flow will be 0, but, when you exit 

this, the this these arcs will be hanging like this and the direction of this arc will become 

towards the root. Remember, for all 0 flow, arcs must be pointing towards the root node, 

this is the rule right and. 

So, this will again. So, exiting arc will be the last blocking arc, right which is in our case, 

3 4 right and the remaining tree or the new tree 1 once I update, the flow would be again 

strongly feasible tree. right Then, we had also mentioned the case that how do you get a 

starting feasible solution which is a strongly feasible tree, right and I had mentioned that 

when you use phase 1 and you get the artificial arcs as your a part of your feasible tree 

starting tree, then that will be a strongly feasible tree, because, artificial arcs do not have 

any. 

So, no upper bounds no upper bounds on artificial arcs. right no upper bounds on 

artificial arcs right. So, therefore you see that if this, so this will be my root node; in this 

case, this root node. So, then you see this is your 2 units of flow. So, I can decrease the 

flow on these arcs. Along these arcs, I can decrease the flow and on all these arcs, I can 



increase the flow sorry straight. Again from here, I should be able to oh be this. So, for 

these arcs, you can increase the flow and we had said that the ah right because, there is 

no upper bound. So, I can increase the flow here right on arc 1 6 and 3 6, I can increase 

the flow. 

So, there is nothing like a saturated arc and there is nothing like a 0 arc, in this case when 

you have. So, therefore, both the conditions do not apply, I mean in the sense that by 

default, the conditions apply. right. 

Because there is no 0 arc here, and there will be no saturated arc, since, they are no upper 

bound constraints. So, a starting phase 1 starting tree will be a strongly a feasible tree. 

So, you can begin your iterations by that and so, it has been effectively shown that using 

strongly feasible basis will will will avoid cycling. But again, stalling is a new problem, 

is a different problem and there are methods to tackle stalling also. So, that should take 

care of your a min-cost flow problem.  

Then, we come back to the shortest path problem and I had shown you So, the shortest 

path problem yes and I have shown you that this is the special case of the min-cost flow 

problem, where you had only having one unit available at the point from which you want 

the shortest paths to be found, and up to the point a node t. So, S and T we said we want 

to find a shortest S T path. Then, there is 1 unit available at node S and 1 unit is 

demanded at node T and you are computing and the C i j’s are the distances or the cost of 

traversing the arc i j. 

So, that is the arc right. So, and I showed you that you can you can solve it by the primal 

dual algorithm by repeated applications right and that turned out to be building up the 

path from t backwards right. So, now, if you just look at what was happening in the 

primal dual algorithm, from the starting node that becomes, and of course, what one can 

say is that, you are not actually applying the primal dual algorithm, but it is the primal 

dual algorithm in the sense, but your computations become very simple. 

So, let me first give you the algorithm and then we will discuss the thing. So, this is 

known as Dijkstra’s algorithm, this when C i j’s are greater than or equal to 0. So, this is 

special case, that means, Dijkstra’s algorithm will not be valid if some C i j’s are 

negative. Hence, then later on, we will discuss the case when the C i j’s can be negative. 

So, we will have another algorithm for computing the shortest path between any pair 



node. So, Dijkstra’s algorithm says that you define a set W as node x such that the label 

rho x denotes the l e n g t h length of the shortest path from S to x using nodes in W only. 

So, let me define a set w as the set in which I keep adding those nodes, for which I have 

short length of the shortest path from S to that node using only the nodes in w and that 

label, I will give it rho x right. 

So, that means, I will constantly go on building my set w and the moment t belongs to w, 

I have found the shortest path from s to t right. So, now, how do I do it? So, to begin 

with, to begin with to begin with S belongs to W and rho s is 0, because, there is a 

starting row right fine then and let to begin with, you have this and let me say then, here, 

and rho x is equal to c s x, if s x belongs to belongs to arc set right now here, I write. In 

the beginning, I had [had/has] told you that we will be doing it for a directed arc and so, 

this is always understood that v is your nodes set and a is the arc sets. So, I will not write 

it every time, so we said that is c x, if x s belongs to a and is equal to infinity otherwise. 
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So, in the beginning, for all nodes which are connected to s by an arc, I will give the 

label as the actual cost for the distance of the arc x s and for all other nodes, it is infinity 

in the for the for the arcs which are not there right. So, we have this, then what we do is, 

we say that, select select x such that rho x is minimum rho minimum of rho y y not 

belonging to w right. 



So, you have given the labels, that means, all the labels have defined here in the 

beginning, then I will pick up that node for which the label is the smallest for all nodes 

which are outside w right. So, initially, only s belongs to w, then you have labeled all the 

nodes and then you will look for the one which is the smallest label and you select that 

node and then you say that your w goes to w union x right and so, you continue and then 

you update. So, update the labels labels rho y as minimum the old label and rho x plus c 

x y see; that means, you have pictorially. 

So, you update the labels as for every, for for y, this is for al x belonging to w right 

update the labels for y not belonging to w, right then you do it this right and continue 

with algorithm, right that is, go back to, I should have written here, may be, if you want 

we to write this is step 1, then this is step 2 and this is step 3. So, continue (( )) that is go 

back to step 1. So, I have to now validate the algorithm and that means, what I have to 

say is that, what you end end of with would be your shortest path to the node e. 

So, what are we saying here is that, the moment when you select the node this in with I 

with this criteria, then the label, because, now w becomes part x becomes part of w and 

by our definition rho x must represent the length of the shortest path from s to x right. 

So, why do I say that? So, pictorially what was happening is that, see, I have this set w 

here, then I have a node x here, and I say that this is the minimum one, because you have 

so many other nodes outside w. So, I choose the one which has the smallest label and 

then I am saying that this has, that means, right now, rho x represents what rho x would 

represent, where I will add x to w; that means, rho x will represent the shortest. 

Ah. So, s is here, right it will be the length of the shortest path from s to x by using nodes 

of w. only right now what can I mean suppose let say suppose it is not true that means, 

Suppose there is another path from s to, so, the suppose this is p. So, suppose there is 

another path 2 x from s going through a node p, which is outside w, right then what can 

what will happen? 

See this path; that means, you are I am saying that rho x represents this length which is, 

the last node is somewhere here and then, so, therefore, what we are saying is that rho p 

plus c p x is less than or equal to rho x yes because, rho x I am saying, is the label for x 

right now and rho p is the label for p and shortest path to x is by a p. So, that means, this 

is the, so, this is rho p plus c, that is less than rho x, which is the contradiction of the fact 



that rho x was the minimum 1. So, this is not possible right and therefore, the, but but c p 

x better implies this right this contradicts. It is that the fact. 

So, the fact that x I will have to. So, this contradicts the fact that x had the smallest label. 

I think I am writing the spelling of label we will verify fine. So, therefore, therefore, x 

must be. So, x must represent the shortest d distance from s to x [why/while] using nodes 

of t right therefore, therefore, once t belongs to w we have the labels representing 

shortest paths shortest path lengths representing. 
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So, we have a label representing shortest path lengths from s to each of 2, each of the 

other nodes, because, now, in the process of computing the shortest path from s to t, you 

have managed to compute shortest paths from s to every other node. right And, if you 

just start your dual simplex algorithm, you know, like if you can reverse the network and 

have t as your starting node, then, you see that the every iteration of Dijkstra’s algorithm 

matches with your primal dual algorithm. 

So, this. So, therefore, this is nothing different, but the thing is that without the 

justification of the primal dual and going through that whole process, you simply do this 

and the argument, simple argument, that you by defining w this way, you can where say 

that the labels that you are computing are the shortest path lines. 



So, it is a short-cut, real, because, we are I have exploiting the structure of the algorithm 

network and we are using the fact that C i j’s are non negative right. So, let me give you 

an example here. 

(No audio from 30:58 to 31:48) 

So, if this is the network, the distances on the arcs represent your C i j’s and you want to 

find out the shortest path from 1 to 6. 
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So, the we will start with the. So, I can just start writing the labels here right. So, initial 

labels would be, see as I said 0 and then for arcs for nodes 2 and 3, the labels would be 3 

and 5 and for all. So, it will be 3 5 and infinity. So, this will be 1 2 3 4 5 and 6, so 6 

labels and these are the thing right a starting (( )) right. So, then, by then by addition, w 

consisted of just node 1 with label 0 right. So, now, you see that. So, I will just indicate 

the by star, the once which with and see the name for the nodes which get which get 

admitted to they said w, are called permanently labeled, because, then, their shortest path 

length of the label will change. Remember, we only update the labels for y, not in w. So, 

then, nodes which are already in w the labels do not change ok. 

So, this is it. So, now, I will choose this one, right I should have put the star later on 

right. So, since the rho 2 is the smallest, is the smallest is the minimum one right. 

Therefore, your w now includes this right and then, we have to update, so, that means, 



you have to look at all nodes which are now connected to both 1 and 2. right See, the 

minima was over all nodes in w, right you are trying to find out. 

So, we can just do it right on the network, here, say for example, for this one, this is 

connected to 2 4 is connected 2 and the label here would become 8 and the original old 

label was infinity. right So, that means, here I can write down 0 3 and this one would 

become 8, right then, for node 3, for example, the earlier node was 5 and the label was 5 

from 2 you can come to 3 and the distance is 3 plus 1 4 and I do not have to do the 

minima, because, I know that the others are all C i j’s positive. So, I cannot for example, 

in fact, I cannot come back to 3 from 2 by any other root. 

So, these are the only possible ones. So, therefore, 3 plus 1 4, so, this 1 also gets updated 

to 4 right and then 2 5 2 5 you have 3 plus 1 right and you have 3 plus 1 plus 4. So, 8 8 

and 3 plus 1 4, so, the minimum is 4 and that is smaller than infinity. So, this is this and 

this is infinity. 

So, these are your new labels originally, you had these permanently labeled; now you 

choose the minimum one. 

So, you have in fact, 2 of them at the same time. So, I will choose both of them, nothing, 

no body stops me from not labeling more than one right. So, therefore, my w, then in 

case, that becomes 1 2 3 and 5. 

So, therefore, now you have this label permanently, this suppose, this label permanently, 

this is label permanently and then this is. So, now, and the graph you can see 

immediately. So, to update what will I do from here, you can look at this 1 yeah from 3 

we can reach 4. So, this is 5 plus 2 7 and the earlier 1 is 8 right and there is no other path 

to reach 4, from 2 3 is no other path right, so seven. So, that gets updated to 7 and from 

5, you see that this will get updated to. So, 3 plus 4 is the old 1, so 4 plus 3 7. 

So, now you have the new labels are 3 4 7 7 sorry 4 and 7, so both of them get a 

permanently labeled right and so, your w is now 1 2 3 4 5 and 6, so just 3 iterations and 

you could label the, find out the shortest path. I chose a very simple example, they can be 

many more roots to choose, but anyways still you see at each iteration you must. 



So, what is happening is that, now let me just introduce an element of, you know, 

concept of complexity of an algorithm, which I have not so far talked about. But, you see 

here, what is happening, your size of w will induct at least 1 node. See at least 1 node in 

each iteration right and so, therefore, the number of iterations iterations is n, at most right 

order n. In fact, because, as we saw in this case, it only 3 iterations, because, I could 

label 2 nodes at a time. So, it could be order n right and then at each iteration how much 

work are you doing? At each iteration, you are just updating the will label of the once 

which are not in w. 

So, again, this orders n because, you are simply adding and comparing the minima, so 

which is, before we say that, all these elementary operations, we consider them as 1 unit 

of work, so therefore number of iteration this and work work done at each iteration at 

each iteration is order n. 

Therefore, you say total complexity; that means, the number of it is not right coming out 

very nicely. Total complexity is order n square, which is really nice because, at most, in 

order n square steps calculations of addition comparison and so on, we will able to find 

out the shortest path from in a network with having n nodes. So, let me now consider 

another shortest path algorithm where these C i j’s are allowed to be negative, because, 

Dijkstra’s algorithm, we saw that the proof, the validity was dependent on the fact that 

the C i j’s were non negative right. 

So, Floyd war shell algorithm in fact, finds for the shortest paths, finds shortest paths 

between all pairs, not just in one pair, 1 all pairs of nodes when C i j’s can be less than 0 

right (( )). 

So, but then again, when when you have a negative C i j’s, it is possible that you may 

have negative cycles in the network right. So, part of the cycle may be if yeah I can. So, 

once if this, it is a negative cycle present in the network, then, the shortest path length 

has no meaning, because, can go on traversing the negative cycle as number of as many 

number of times I want and I can go on reducing the shortest path length. In fact, so, 

those shortest path lengths would all be bounded, I can go I can make them go up to 

minus infinity. So, that is the danger and so, any algorithm which claims to compute 

shortest path lengths when the C i j’s are negative, should also be able to to detect the 



presence of negative cycle and then stop, because, once the negative cycles are present, 

then the shortest path length has no meaning, because, you cannot define them right. 

So, or you can say, as it can be negative, it also detect negative cycles when present in 

the when present in the network and the idea is simple and I will then give later on, its 

validity. 

So, it detects negative cycles when present in the network right. So, definition is simple, 

what I do is, we define the quantities u i j m as the length of the shortest path between 

node I and node j that uses the nodes 1 2 2 to m minus 1 only. The idea is that, again it is 

a partial short shortest path that I have completing and the same that we did not 

Dijkstra’s algorithm. Also, we limited the shortest path to the it is nodes of w, that is, I 

can only use the node of w and then go on building the shortest path. 

So, here also we say that u i j m will denote the length of the shortest path between node 

i and node j when only nodes up to 1 to m minus 1 have been used. So, necessary that all 

of them get used, but what we are essentially saying is that, nodes m to n should not be 

used in the construction of this shortest path from i to j. This is what we do right. 

So, and therefore, u i j n plus 1 will denote the shortest path lengths, because, by that 

time, I would have used all the nodes 1 to n and therefore, my claim should be, we will 

prove this, I will denote the shortest shortest path length, I (( )). So, once I have gone 

through all the nodes, that means, there will be n iterations of this algorithm again and 

so, we will then be able to claim and I will prove to you that the u y j and plus 1 will 

denote your shortest paths. 
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So, then how do I update? So, the idea here is that, you write u i j m plus 1 has the 

minimum of, that means, when you go from m to m, if you want to include the node m in 

the computation of the shortest path, then, you will say that this is u i j m or u i m m plus 

u m j n. So, this is clear if the shortest path from i to j when we are allowing the inclusion 

of the node math node. 

So, either it goes through the node m or it does not. If it does not go through the node m, 

then, the earlier shortest path remains intact. So, this must denote the length of the 

shortest path, because, the if not using the node n, if the node m is used, then obviously, 

it should be made up of the shortest path length, from I to m, right because, this 1 does 

not include the node n right a pair minus 1. 

 So, you are including node m here, so this plus u m j m, so, from I to m m to j. So, this is 

the only two possible things and therefore, if you choose the minimum with the 2 as u i j 

m plus 1, then you have updated the u i j values and you are the saying that this will be 

the ah shortest path, when you allow nodes up to one to m to be included in the shortest 

path right. So, this is the thing and so, once you say that this is this we can you can say 

that u i j n plus 1, actually you can now write as u i j right and you see that this will, 

because of this, this will always satisfy u i k plus u k j. That means, if you take the triplet 

i k j, because, you are choosing your updating your distances shortest path lengths by this 

formula. Once you have done it for all the nodes, then of course, there will will be nodes 



because these things get fixed up and so, u i j will be less than or equal to u i k plus u k. 

this is sufficient condition for right. So, this is your sufficient condition for. So, it is a 

sufficient condition for optimality, that means, if the set of numbers u i j indicate it 

satisfy all these, how many will be there and yes. 

So, let us see, we said that we will have n iterations for each pair, because, you are 

computing from 1 to n plus 1 n iterations and then you are doing or maybe after I show 

you the computations, you can have a better feeling and you doing it for n square pairs. 

So, your computation should not be more than order n-cube, right I mean. So, the if you 

if you just in a in a very rough way count the basic number of computations that you 

have to do, that will not in more than or an n square. 

Now, we have a various way of representing the computation for these quantities through 

the matrix and. So, here let us write out, suppose you have given this network. 

(Refer Slide Time: 46:50) 

 

Again, the numbers are the c i j’s. So, you can see that, quite a few c i j’s are negative 

and so, let us show the calculations for the Floyd war shell algorithm on this matrix. 

So, I have this the numbers node numbers are here and then, so, u i i’s, we will always 

take to be 0. Right now, right the starting thing, you can say that the c i c i i’s c 1 1 c 2 2 

c 3 3 c 4 4 c 5 5 are all 0 and this gives you 1 to 2 1 to 2 1 to 3. 



So, these are the show you the distance arcs a distance matrix right. So, then you want to 

compute, for example, u i j. So, the that this 1 is u i j 1. So, I am calling the matrix 

capital u on1 and the components are u i j 1 right. 

So, this are u i j 1. So, let us use the matrix representation and I will show try to show 

you the recursions for the Floyd war shell algorithm. So, for example, if you want to 

compute u 2 1 2, let us say u 2 1 2 right then, this will be, according to a formula 

minimum of u 1 2 1 and then, it’ll be u 1 1 1 plus u 1 2 1. 

So, you see here and so, the thing to remember is that, these 2 indices must match right. 

So, u1 1 plus and this is 0. So, this is u 1 2. So, there is no difference, so, in fact, want to 

show you that, when you are doing when you are doing the computations for u 2, that 

means, you are including the node 1. 

So, interpretation for this is that, you want the shortest path between 1 and 2, where node 

1 is included. So, either you include the node 1 or you do not fine. So, this would be the 

computation. 

But, you see, it will not make a difference, since, we are taking the diagonal elements to 

be 0. So, this is this right and here the trick is. So, for all distances here for the 

corresponding nodes and for this, for the pair of nodes and this, they will be no change. It 

is only for the other the this thing set, the change can take place and then I want to show 

you. 

Say, for example, consider 2 3. So, 2 3 would be yes here u 2 3 u 2 3 1 would be 

minimum of u 2 sorry this is 2 2 3 1 and then it’ll be u 2 1 1 plus u 1 3 1 right and let us 

quickly see that. So, you wanting the distance between 2 and 3 and so, if you include the 

node 1, then it is 2 1 and 1 3. 

So, this is 2 minus 1, which is 1 and so, there is a change 1 3 u 2 this is 1 ah sorry this is 

u 2. So, 2 3 is 1, right initially it was 2. So, the moment this change takes place, then I 

will record the last node visited that means, the change came because of node 1. 

So, then you can immediately trace the path, because, the path from 2 to 3 has to go via 

1. So, therefore, your shortest path right now, when you are allowing [thu/to]- add node 1 

is 2 1 3, that is the path. 



So, this matrix will record the changes that occur and the last node that you visit, it while 

finding out the shortest path. So, this is it. So, now, when you can check that no other 

change takes place and this is it right and so, similarly, you will compute, this will be 

your u 3 and then this will be u 4 and now, here we just want to. 

So, for example, when you want to compute u 3, then we will underline the this thing 

here, second row and second column and in this 1. So, now, again there will be no 

change for the pair of nodes in this row and in this column. 

But, there will be, you can consider for example, now I can just maybe show you that 

this has change, because there is a recorded node here. So, that is 1 4, so 1 4. So, the idea 

is that, you look at this and then you just go up to the row for which you are considering, 

for example, we are allowing to include nodes 1 and 2 in the shortest path right. 

So, this will be this and this will be this. So, you will compare this entry, I am looking at 

this recursion formula for you. So, this will be this entry and compare it with the sum of 

these 2. So, 1 minus 1 is 0. 

So, obviously, 0 is smaller than infinity, so that changes and so, one 4 the distance 

becomes 0 and you visited and that came through the node 2 right. 

So, when you want to trace the path for 1 to 4 say for example, then it tells you to go to 

2; so, from 1 to 2 and 2 to 4, because there is no change here for 1 4. So, the path you 

immediately have 1 to 4 and the length of the path, the shortest path. 

When you allow nodes1 and 2 to be included in the path is 0. So, this is the idea. So, 

when you are computing u 4 then, you will circle the third column and the third row and 

again make the computation, same computation, right any entry you take here, then you 

all all you have to do is to go this way and this way, then compare this with the sum of 

these 2 and whenever you find a smaller number, you record that. 

So, for example, you can just verify that these are the 3 entries where the change took 

place and then, when you allowed nodes up to 3, then you will have this computation. 

You can please check all the computations here, they might be some error. 



But, anyway, the change takes place because of node 3 and you see this is what we want 

to point point out that, u 4 4 u 4 4 is negative, that means, the there is a negative cycle 

and you can immediately check the cycle because this is 4 to 4. 

So, to do that, the change came place from node 3, right so, that means, you go to 4 3 4 3 

and then you suppose to then a 4 3, you can look at the this 1 here, there is no change 4 

3. 

So, your path should be 4 3 and then, it 3, the change took place; yes here the change 

took place via 2, so 3 2, so you have to visit 2 and then you go to 4. So, if you look at 4 3 

3 2 2 1, yes 4 3 is minus 1 3 2 is 1 2 4 is this. So, therefore, the total length of the path is 

minus 1 and hence, there is a negative cycle and so.  

We stop here, because, now the problem is in the sense infeasible, because, the shortest 

path lengths is not defined, since, I can go on reducing the shortest path lengths by 

traversing the cycle again and again. So, you can see everything right on the graph and 

through this matrix method, we can compute these distances and the complexity is order 

n cube. It also tells you the presence of negative cycles, if there are any, and you can 

stop. 


