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So, let us today first discuss the issue of obtaining a starting feasible spanning tree 

solution, to your network flow problem; is min-cost flow problem. So, here is the 

problem with 5 nodes and these numbers indicate your, yeah, I should have set 

somewhere here, these are your b i's. So, node 1 and node 3 are the two source points and 

nodes 2, 4 and 5 have demands. 
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So, the demands are shown with the negative a i’s. Then, these numbers is, first number 

is the cost and the second number is the upper bound on the arc on the flow. So, there is 

more than one way always of obtaining a basic feasible solution, starting feasible 



solution. I will indicate both to you, but we will discuss this one in the term more detail 

and, the, this is phase I; so, that means phase I.  
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So, the idea is that you add artificial, artificial, node to the network and then connect all 

nodes which have positive supplies to with the arc coming into 6 and all nodes which are 

your markets, that is, 4 and 5 you connect the, if the arc has to go from 6 2 that node. 

So, you can see that and of course, in the supply here would be 0. Therefore, you see, 

this point will then get 8 units, because 5 plus 3 either total supplies available in the 

network. So, 8 units will go to 6 and then these 8 units will get 3 distributed to 2, 4 and 5. 

So, 2 has demand of 2; 4 and 5 both have demands of 3 units. So, this is the thing. So, 

you start with this and you can, this just like your phase 1 that you sub you start your 

basic feasible solution with the artificial arcs. 
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So, here your starting solution 1 6 x 1 6 is 5 and of course, the cost to these arcs will be 1 

just like in phase 1 and the original cost will be all 0. So, what we are saying is that you 

are in phase 1. 
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Your c, all I will write out this here c 16 is equal to c 36 is equal to c 62 equal to c 64 

equal to c 6 5 is 1. All other c i j, c i j, equal to 0; that means the original arcs cost 0 

exactly phase 1. So, you just see the correspondence at every step. So, here, this is your 

this thing, and now, we will compute the dual solution. So, quickly you see you can 

immediately see that for this arc for example, for a supply point. 
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It will be w 1 minus w 6 which is 0; w 1 minus w 6 which should be equal to the cost 

here is 1. So, for all the supply points, the dual cost would be 1, and for all these things, 

for all demand points, it will be minus 1 exactly the same, and so, we begin our simplex, 

network simplex algorithm. So, you can see that start with the node and I will use the 

first encountered arc, the first beneficial arc encountered as the candidate for coming into 

the basis. So, if you look at arc one 2, what is the cost, the relative cost? The relative cost 

c 12 bar is see the arc is 1 2 and the 0, the cost is 0 here. So, c 1 2 is 0. So, this will be 

minus 1, and then, w 2 which is this minus 2, this is less than 0. So, in fact, I do not need 

to repeat these steps but just may be 1 or 2 iterations I will show you. Therefore, this is 

an arc for coming into the basis, and so, you have to add this arc. 

The moment you add this arc to your tree, it becomes does a cycle and you want to 

increase the flow. So, the orientation of the cycle is this. So, if this is plus delta, this will 

be minus delta because the arc in the opposite direction and here also it will be minus 

delta. So, we just look at the upper bounds here. See for example, delta cannot be more 

than 3.  
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So, your choice of delta has to be minimum of 3. Then here to the flow on this arc is 2. 

So, you cannot reduce the flow by more than 2. Therefore, this will be 2 and here of 

course, this is 5. So, that is fine. You have this for the system; so, that means the 

incoming want to comes at a level 2, and in place r 2 6, leaves the basis. So, we will do 

the calculation here and I will make this arc basic. So, this will become the updated; this 

is 3. Before I enter this, remember we have to then update the dual solution and what the 

rule the shortcut we were using was that since arc 6 2 is going to leave the basis. 
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So, if we drop this from your original tree, then you see what are you left with? You are 

left with this one. So, t is therefore, and, and, your root node is 6 which belongs to t 1. 

So, t 2 just consists of node 2, and since c 12 bar is minus 2, the dual value here would 

go up by, would get reduce by minus 2, which means your nu, your nu, w 2 bar, your nu 

w 2 is old minus plus 2 minus of minus 2 which is 1. 
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So, therefore, the iteration is very quick; this is simply 1. This will remain 1, well, not 

now, sorry, it will remain 1 because this was part of t 1. So, this is this and this arcs, so, 

this arc goes out of the basis; so, this is your new tree. So, one artificial arc has left to 

basis. So, let us compute the, the, relative prices again. 
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So, c 2 4 bar is minus 1 minus 1; so, that is less than 0 minus 2 is less than 0. So, we are, 

I will say that this arc, if it enters the basis, they will be in improvement in the cost and I 

am taking the first arc that I get which is eligible, and so, the orientation of the cycle you 

see 2 4 has to enter, then the, and since the flow has to increase on 2 4, the orientation of 

the cycle will be like this. So, it will be plus delta here minus delta minus delta and plus 

delta, and so, yeah, I am that, that, yeah, right, fine. 

So, then delta comes out to be minimum of 3 1 3, because you already have 2 units of 

flow here and the flow at most can be a 3 units on arc 1 2. So, therefore, delta will be 

minimum of 3 1 3 you can see, because actually this is only 2 2. So, I should not have 

written 3 3, it should be 2 2. In anyway, the minimum value is not affected. So, this is 

delta equal to 1, and so, flow on arc 1 2 reaches its upper bound. So, once I increase the 

flow by one unit here, then the flow has gone up to 3 units, and so, this reaches its upper 

bound. So, since I have to drop one arc and none of these arcs become, the flow does not 

become 0. 

So, they will remain basic; 2 four is becoming basic. So, I will drop 1 2 from the basis; 

that means I will make the status of arc 1 2 will change from basic to non-basic at its 

upper bound. Therefore, 1 2 leaves the basis and 2 4 enters. So, when 1 2 leaves the basis 

in the old tree, you see if this leaves the basis, then your t 1 is all this and t 2 is only 

containing arc node 2, and therefore, t 2 is 2, and so, your add up and since the arc 2 4 is 



entering; that means p q, so, p belongs to t 2; p 2 p belongs to t 2. Therefore, you will 

increase the w 2 prime by the c 2 four bar. 
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So, therefore, 1 plus minus 2 because c 2 four bar is minus 2. So, for, if, when p is in t 2, 

then you add the c 2 four the, the, relative price of the incoming arc, and if q belong, then 

you subtracted. So, it is 1 plus of minus 2 which is minus 1. So, that is the only change in 

your this thing and of course you update the flow. 
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So, I have shown it, yeah, so, therefore, the flow, the new flow I am showing you here. 

So, the new basic feasible solution, this is non-basic and this is the current flow. I can 

something, I think originally the flow was 3 here on these 2 arcs, and so, I have probably 

updated the flow right here also, but in any case, this is the current basic feasible 

solution. So, it is 2 2 and this flow is become 1. The arc 2 4 enters the basis at level 1. 

This becomes non-basic and I have shown you, fine. So, now, we continue with the, so, 

as I said that I am not using the Dantzig rule for entering variable for, you know, where 

you choose the most eligible arc.  
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I simply choose the first incoming and of course, you might say what would be the 

weight of first incoming, and of course, that of course you may decide whichever way. 

So, the first arc that you hit as a eligible arc, you can enter it into the basis. So, in the 

example that I solved in the last lecture, the min-cost flow problem, I would like you to 

up with there I use the Dantzig rule for entering a arc in the basis. Now, try to apply the 

first eligible arc rule and see if there is a difference any number of iteration, of course 

one example is not enough but fine, you might just check for that. Now, I continue with 

the one more iteration of phase I for min-cost flow problem. 

 



So, now, c bar 3 4 and of course, you may have notice by now that arcs for which the tail 

has value 1 and head has value minus 1. Those are the ones for which the relative price 

will be minus 2. You might have discover that by now. So, c bar 3 4 is equal to minus 2 

is less than 0, and so, here, again when you give the orientation of the cycle, because 

flow on 3 4 has to go up, so, this is plus delta minus delta and this is minus delta.  

So, here, delta will be 2 and here 3 4 the flow can be at most four units. So, therefore, 

minimum of 4 and 2 which is 2. Therefore, the flow can increase by 2 units on the arc 3 

4 and that case 6 4 will become non-basic, and so, here also you can immediately see that 

when 6 4 is leaving the basis, then your t 2 is 2 4; t 1 is this one, 1, 6 and 3. So, 2, 4 and 

then 4 belongs to your leaving arc is, incoming arc is 3 four. So, q, q, is 4 and 4 belongs 

to t 2.  
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So, your, I should I write this, this should be w 4 prime. So, w 4 prime which was minus 

1, so, minus 1 and then this is minus 2, so, plus 2 which becomes 1. So, w 4 primes plus 

1. So, I should update this 2 1, and then, the flow has to be updated; that means the flow 

here will become 2; this will become non-basic; flow here will become 1. So, you will 

continue and you see that now you have got read of one more artificial arc. 

So, the idea is that you continue with these phase I till you have driven out all the 

artificial variables from the artificial arcs from the basis and you have a flow vector 



consisting of the original arcs. In case you have, you still have, see artificial arc at 0 

level, then you will again no methods how to enter any of the original arcs in the basis to 

form a cycle which, which, can form a cycle with the current consisting, a current tree 

consisting of the cycle must contain that artificial arc at 0 level, you do that, and then, 

you can enter, because they will be no change in the flow since the outgoing arc has 0 

flow. So, your delta will come out to be 0.  

So, you know, you can handle that part how to, finally, obtain a basis now of course, the 

issue, that is, left is I have not yet discuss that and I plan to do that as I promised for 

bounded variable transportation problem also and the same thing almost applies here. As 

I told you, the only difference between a min-cost flow problem and a bounded 

transportation problem is that the for the min-cost flow problem, it is a general network; 

for bounded transportation, it is bipartite. 
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So, I would like to give you sufficient condition sufficient condition for a feasible 

solution, feasible solution, for min-cost flow problem. So, this we will discuss once I 

have talked about the max-flow problem, but now, here, finally I just want to show you 

what will be the final solution that you will obtain at the end of phase one and then you 

can begin your phase I . 
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So we continue with phase I and I want just to show you this is what you will get at the 

end of phase I. So, all artificial variables are out of the basis. I have written here final 

solution of phase II. What I meant is that final solution of phase I, and now, you can 

begin your phase II. So, phase II you will put the 0 thing here, or so, the root node is this. 

So, you will put your w 1 as 0, and then, you can immediately compute your 2 3 4 5. The 

w is corresponding to the other nodes and you can begin your network simplex 

algorithm. So, no problem; so, as I was telling you that it is possible that your phase I 

may end with some artificial variables in the basis at 0 level, then you know how to drive 

them out and get flow vector consisting of the original set of arcs, and as I said there is 

also important that you should know, you should have sufficient conditions for the 

solution being that, for the problem being feasible, and I would like to discuss that in one 

go when we are we have talked of the a max-flow problem. Now, ad- hoc methods for 

obtaining a starting solution.  
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The idea simply is that you just start from your first node whichever is the supply point 

send as much flow as you can along the arcs which are going out of it. Then you go to 

the next node, which are the surplus node. You again from that send it keeping in mind 

the upper bound constraints. 

So, you just like that you can try to satisfy all the demand constraints and use up all the 

supplies and then you can reduce the solution that you obtain. That will not necessarily 

be basic feasible solution; that means it will not being a spanning tree, it may have more 

than m minus 1, arcs m n minus 1. If the number of nodes is n, it may have more than n 

minus 1 arcs. So then, I will give you a method to reduce the given feasible solution to a 

basic feasible solution. 
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So, the ad-hocs method I will demonstrate through an example, and the idea here is that 

suppose at this node, sixty units are available. So, I start with the first arc the twenty 

units is the capacity. I will just flow twenty units along 1 2, twenty units here and twenty 

units here, because the remainder is 20 left here now of this one 60; so, I will have 20. 

So, this is my first set of allocations. Then I go to node 2 and node 2 you see had demand 

of minus demand of 15.  
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So, 5 units will be surplus. So, the idea is that I will observe the fifteen and then plus 5 

will go here. Now, look at twenty here which is coming to node 3. Node 3 has no 

demand. Therefore, I will send this twenty to the first arc outgoing from here twenty, and 

so, this becomes 25 write this gets used up. 

Now, you come to node 4 and node 4 has ten units available; so, that means the total 

amount available here becomes this things. So, I should have used it. So, yeah, right, so, 

I should look the number here. So, 10 plus 20 20, 10 I send here because this is the 

maximum that you can send along arc four 6, and so, 30 will go here, sorry, 20; 20 came 

from here; 10 were available here. 

So, in all the 30 gets distributed, and then, I come up at node 3. Again this one is 

observe. So, here this is 3 5; 3 5 the capacity is 20. I send all the flow all the units 

available here along the r 3 5, and then, it 3 5 you have ten more units. So, we will send 

twenty here, because why twenty here? I could have send, because this was minus 5, 

yeah, then this up to you. So, write 1 because capacity here was 30. I could have send all 

the 20 here and the 10 here. I could have send 30 here and because the demand here is 

60. 

So, I could have done that 30, and then at node 6, 5 units got absorb, but anyway, I chose 

to read this to redistribute, so, 20 10, and there is another reason, because I want to show 

you how to reduce this feasible solution to a basic feasible solution. Anyway, so, does 

not matter. So, here, then you have 5 units available required. So, from 10 5 are left, and 

so, along this arc, you will send how many? So, let us see what is happening. Yeah, 25 is 

coming from here; 20 is coming from here; 14, 45, then 10 came here and 5 over left 

over because 5 got demanded. 

So, 15, so, 15 go here, 45 plus 15 – 60. So, this is a feasible solution. All is so ad-hoc 

way. You can, you can sit down and program your own way of doing it how to compute 

the ad-hoc method. By ad-hoc method, you get a feasible solution, and now, because we 

want to get rid of the cycles, remember, a spanning tree solution will have no cycles 

present in a. So, we will one by one try to redistribute the flow along the cycles. So, if 

you look at the first cycle here 1 3 2 1, so, I cannot do anything here, because the 

capacity is 20 and the capacity here is also 20; here it is 35, but for the increasing, the 

flow here along the cycle I cannot, I will have to increase the flow here also, I cannot do 



it. Therefore, for this cycle what I'll do is since both these arcs are at there upper bounds, 

I will, I will, I will, rename these arcs 1 3, 1 2, 1 3 as non-basic arcs, non-basic arcs at 

their upper bounds. Remember the idea is that we are, I just want to have, how many 

nodes are there? Seven. So, I should have 6, I should have 6 arcs which are in my basic, 

which form my basic tree. 

(Refer Slide Time: 20:39) 

 

So, I will rename, I will just put instead of this, I will put a square. To indicate that this is 

a and I will write a broken this thing. This a broken arc to indicate that it is not a part of 

the my basic tree. So, here also this is 20 and this will be broken; so, that is it. Now, we 

want to go look at, therefore, the, the, both these cycles are not there anymore. Now, you 

look at the cycle or you look at the cycle 2 3 5 7, 2 3 5 7. So, here, arc 3 2 has capacity 

more than what is. Therefore, if I try to flow delta units here, then this will be plus delta I 

can do it, then this will be minus delta and this will be minus delta. This way I can 

redistribute the flow. So, what is the limit for delta? It comes out to be twenty, and since 

the idea is to get rid of, as many non-basic, as many arcs is possible in the sense that I 

should only have seven of them left. So, I will choose delta to be twenty, and so, both 

these arcs will go away, and so, the flow here will become four, but I cannot choose delta 

to be 20 because this is 35, so, only 15, and here, this is 10. 



So, I can choose delta to be 10 only; so, that means, yes, and once I choose delta to be 

10, then this arc will reach its upper bound and I can then call it a non-basic arc, because 

I am searching for, 6, 6 basic arcs which are, which can form my basic feasible solution.  

(Refer Slide Time: 22:33) 

  

So, delta is 10. Therefore, this flow becomes 30, and this now becomes a non-basic arc. 

So, this is 35, I will do it this way and this is a broken arc. So, here, the flow becomes 10, 

and here also the flow becomes 10 units. So, this is what. Keeping upper bound 

constraints and maintaining flow conservation, that law anyway be maintain. If I 

reallocate the flow along cycles, so then, I have this. So, I have manage to get rid of 3 

arcs or at least rename 3 arcs as non-basic. 

Now, you look at this cycle here. So, at this cycle, see what is happening is, yes, I can, I 

can, try to increase the flow here. The upper bound here is 40 that is no problem. Then I 

can reduce the flow here by 10, and what about 5 6? 5 6 also, if I increase the flow along 

this, then it will go plus delta, plus delta, minus delta and plus delta. So, this arc will get 

remove because delta is 10. See 5 6 the limit is 30. So, fine, for 3 5, it is 20; so, delta can 

be 10, and 4 3 just plenty of scope because its upper bound is forty. 

So, I can choose delta to be10 and again you have the choice of either making this non-

basic or this non-basic, because this will be non-basic at its upper bound and this will 

non-basic at 0 level. So, let us do that. 
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So, we will remove this. This arc goes out, and so, this will become 30, 30, and this will 

become 20, yeah, sorry, no upper bound, this is remain satisfy. So, this is 20, and here, 

the flow is also 20 but I am leaving it as a basic arc or I can, I can, decide to, so, let see 

how many do we have - 1 2 3 and I need the 3 more. Therefore, I will have to keep this 

later, because this cycle I have to remove one arc, I have to get rid of that cycle. 

So, therefore, I could not have made this a non-basic arc also at its upper bound. So, this 

is the new thing, and now, we look to get this cycle. So, 6 to 7 the upper bound is 35 and 

rewrite. So, I can, I can, increase the flow along this direction by delta. Then this will be 

minus delta and this will be plus delta, and again, delta can go up by 10 because the 

upper limit is 30.  
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So, this arc will go out, it will remain it will become non-basic and this flow will be 25 

and this flow here will be 30. So, you see if you remove these arcs, then you have 1 2 3 4 

5 6, six arcs they form your spanning tree and this gives your starting feasible solution. 
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So, this is an Ad-hoc method and one can do but mostly the software that has developed 

for min-cost flow problem, they, they, program phase I because easier to program it. 

Here, you can see that we will have to use lot of judgment at every point, how to do it 

though one can probably program this also, but anyway, I just wanted to show you that 



you can get a starting feasible solution, yeah, so, that takes care of your starting feasible 

solution. The next step is now what you want to talk about is degeneracy. Remember that 

are the second issue that we have to tackle here. Let me here begin from the very 

beginning.  
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So, first, I will talk about degeneracy in the simplex algorithm degeneracy and its 

repercussions, repercussions, in the simplex algorithm. So, I did talk to you about say 

what I gave you first the bland's method and this I think came around I must have given 

you the date exactly in my talk. When I was talking about the bland's algorithm 1976 or 

77 or, or, I am not very sure, but anyway, one can check that. So, this was given by bland 

but I should have any discussion on degeneracy would be incomplete without the 

lexicographic, because that concept still is used maybe different ramifications of that 

concept is still there. So, I thought I should talk about lexicographic method. 

So, what does lexicographic? What does it say lexicographic method? So, the idea here 

is that you want to make the choice of the outgoing variable unique and of course, one 

can say may be you toss a coin maybe you can, but it has to be where you show that the 

particular choice will lead you to, will lead you to, finite number of steps of resolving 

degeneracy; that means you should not cycle. 



So, this is what we mean by saying that the choice of the exiting and the incoming 

variable should be unique in such a way that you can say that the number of degenerate 

pivots will be finite; I mean a sequential or successive degenerate pivot should be finite. 

This is the idea. So, lexicographic was much before bland came up with this. This was 

write in the early sixty's, it was proposed.  
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And the idea here is, see, I will draw the diagram and then write down the rules. See 

what is happening is you have this right hand side vector, and suppose you choose this 

variable this variable to enter the basis. So, your c k, c k, minus z k is less than 0 and we 

are saying that this is a most negative. So, our incoming choice just has dantzig 

algorithm said - we choose the most negative one to enter the basis. Then, what was 

happening was that we looked at the positive entries here. So, this is the kth column.  

So, we looked at the positive y i j's and then took the ratios. Therefore, we first step was 

you took b I, b I, b I, y the, this upon y i k. So, we took the ratios for where y I k is 

positive, and then, we said that or let me write the index set here. So, we said that let I 

naught be equal to all I or all r consists of all r such that b r bar upon y r k is minimum of 

b I bar upon y I k, y I k, positive. 

So, I not was this. Now, if r was unique, if I naught has only had only one index in it 

which is r, then, so, if I naught is equal to r, then, sorry, here, it will mean 1, then x b r 



leaves the basis, l e a v e, leave the basis, but, the problem came when you had more than 

one index in the set I naught, that means there was a thigh of course, for this, for this and 

this there was a tie all 3 ratios were the same. 

So then, how do you decide which one exits the basis? This is where and because once 

you do the pivoting, then in anyone and the remaining 2 variables will become 0, then 

your values will be 0, and so, you can cycle. So, one, one, one, wants to avoid that. 

Therefore, bland gave you one rule which was that if you have more than 1 and choose 

that smallest index; that means out of the 3, this is the smallest basic variable in terms of 

its index. Then, you, it allow this 2, leave the basis, so, bland gave you this one.  
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Now, before that the prevalent rule was, see suppose these for m columns, these m 

columns for the identity matrix in the beginning. So therefore, this initially this was I that 

when we started the algorithm, suppose your starting basic feasible solution was an 

identity matrix. At this is happen if you have slack variables consisting of a making of 

your basis, then this was the identity matrix.  
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And now of course, so, you have y 1 to y n. So, it some intermediate iteration, these are 

the new columns they have been. So then, they said that suppose, so, now, we have I 

naught, you have more than one index here, then you take the corresponding element 

here and divide by this. So then, you take the ratios for this column from here; that 

means, sorry, first you chose, you took the ratios for the y i k is positive you took the 

numbers here and took the corresponding ratios they were thighs, then you take the now 

the ratio.  
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That means you should form form the index set, index set, I 1 such that I 1 consists of r, 

where now you have y r 1 y r 1; that means the rth is this thing from here divided by y r 

k. This is minimum of y, y i, 1 upon y r k; I belonging to I naught. The definition is that 

for all the indices that are present here. You take those components corresponding 

components in the first column here and then take the ratios from the corresponding y i 

k's, and then, again find out the ratios and then choose the minimum one. Now, seen rule 

here again if this is 1, then x b r leaves the basis; otherwise, you then, otherwise, form i 2 

with respect to the column, respect to the column, y 2. So, do the same thing; that means 

whichever indices are there in I 1, for which, the ratios is the same there is a thigh. For 

those ratios, you will choose the y 2 column, take the corresponding ratios, and then, 

again, find the minimum one. So, this process goes out, and why will it end, because you 

see if the things continue to thigh, then the process will end, end, for j less than or equal 

to m. Process will end for, I should say for n for i j - where j is less than or equal to m.  
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What I am trying to say here is that taking the ratios for column wise, the process must 

end much before we reach the mth column. Suppose, it does not happen, then what 

would it mean that the index set I m has cardinality more than one; that means you I do 

not have a, I have not come to unique choice of deciding which variable to leave the 

basis. So, this means at any 2 rows with indices I m are multiple of each other that will 

imply, because you see what is happening is that if index set of I m is more than one, say 

suppose r 1 and r 2 are 2 indices in I m, then what does it mean? That the ratios are the 



same for all because I have reached up to here, and so, for each of the columns, the ratios 

have been the same. So, y r 1 j upon y r one k is y r 2 j upon y r 2 k corresponding to this 

column, I am taking the ratios. 

So, then j varying from one to m which would imply that y r 1 j is y r 1 k upon y r 2 k y r 

2 j, because these numbers are non-zeros remember positive. Therefore, you see and this 

is 2 for j varying from 1 to m, which means that the r one th row is a multiple of is a 

multiple of the r 2 th row and these two rows are the rows of b remember, because we 

said that these columns will present the, initial, our starting basis was here. 

So, these rows are but, that means here, if r 1 th row is a multiple of r 2 th row, the 2 

rows cannot be linearly independent but that is not correct, because rows of be are 

linearly independent. Therefore, this process of taking the minimum ratio must end much 

before we reach the mth column or at most at the mth column, that is, when I have a 

unique choice of deciding, which variable should leave the basis, and that is the whole 

idea, because we said that we want to break the cycling process by making a unique 

choice of incoming variable and the exiting variable, but as we said that these are all very 

time consuming things. 

So, now, you see, this is fine; this use to work fine, but again, you can yourself see that 

to program this would, and if you have to do this exercise at every iteration, it will be, it 

will be very expensive. So, that is why bland came up with his idea which is was very 

easy to implement. Bland's idea did not require any such calculations, you could very 

simply implemented. It could be a program in any software for the simplex algorithm, 

but then, work done out is it was notice when the bland's algorithm got used all that the 

number of iterations became very large, because the long paths of degenerate pivots. You 

could continue to have though of course, you prevented cycling of course, which is better 

than having a long set of, long path of these degenerate pivots, but then, same thing, I 

mean here, you had to do many more iterations. Here, it was expensive to, to, you know, 

work out every iteration of the simplex algorithm. Then it turned out that what was said 

is that because here you do for when you substitute your right hand side, compute the 

basic feasible solutions, we divide by the determinant of the basis, and so, because of the 

rounding of errors, so, I should write it out somewhere here. So, the round-off errors play 

a role. 
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Round-off errors do not give you exact zero's on the right hand side. You will seldom c 

zeros here exactly, because of the, because you know that the computers work with finite 

algorithm, and so, what was spelt was that this, this, will really not happen when you are 

dealing with the general linear programming problem and solving the by the simplex 

algorithm, because, this right hand side will appropriately get (( )), because you will not 

get zeros, and so, you will not have a degenerate solution, and therefore, there will be no 

cycling. This is the empirical feeling and this is fine . 
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But, there is also I think this is a software developed by, I think some, some, Canadian 

people so which, which, sort of better the hand side appropriately so that you do not get 

degeneracy. 

See this is of course, a very theoretical in comprehensive method, but as I said it will be 

very expensive so this program takes care of degeneracy and therefore, cycling in the 

simplex algorithm. Now, for the network simplex algorithm, store is different, because 

for the network simplex algorithm, you do not the determinant of the basis is always one 

or minus 1. Therefore, you do not the round of errors are not, do not occur there and 

your, your, basic feasible solution will always the plus minus of the b i's, and therefore, 

the zero's will occur.  

So, in the, in the network simplex algorithm, degeneracy is a real problem. So, we will 

say in, yeah, this is the last statement I make this is a network simplex algorithm, and a 

network simplex algorithm, degeneracy is a real problem, real problem; I mean that it 

will occur because I have not yet talk about the assignment problem or the shortest path 

problem. We will, I will show you that you see, even in the shortest path problem that we 

discuss, it is not necessary that a shortest path will have n minus 1 (( )). It may have a 

few other n minus 1. So, you are going to have a basic feasible solution which is 

degenerate. Similarly, I will some time mention the assignment problem which is highly 

degenerate. Therefore, in network simplex algorithm the, algorithm, degeneracy is the 

real problem, and so, we have to calculate. 

And so, for the transportation problem for example, I have mentioned it that you should 

tried to I gave you one excellent perturbation method for handling degeneracy that I said 

you should applied Bland's algorithm also, and you will see that you may end up with 

more iterations, then the excellent perturbation method. So, we have to then compact 

degeneracy in the network place algorithm, and will, because of the structure again, we 

will able to give you perturb methods, then bland or lexicographic method. So, we 

discuss that after this.  
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So, Cunningham in 1976, maybe I should give the name here. Cunningham in 1976 came 

up with the idea of working with strongly feasible basis. So, let me explain what we 

mean by that a strongly feasible basis definition, this is a rooted, rooted, spanning 3 such 

that all arcs with 0 flow are pointing. This is pointing towards the root pointing towards 

the root and all arcs, I mean in the tree expanses, the spanning is the span rooted 

spanning tree so that all arcs with 0 flow are pointing towards the root and all arcs at 

their upper bound are pointing, pointing, against the, pointing in the opposite direction, 

in the opposite direction. 

And you can see that. So, I will give an example what we mean by this. See this is, this is 

an example. So, you let, if I call this a and this I call b, then represents strongly feasible 

basis. You see because here this is an arc which is saturated and it is pointing away from 

the root. This of course does not come into the definition because it is not saturated and 

the flow is positive. Similarly, here, again this was saturated, so, the arc is pointing away 

from the root.  

Then here, this is this is not saturated. Here, the flow is, so, this is not, I have to say that 

this should be this way. So here, this is 0 flow, then it has to be pointing towards the root, 

and the idea is that another way to define strongly feasible basis this that from every 

node of the tree, you should be able to send positive flow to the root and you see that 

immediately from here for example, I can send a positive flow of 2 units because you 



already have 2 units here. So, this will flow will get reduce; it is possible to do it. Then 

from here, because again you have 3 units in this direction, I can send 2 units here. 

Similarly, from here, because that is saturated, I will reduce the flow and I can send 2 

units here again along this arc. 

Similarly, from this point onwards because the flow is 0, upper bound is 3, I can send are 

at most 3 units and then but, here and I can send 2 units. Therefore, you come to 6 to 1, 

you can send 2 units. 
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So, a represent, so, figure a represents a strongly feasible basis, yeah, I have not given 

you the, see idea is that it is the feasible solution in the sense that with the demands in 

the supplies are net, and after that, this is the additional condition we are imposing, but, 

figure b does not represent strongly feasible solutions spanning tree, because here, you 

see this arc has 0 flow and it is pointing towards away from 1. See, therefore, from 5, I 

cannot send any flow 2 1. 

From node 5, I cannot send any positive flow. So, an alternate definition is, definition is 

that for a strongly, strongly, feasible spanning tree, it should be possible, it should be 

possible to send a positive, positive, flow from any node to the root node. So, this is an 

arc net and which one can very easily check. One can be write a small program to always 

check whether this is this right. Now, then the second thing is how do you maintain at 



every time, because if you have to bring in a basis, arc into the basis and remove an arc 

then, so, how to maintain, that is the next step. 
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How to maintain a strongly feasible basis? How to maintain a strongly feasible basis? So, 

the idea here is that suppose I will first explain in words suppose this is an arc which is 

coming in into the basis. So, suppose 7 6 is an arc which has to enter the basis, then and 

suppose it is at 0 flow, at 0 unit the flow on the arc 7 6 is 0 currently. Therefore, you are 

going to, this will be the orientation of the cycle and you will increase the flow by delta 

here. Now, this increases delta. Then here, it will be plus delta; this will be minus delta; 

this will be plus delta, because it has the same orientation; this will be plus delta and this 

will be plus delta.. 

So if this is an incoming an arc, then this is what you had. Now, just see, so, first of all 

we define what is called an apex node. So, I will write it down the definition. The idea is 

that if this is an arc which is coming into the basis, then from both these nodes, the tail 

and the head of the incoming arc you have path up to the, you have a path up to the root 

node. So, if this paths meet somewhere before the root node and that will be the apex 

node. Otherwise, root one is the apex node. So, we will first let me make a few 

definitions here.  
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So, what we say is that suppose, so, I will give you the rule for, suppose l k is the 

incoming arc, arc, and the current flow on it is 0. Therefore, the cycle formed, formed, 

has the same orientation as that of the arc l k, as the same orientation. Then, let the paths 

from nodes l and k to the root node meet at, at, a node w; w may be the root node also 

when w is called be apex node, w is called, w is called the apex node, say apex node, and 

then, to this rule was simple.  
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So then, determine and suppose, now, let, let, delta be the amount by which the flow can 

be, can be, allocated along the cycle or actually re allocated along the cycle. So, and you 

can say and suppose that i j and s t are the blocking are maybe, are the blocking arcs may 

be more than 2 blocking arcs.  
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Blocking arcs we mean the arcs which will, yes, the arcs which will limit the value of 

delta. So, for example, here, the value of delta will be determine by, see, delta would be 

what? Minimum of u 7 6, because the flow on this cannot go beyond the upper bound 

limit, and here, for example, the flow can be go up by 3 units only. Then here, the flow 

can decrease by 2 units only. So, I am just writing out like this, and here, the flow cannot 

increase at all because is already at its upper bound; so, it will be 0.  

Then here, it can go up by 1, and here, it can go up by, it can again go up by 0 only. So, 

in this case, it is 0 and the blocking arcs are this. So, the blocking arcs, therefore, in this 

case, the blocking arcs are 1 2 and 5 7, because they limit the value of delta. The delta 

cannot be anything positive here. So, these are the blocking arcs.  
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So, the idea is therefore, now I am define for you what are the blocking arcs. These are 

the arcs which limit flow of delta. Now, what it says is that choose, so the exiting arc this 

is the rule. Finally, they are giving exiting arc. So, it has to be unique is, so, this is, is, the 

last blocking arc, last blocking arc, when the, when the cycle, c y c l e, the last blocking 

arc, last blocking arc reached from w that is the apex node, reach from w to, to, the node. 

We had, we said that the arc that is incoming is l k to the node l.  
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That may explain that means it is the last blocking arc. See here, what we are saying is 

that this will be, if your coming has the from w, this is your apex node now. So, when 

you’re following the path from the apex node to the the incoming arc, then the last 

blocking arc; that means by this definition, this will be the arc. So, the flow will not 

change; that means this will become a basic arc. If you want, so, make it at 0 level, you 

want to make it basic, then this will be the exiting arc. 
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So, here, this is the last blocking arc. So, one can make it more here this is say that 

exiting arc is the last blocking arc reach from w to the node l, reach from w along the 

path. We can say that here I can make it more w along the path, along the path to node l. 

So, it is a last one if you do it, then what you have it. So, the remaining, so, the new tree, 

new tree, is again strongly feasible strongly feasible, yes. So, I will show you some more 

this thing, and of course, the question would be how do you then get a starting strongly 

feasible solution. The phase one tree that you got is a strongly feasible solution, you can 

check for yourself, because these, the artificial variables, artificial arcs do not have any 

upper bound limits on them. 

 


