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Let me recall from the last lecture I had defined a linear programming problem in its 

standard form, and we said that it will be minimize c transpose x subject to A x equal to 

b x greater than or equal to 0, and then, I told, I discussed situations under which, this 

system of equations will have a solution. So, we said that the rank of matrix A should be 

equal to rank of the augmented matrix A b and I add another column to the matrix A, that 

become the augmented matrix. The two ranks must be the same, and it is very easy to 

understand why this condition is required, because when we say that rank here is the 

same as this, that means, b can be expressed as a linear combination of the columns of A 

and this is what we are looking for. Here, when we say that this system has a solution, 

then you can rewrite the system as if I write, if I address the columns of A by A 1. So, 



this will be A 1 x 1 A 2 x 2, this is a second column and so on. So, this will be A n x n is 

equal to b. 

So, we are looking for numbers scalars x 1 x 2 x n so that this linear combination of the 

columns of A this equal to your right hand side vector b. This is what we mean when we 

say that the system has a solution, and then, we will also want to not only have a solution 

to this system, but we want to have a solution where all the components, that is, x 1 x 2 x 

n or all non-negative. So, that will be my feasible solution to the constraints for this 

linear programming problem in its standard form. 

Now, let me further develop some more theory here so that we can then describe the 

simplex algorithm analyze its complexity and so on. So, here, I will make the 

assumptions. So, let me just say that assumption, I will make this assumption and, that is, 

rank A is equal to m; that means its full row rank. I am assuming that a matrix A is m by 

n. So, by saying that rank a is m, I am assuming that all the rows of the matrix A are 

linearly independent, and later on, we will see that this condition would not be necessary 

of the time, because the algorithm that we develop for solving this linear programming 

problem, we will also be able to detect the redundant constraints; that means if some 

rows are not linearly, if all the rows are not linearly independent, it will be able to detect 

the dependent rows, and then, we can drop those rows from the matrix A, and so, what 

we get after dropping out the redundant rows would be again matrix which is fully row 

rank. 

The reduce matrix will again have all the rows which are linearly independent. So, 

therefore, this is not loss of generality. We will see that the algorithm will be able to 

detect whether the matrix A is full rank or not and then drop out the constraints which 

are not really needed. 
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So, I have start with the rank A equal to m, and now, let me make a few definitions. So, 

here, I am going to define a basic solution first, a basic solution, and this to, to, system of 

equations, a basic solution we always refer to a system of equations. So, this is my 

system of equations, and I have assume that rank A is m. So, what we will do is choose 

B a collection of columns of A which are linearly independent and m in number. Since I 

am assuming that a rank is m, the maximum number of linearly independent columns or 

rows that A can have is m. 

So, let me choose some, there may be more than one set of m columns of a which are 

linearly independent let me choose one set and I call it B. B is called a basis and what we 

mean by that is since all the other columns of A are dependent on the columns of B. 

Therefore, I can express any other columns which is not in b as a linear, as a columns of 

b. So, this is what I mean when we say that B is called a basis. So, I can use the term 

column space of A some of you who are familiar with this concept. 
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When we say that if you take a subspace which is generated by all the columns of A, 

then since the rank of the or the dimension of that subspaces m and B is a set of m 

linearly independent columns. Therefore, every other column of A is expressible as a 

linear combination of the columns of B; B is called a basis. 

Now, put all x j equal to 0 for which A j does not belong to B. So, since we start with the 

assumption, that A is an m by n matrix. So, there are n columns, and as I mention in my 

earlier lecture, that we will always we dealing with under determine systems. So, n is 

much larger than m. Therefore, here, since we are taking only m columns, so, the 

reaming n minus m columns are not present in B and we put all the variables x j 

corresponding to A j which are not in B equal to 0. Then, I have reduced system. 

So, the reduced system is B x B equal to b. So, let me say that, see, here, I have put x j 

equal to 0 corresponding to the A j which is not in B. So then, the remaining variables I 

will call them as x B, because they correspond to this basis B, and so, I have this reduce 

system; this is a square system and this is because the matrix B is non-singular. It is a 

collection of linearly independent columns. So, system is this and determinant B is not 0. 

This implies that x B equal to B inverse b is the unique solution to A x equal to b where 

we have put certain variables equal to 0, because this system is equal to this system, and 

since here my matrix B has determinant non-zero, non-singular, it has an inverse. 

Therefore, x B equal to B inverse b is the unique solution. 
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Now, here, when I mention this, see you may have a matrix A, where you have these 

columns, and I have just, I have picked up may be say some separate column which are 

not really 1 2 3 and so on. So, it could be any number, and therefore, the, when I pick up 

this column, the corresponding variable is x 1; when I pick up this column, the 

corresponding variable is x 3 and so on. So, therefore, x b will always be the set of 

variables which corresponds to the column, which makes up my basis matrix b. 
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So, therefore, this is now a unique solution, and I call this a basic solution; this is a basic 

solution, and in case, if all components of x B are non-negative, x B is a basic feasible 

solution. So, this is x B is the basic feasible solution and that is what we are looking for, 

because we want solutions to the system A x equal to b which are non-negative, and 

here, I have taken a particular kind of a solution to this system A x equal to b x non-

negative, where I have put certain variables equal to 0. I am solving a reduce system. I 

get another a feasible solution but I call it a basic feasible solution. 

One this thing, when I am talking of the numbering, say for example, if you take this 

column 1 0 0 0 1 0 0 3 1 0 1 1 1 0 0 0 0 1 0 0, I have this set of, there may be there are 

four constraints and the number of variables may be whatever. This is my B; this is a 

basis matrix. What I want to show you that the ordering also matters here in the sense 

that when I want to reduce this to, you see, I can, by row operations, I can reduce this to 

the form 0 0 0 1. Now, you are all familiar with elementary row operations, and when 



you solving system of equations, the elementary row operations do not change the set of 

solutions to the system of equations. 

So, I can do the row operations here and I will get this matrix 0 0 1 0 1 0 0 0 and 0 1 0 0. 

So, by elementary row operation, so, therefore, what I want to point out here is that this 

is actually the first basic variable of the first basic column and the corresponding 

variable. So, if these variables are, if these columns are A 2 A 3 A 4 A 5, suppose I 

selected these columns out of whatever number of columns the matrix a had, and this is 

my basis. This can be check that this is the determinant of this matrix is non-zero. Then, 

when I reduce it to this form, see after all to solve this system of equations, I would have 

to do row operations, and once I reduce it to this form, I can immediately read my 

solution, because there no other variables present here. So, therefore, this is equal to 

whatever the right hand side number; this will be equal to the second one and so on. 

So, what I want to says that even though I write my B as whatever the columns A 2 A 3 

A 4 A 5, this corresponds to the first basis column; this corresponds to the second basic 

column and this to the third and this to the fourth. 
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So, this will also be needed a times. I just want to it, because if the matter of notation, I 

want to you to be familiar with this, and then, let me now begin with take up an example 

and go through all the concepts that we have so far introduced. So, I begin with how you 



can get different kinds of basic feasible solutions and maybe I will just point out one 

more thing here and, that is, it is possible. You see, I obtain a basic feasible solution by 

putting the variables which do not correspond to the columns in B to 0. So, when I say 

that x j is 0, where A j does not belong to B, then x j is called a non-basic variables, and 

your x B, the components of x B are the basic variables. This is all corresponding to the 

fix basis. I start with, I select a basis, then I get a basis feasible solution. The variables 

that I have put to 0 are called non-basic variables, and the basic variables are the ones 

which corresponds to my, this is basic variable and this non-basic variable. It is possible, 

see, I put these two 0. 

Now, it is possible that some x B i may be 0. Therefore, you may have more than n 

minus m variables equal to 0 in a basic feasible solution, but there will always be at least 

n minus m zeros in a basic feasible solution, and again, here, as I told you that if the 

system A x equal to b, you can write as A 1 x 1 plus A 2 x 2 plus A n x n is equal to b. 

So, if I in a, this expressions in this is just summing up. If I renumber this column and I 

also renumber the variable correspondingly, then the system does not change; I mean this 

system of equations will not change if I renumber my columns and the corresponding 

variables also. Therefore, just for is of notation, I will refer to a basic feasible solution. 

So, this will be my basic feasible solution, where these refer to the basic variables and 

these refer to the non-basic variables. So, it helps to have a notation specified. 
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Now, let me just start with this example and try to cover up whatever concepts we have 

introduced. So, this is minimize z equal to minus x 1 minus 3 x 2 subject to the 

constraints x 1 plus x 2 less than or equal to 6; minus x 1 plus 2 x 2 less than or equal to 

8; x 1 x 2 greater than or equal to 0. So, as I told you, this is minus minimization of this 

which I can write as maximize. See, here, if you want to write the same z, then this is 

maximize minus z which will become x 1 plus 3 x 2. 

So, I had in my first lecture told you that we can refer to a linear programming problem 

as a minimization problem or a maximization problem, does not matter, because it is a 

question of just multiplying the objective function by minus sign, and now, here, I need 

to add slack variables, because all the constraints are less than or equal to (( )). So, this 

can be to the standard. I am reducing this problem to this standard form. So, that gives 

me x 1 plus x 2 plus x 3 equal to 6; so, I will drop the s suffix, because we treat them 

anyway as regular variables with the understanding that the objective function value of 

the slack variables will be 0. So, I will write them as a x 3, and then, the second 

constraint is minus x 1 plus 2 x 2 x 4 is equal to 8, and then, you have all the variables x 

1 x 2 x 3 x 4. This is the standard form and it always it is easier to handle equality 

constraints. 
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So, now, let us just choose some basis here. Say for example, I choose my B 1 to be 1 

minus 1 1 2, so, I choose the first two columns - first and the second column, and I guide, 



so, if this is the determinant, you can see is non-zero. Therefore, this lead to me a basic 

solution. So, here, I will solve the reduce system. So, corresponding to this basis, I will 

solve the system x 1 plus x 2 equal to 6 and minus x 1 plus 2 x 2 equal to 8. So, if you 

add up the two equations, you get this implies that 3 x 2 is 14. Therefore, x 2 is 14 by 3 

and that gives me x 1 as 6 minus 14 by 3 which is 4 by 3 18 4 by 3. 

So, therefore, if you want to write the basic feasible solution and it is full form. So, this 

is because both the components are non-negative, this is a basic feasible solution and my 

basic feasible solution corresponding to this basis is 4 by 3 14 by 3 0 0, because I choose 

the first two columns. Therefore, x 3 and x 4 now become non-basic variables; these are 

the basic variables. So, this is one equation. 
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If I choose another basis, for example, B 2 as 1 2 0 1, now, this time, I have chosen the 

columns was the second column here and the fourth column. So, this is my basis with 

corresponding reduce system will be what? So, I will put x 1 and x 3 to 0. So, that will 

give me x 2 equal to 6. The first constraint will reduce to x 1 and x 3 are 0. So, x 2 is 6, 

and then, I have 2 x 2 plus x 4 is equal to 8. So, if x 2 is 6, this implies that x 4 will be 

minus 4 which is less than 0. So, this is a basic solution; that means the solution that 



have got is x 1 is 0; x 2 is 6; x 3 is 0; x 4 is minus 4 is the basic solution but not a basic 

feasible solution where you see the difference. 
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So, therefore, given say for example, here and this is what I will be coming to next that if 

you have the system of equations, you have four variables, two equation. So, therefore, 

the possible number of bases that you can choose; that means it is an upper boundary, 

because it is not necessary that any two columns here would be linearly independent, but 

the upper bound on the number of basic solutions will be what? The upper bound would 



be here 4 c 2; that means, out of four columns, I have been choose two. So, this 4 c 2 

would be the upper bound on the number of basic solutions I can have for this system. 
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Now, let me also demonstrate the situation. Then you can have degenerate basic feasible 

solutions. Hence, what we mean by, because these are terms which will be we using very 

often. So, let me just system of inequalities. Consider these systems of inequalities, 

system of inequalities are assuming you. This is x 1 plus x 2 plus less than or equal to 6 x 

2 less than or equal to 3 x 1 plus 2 x 2 less than or equal to 9 and x 1 x 2 greater than or 

equal to 0. 

So, again, we it reduce slack variables and this will by introducing, we obtained. So, it 

will be the system of equalities is x 1 plus x 2 plus x 3 is equal to 6; x 2 plus x 4 is equal 

to 3; x 1 plus 2 x 2 plus x 5 is equal to 9, and we have the non-negativity constraints x 1 

x 2 x 3 x 4 x 5. So, choose here a basis. So, you want to just show you that in case, you, 

let me just choose my b to be, so, the rank here is 3, yes, may be you can answer that 

question yourself, because I have three columns here which form the identity, which 

form the columns of the identity matrix. 
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So, the rank of this matrix is 3. Therefore, I will choose a basis of size three; which 

means I have I want to choose pickup three columns form here which are linearly 

independent, and just for ready reference, because I have it written down here. You can 

chose by b to b 1 0 1 1 1 2 and take this is as 0 1 0. So, if I choose this as my basis, that 

means this is first column; this is second column; this is A 1 A 2 and this is fourth 

column. So, that means, I will put x 3 equal to x 5 equal to 0 and solve the reduce 

system. 
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So, my reduce system would be x 3 and x 5 was 0. So, this is x 1 plus x 2 equal to 6. 

Then x 2 plus x 4 is equal to 3 and x 1 plus 2 x 2 is equal to 9, because x 5 is 0 x 3 is 0. 

Now, if you subtract this from here, x 1 will cancel out and this will give you. So, these 

two together will give you x 2 is equal to 3; so, x 2 this implies that x 4 is 0 and x 1 is 3. 

You see one of the basic variables is 0, and so, my basic feasible solution is 3 3 0 0 0. So, 

only two of the variables are positive, whereas a basic feasible solution is supposed to 

have at least. So, 3 x 3 and x 5 they have to be 0, but one of the basic variables is also 

become 0. 
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And here, again, another point which has to be noticed is that since a solution is 

degenerate, they can be more than one basis which will correspond to the same 

degenerate basic feasible solution, and this will also be very important later on, because 

when we want to talk about how the complexity of the simplex algorithm, which is the 

algorithm that we are going to design for solving a linear programming problem. So 

then, with, these concepts are very important and I can show you, say for example, if you 

take your B to be, to take the basis to be 1 0 1, 1 1 2 and 1 0 0; that means, now I have 



selected the columns as A 1 A 2 and A 3, and if you quickly look at this thing here, 

because then I am putting x 4 and x 5 as 0. A 1 A 2 A 3 is the set of basis columns. So 

then, this will immediately give me x 2 equal to 3. Once I have x 2 equal to 3, since this 

is 0, I will get x 1 as 3 and then x 3 will be 0. 
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So, it just that in the earlier case, because my basis contained A 4 as a basic column. 

Therefore, this was the basic variable and it was 0. This was the non-basic column. So, it 

is only the status of the variable has change, because my basis has change but the 

solution remains the same. So, B also, this basis also corresponds to the degenerate basic 

feasible solution 3 3 0 0 0. So, this is a another thing to be noted, whereas for a non-

degenerate basic feasible solution, for a non-degenerate basic feasible solution means 

that only, so, maybe I can write it down here. For a non-degenerate basic feasible 

solution, the number of 0 variables is exactly n minus m. 

And remember, here, we are starting with the assumption that the rank of the matrix is m, 

and therefore, everything is reference to that, and when the retardant constraints get 

dropped, the m will change and in everything will follow exactly. So, for a non-

degenerate basic feasible solution, the number of zero variables is exactly n minus m, 

and both degenerate and non-degenerate basic feasible solutions play very important role 

when we analyze the algorithm. 



(Refer Slide Time: 29:09) 

 

Now, as I mentioned earlier, you see if you look at linear programming problem, and we 

want to, here, we are looking at the basic feasible solutions and that maybe in the next 

lecture will be clear why we are putting so much stress on the basic feasible solutions 

that look on, but before I go to that, let me just show you, you can also, even though, see 

we can put a bound on the number of an upper bound. So, an upper bound on the number 

of basic feasible solutions and that is very simple as I pointed out to you earlier, because 

out of n columns, we want to select m linearly independent columns. Therefore, the 

possible basis can be n choose m or n combination of the objects or n columns. You want 

to select m and the number of ways you can do it is n C m. So, therefore, your basic 

solution, the number of basic solutions is less than or equal to n C m, because for every 

basis leads to a basic feasible solution, and of course, as we have seen that more than one 

basis may lead to the same basic feasible solution, but even we are computing the upper 

bound, we just want to say that may be the case is there that, every bases leads to 

different basic feasible solutions. 

So, whatever it is, the total number cannot exceed n C m and this is number of basic 

solutions. Therefore, number of basic feasible solutions is also bounded by n C m, 

because every basic solution may not be a basic feasible solution. So, this is the number 

that you are obtain, and so, now, the idea is that if you can say that your search for a 

optimal solution for a linear programming problem can be limited to a basic feasible 

solution. Then, you see, what we are saying is that solving a linear programming 



problem reduces to actually examining all possible basic feasible solutions and then 

choosing the best, but let me let me just warn you that even though this number is finite, 

this can be very big and it can take years to solve. Say for example, just to given idea 

how large this number can be and let me also tell you that people have designed linear 

programming problems for which this bound can be attained; that means every set of m 

linearly independent columns is a leads to a basic feasible solution, and therefore, this 

number can be attained. 
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Now, it, in case n is 100 and let say m is 40, the number 100 C 40 is of order 10 raise to 

28, and this with the fastest machine, we take years to actually examine all possible basic 

feasible solutions. So, you will compute the value of the objective function C transpose 

x, for example, at each of these basic feasible solutions and then select the one which is 

the smallest in case of minimization problem, but then, this is not a small number; this 

can become very big number, and therefore, it can take a lot of time to compare it. 

Therefore, this is not certainly a very satisfactory way of solving a linear programming 

problem even though the number of feasible solutions is the finite, and therefore, 

algorithm has to be design and this is what we will a do now here. 
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So, now, let me make a few more definitions. We will say that feasible region I will just 

it makes the notation simples of feasible region. We say that F will be all x belonging to 

R n such that A x equal to b x greater than 0. So, I will always refer to now, because I 

will always be referring to the standard form of the linear programming problem, and 

when I refer to F, that means it is all feasible solutions to the standard version of the 

linear programming problem. 

Simple lemma: if F is non-empty, if F is non-empty, then it has a basic feasible solution. 

Let me explain what we are saying is that if the system, remember, I told you the 

condition when the system will have a solution, and then, of course, that solution should 

be also having all components non-negative; that would be a feasible solution. So, when 

I say f is non-empty, what I mean is that I have an x which satisfies both the constraints, 

both the set of constraint. Then, what we are saying is that because basic feasible 

solutions are special kind of feasible solutions. So, it is, if I am going to deal with basic 

feasible solutions, I have to be sure that if my region, if my feasible set, the set of 

feasible solution is non-empty, then it must also have a basic feasible solution, because I 

cannot be talking in the air; I must know that basic feasible solutions exist. 
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So, this is the whole idea and let me give you proof here. This, now, because start 

becoming technical and we have to be careful. So, the lemma F, if F is non-empty, then F 

has a basic feasible solution. So, let me give you the proof, and as I explain just two 

minutes ago that what we mean is that there is a x here, which satisfies that constraints A 

x equal to b and all components non-negative. Then, I want to demonstrate to you that 

there must be a basic feasible solution. So, since F is non-empty, x belongs to F. Now, 

define, let I x be the index set of all those x j which are positive. 



So, I have a feasible solution in F because F is non-empty. Let me just collect the all the 

(( )) for which the corresponding x j is positive. Now, see, two things can happen - either 

the columns A j such that j belongs to I x. So, either the columns these are linearly 

independent or linearly dependent, took their two possibilities. The columns which 

correspond to the positive components of the feasible solution in F are either linearly 

independent or linearly dependent. 
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Now, this is another phenomena that I want to explain to you, that is, if the set A j such 

that j belongs to I x is linearly independent, then it can be augmented by adding columns 

from A such that the new set, that the augmented set is linearly independent. Those of 

you who have some background of linear algebra know this, that if you have a set of 

linearly independent columns, and if you know that, the certain number of the basis 

contains the number basis columns can be more than what the columns here are. When 

you can always augment a set of linearly independent columns by some more columns so 

that the new set is forming a basis and that is what so we do that. 
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And the thing is that when I augmented set, my solution remains the same, because my 

solution was A x equal to b x greater than or equal to 0. So, I x gave me the variables 

which are positive. So, here, when I augment the set of columns here to form a basis, 

then the corresponding variables are 0, but I can now say, because after augmenting, x 

becomes a solution; x is a basic feasible solution. So then, this is implies that x is a basic 

feasible solution. I will try to put it again in more few words. What we are saying is that 

our requirement for calling a basic feasible solution is that it should correspond to, that 



means the non-zero components must correspond to the columns which are linearly 

independent and they form a basis. 

Now, here, I have started with the solution and I know that certain columns are there 

which correspond to the positive components of that solution and which are linearly 

independent, but this number is not equal to the number of columns, that should be there 

in a basis. So, I augment, I augment, my solution does not change, it remains the same, 

because the augmented columns the corresponding variable here is 0. So, the same 

solution is valid. It just that I now say that x is a basic feasible. I am allowed to claim 

that x is a basic feasible solution. 
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So then, the lemma gets proved in case this set is linearly independent. Now, I have to 

handle the case when this is set is not linearly independent. So, the second cases in if the 

set A j such that j belongs to I x is linearly dependent, so, linearly dependent means that 

there is a linear combination of the columns A j which is equal to 0. If this is re read, and 

this implies there exist scalars y j j belonging to I x such that sigma y j A j j belonging to 

I x is 0. If is set of columns is linearly dependent, you can always finds scalars not all 

zero such that this set is this linear combinations equal to 0. I also have and the other 



equation, because the x is a solution here. So, I also have that a summation x j A j j 

belonging to I x is equal to b. So, I have these two equations. So, the columns Aa j are 

the same columns. Now, multiply this by theta and add to this. 

So, this gives me that summation x j plus theta y j A j j belonging to I x this equal to b, 

because there is the right hand side is 0. So, this what I get, and you see that because the 

remaining components are 0, this again that means I have been able to construct another 

solution to my system A x equal to b. I am not calling it feasible, because I am not sure 

depending on what my theta and y js are, whether these components are non-negative, 

but at least I have a solution to this system of equations, and then I want to, so, here, if 

you see that x j is a component of a feasible solution, so, this is a non-negative theta. I 

can choose to be positive; x j’s are non-negative. 

So, now, if y j’s are also non-negative, if y j’s are non-negative, then this is a feasible 

solution. If now two cases are possible - suppose all y js are greater than or equal to 0, 

then I do not have to, so, what I will do is y j’s are all non-negative. In this equation, it 

does not matter. Then multiply the, let me number this equation as, let say 1. Then, 

consider multiply 1 by minus i. 
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So then, I will get summation minus y j A j j belonging to I x equal to 0, because it is a 

right hand side 0. It does not matter whether I multiply the whole equation by minus sign 

or (( )). So, in that case, what will happen to my equation? So then, in that case, I will get 

the equation as summation x j minus theta y j A j is equal to b j belonging to i x. So, in 

this case, I could have said it here. The possibility was that I need not have, what I am 

saying is that in case all y j’s are positive or non-negative, then I can multiply by minus 

sign and get the y j’s as negative. 
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So, in any case, I need the bother about multiplying by minus sign, because so, in other 

words, I can say that there will always be at least 1 y j which is negative, because if there 

is no none y j which is negative, then I can multiply the whole equation or minus sign. It 

does not matter. Let just take this case. So, now, you see that if y j is positive now, 

because have a minus sign, then it is possible that this component can become negative 

and I am trying to a matter basic feasible solution. I am trying to construct a basic 

feasible solution from the given feasible solution. 

So, what I will do is - choose theta equal to minimum of, see, remember, I want this to be 

non-negative. So, I will choose when I write say that this is greater than or equal to zero, 

I will get theta as minimum of x j upon y j y j is greater than 0. So, among for all y j’s 

which are positive, I will take this ratio and then choose theta is the minimum, because 

that theta is greater than this number, then some expression here can become negative. 

Therefore, if I choose my theta to with this, and at least since we have said that at least 

there is one y j which is positive, because all y js cannot be 0. Remember, this set is 

linearly dependent. So, I told you that the scalars y j non-zero exist so that this linear 

combination is 0. So, that is not possible. So, at least some y j is there which is positive, 

and so, this ratio exists and theta can be chosen like this. In that case, let say that this is 

equal to x k upon y k 
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So, for some k, this happens. Then, the corresponding x k minus theta y k is 0 and all x j 

minus theta y j are non-negative. So, I have been able to construct a feasible solution. 

From the given feasible solution x, in which, at least one component has become 0; that 

means the new feasible solution that I have has one component less than that the new 

feasible solution has one component more which is 0, one component more which is 0.  
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So, the new solution now you will find out. So, let me call it. What do you want to call 

it? So, x prime is the new feasible solution. Now, if i x prime is such that the 



corresponding set of columns is linearly independent, then I have a basic feasible 

solution as I explain to you that once I get for the new solution, I have the index set of 

positive components. The corresponding columns are linearly independent. Then, I can 

always augment that set two a basis, and therefore, this will constitute a basic feasible 

solution. 

In case the columns here are not linearly independent, then I will continue with the same 

process. Reduce the number of positive components to with they will be at least one 

component which will become 0, and this process can go until I end up with set of 

linearly independent columns corresponding to the positive components of the feasible 

solution, that I have finally get, and then, that will be a basic feasible solution. 

So, by this method of… So, actually, I like this proof, because it shows you actually how 

you can lead from any feasible solution to a basic feasible solution. So, this will be very 

help full in designing the algorithm and in trying to analyze it. So, as usual let me give 

you an example here again. Let me just show you actually how we go about doing this. 

Example: this is x 1 plus x 2 plus x 3 is equal to 6. So, I will take a system of equations 

start with the feasible solution, and then, show you how the reduction process works to 

get to a basic feasible solution. 

So, this will be x 2 plus x 4 equal to 3. This is the same system that we took earlier to 

demonstrate to you degenerate basic feasible solutions x 1 plus 2 x 2 plus x 5 is equal to 

9 and your x j greater than or equal to 0 for all j. So, this is your system, and now, let me 

start with the feasible solution here. 
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So, consider the feasible solution 1, 3, 2, 0, 2. Then, quickly verify that this satisfies of 

these constraints as a quality. 
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So, the columns… So, you are your I x here is 1, 2, 3 and 5. This is your index set 

corresponding to, that means these set of columns, and obviously, a number columns 

here is 4, and the rank of the matrix this, this is a 3 by 5 matrix. So, the rank cannot be 

more than 3, and it is actually three because you have these three linearly independent 

columns here. So, therefore, the columns are linearly dependent; I x is this. Since 

cardinality of I x is 4 which is more than 3, the corresponding columns are linearly 

dependent. 

So, let us find the y j’s, the scalars which will be used in the linear combination to show 

that this is 0, and again, just by inspection, you can see that A 1 plus 0 into A 2 minus A 

3 minus A 5 is 0. So, this is the combination of the columns linear combinations; that 

means my y 1 is 1; y 2 is 0; y 3 is minus 1 and y 5 is minus 1, and also, I have this 

equation is, since that is the equation, so, I have A 1 plus 3 A 2 plus 2 A 3 plus 0 A 4 

plus 2 A 5 is equal to your right hand side which is 6 3 and 9. 
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So, we multiply this by theta; add to this equation to obtain this will be 1 plus theta a 1 

plus theta A 1 plus 3 A 2 this is 0 here plus 2 minus theta A 3. This is 0; I do not need the 

A 4 plus 2 minus theta A 5, and this is also equal to your right hand side by 6 3 9, and 

remember, so, we had to look at the negative y’s and take this ratio number. So, in this 

case, because there is a minus sign, so, I took the positive y j. Now, here, whatever it is, 

because you see that a theta positive does not bother this variable, this component 

because this will be remain non-negative. Here, there is no theta. So, it is only the value 



of theta here which can, if becomes more than 2 for example, this particular component 

will become negative and we are looking for a feasible solution. 
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So, here, you can immediately see that theta has to be less than or equal to 2 but I will 

choose theta equal to 2 since I want to reduce the number of positive components from 4 

to 3 or 2 whatever is possible. So, I choose theta equal to 2 which is in this case 

minimum, because both the values are 2, The theta one corresponding to negative y here 

or you can treat y as 1 here or as minus 1 does not matter, it is a matter of notation. So, 

any case, theta has to be 2. If I choose theta to be 2, the new reduced solution is 3 3 0 0 0 

0. 
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So, in this case, what happened is that the two components became 0. My choice of theta 

was such, but at least one will always become 0, two became 0, and therefore, I got a, so, 

this is a basic feasible solution but it is degenerate. So, the, in a product has the distribute 

property also by which why we mean that if you take the dot product between the vector 

x and c y plus z - where c is a any real number, then you can, when you, you can open up 

the brackets and you will have c x dot y bar plus x dot plus z bar and this is two for all x 

y z in R n and all see in R. 
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So, the distributive property is there. Then, with the help of the inner product, we can 

defined the norm or the length of a vector and it is done by taking the inner product of 

the vector by itself and then the under root. So, the norm or the length of vector x is 

given by this number and you can show immediately, because you have real numbers 

sum of squares of real numbers if it is 0, then each number must be 0; so, that means 

norm x 0 if and only if this stands for, if and only if short form i f f, if and only if x bar is 

0. If the vector is 0, the norm is 0, and if the norm is 0, the vector must be 0. 

Now, you can easily show using this definition that if you take the norm of the vector c x 

c is a real number, then this come out as absolute value of c; that means the positive part, 

because remember, I should have said here also that this is greater than or equal to 0, 

because you talking of real numbers and then taking the under root. So, that must be non-

negative number. So, here, this has to be absolute value of c times the norm of x. 
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And then, this is the triangle in equality which also you can sit down and proof by 

yourself that norm of x plus y will be less than or equal to norm x plus norm y; that 

means if you take a triangle, if you take two directions with the vectors x and y and 

length norm of x and norm of y, then you can show that the third side must be less than 

or equal to the sum of the two sides, the length of the third side. Then, we can also have a 

concept of an angle here, and that all I need to now show you is that for a linear 

programming problem, it is more than enough to just worry about or just bother with the 

basic feasible solutions and try to find the best among all the basic feasible solutions. 


