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Welcome viewers, once gain to the lecture series of NPTEL on the topic Integral 

Equation. In the last lecture, we were discussing the successive approximation or eternity 

method for solving non homogeneous Fredholm integral equation of the second kind. 

And we have considered one example in the last lecture, to find out a solution using that 

particular method. Now in these lecture we are again going to address the same eternity 

method in order to define the resolvent kernel, and in terms of resolvent kernel we are 

going to describe solution of the non homogeneous Fredholm integral equation of the 

second kind. 
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So, in these lecture, we are going to consider the topic that is iterated kernels, which 

ultimately leads us to Neumann series which is will be used to solve the Fredholm 

integral equations. In as per the previous discussion you can recall, we have introduced 



this notation for integral operator that is capital gamma f x is equal to integral a to b k of 

x, s f s d s, we have introduced this notation. Now, in order to obtain the iterated kernels 

that we have done for Volterra integral equations, we can write these gamma 2 f x is 

nothing but, the integral operator gamma is operating upon gamma f x, so that means, 

this integral operator gamma is operating upon gamma f x and therefore, we can write 

this is equal to integral a to b k of x comma s 1 gamma f of s 1 d s 1. 

So, here this f s is repressed by gamma f s 1 and we have considered this dummy 

variable as s 1, in order to define the integral operator gamma on gamma f x, and then 

using the definition for gamma  s 1, we can write integral a to b k of x, s 1 then integral a 

to b k of s 1, s f s d s then d s 1. Now, rearranging the terms that means, interchanging 

the order of integration we can write this is actually integral a to b k of x, s 1 then k s 1, s 

d s 1 these result can be integrated from a to b multiplied with f s then d s. 
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Now, if we define that k 1 x, s this stands for k x s same as we have done in case of 

Volterra integral equations therefore, k 2 x, s can be defined by integral a to b k of x, s 1 

then k s 1, s d s 1, so this actually integral a to b k x, s 1, now repressing this k s 1 s by k 

1 s 1, s d s 1 we get the second iterated kernel k 2 x, s. 

And therefore, gamma 2 f x comes out to be integral a to b k 2 x, s f s d s this is the 

expression for gamma 2 f x, next if we calculate gamma 3 f x in terms of iterated kernel, 

then we can find this gamma is operating upon gamma 2 f x similarly, as previous what 



we have done that is integral a to b k of x, s 1 gamma 2 f of s 1 d s 1. Now, from here we 

can write gamma 2 f s 1 this will be equal to integral a to b k of x, s 1 then integral a to b 

k 2 s 1, s f s d s this with d s 1. 
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Again interchanging the order of the integration, we can write gamma 3 f x this is equal 

to integral a to b then integral a to b k of x, s 1 then k 2 s 1, s d s 1 multiplied with f s d s 

and now, if we define that k 3 x, s is equal to integral a to b k of x, s 1 then k 2 s 1, s d s 

1, so therefore, gamma 3 f x will be equal to integral a to b k 3 x, s f s d s. 

So, proceeding in this particular way, we can find nth iterated kernel k n x, s that is equal 

to integral a to b k of x, xi k n minus 1 xi, s d xi in all this definition for k 2 x s k 3 x, s 

here, these dummy variable s 1 can be replaced by xi, so that means, in general k n x, s 

equal to integral a to b k x, xi k n minus 1 xi, s d xi and these particular result holds for n 

equal to 2, 3 and so on. And where k 1 x, s is exactly equal to k of x, s and therefore, you 

can recall the solution for the Volterra integral equation, what we have considered in the 

last lecture that was… 
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y x is equal to f x plus sigma in running’s from 1 to infinity lambda to the power n 

gamma n operated upon f x, this was the result of the solution integral equation; that this 

is the solution for the Fredholm integral equation. And now, using these earlier results 

that is for gamma 3 f x gamma 2 f x and in general, you can write also this gamma n f x 

in terms of this nth order iterated kernel, we can write this is equal to f x plus sigma in 

running’s from 1 to infinity lambda to the power in integral a to b k n x, s f s d s this is 

the result (Refer Slide Time: 09:17). 

And assuming satisfaction of this condition that is modulus lambda L 2 b minus a less 

than 1, assuming this condition hold where L 2 is actually maximum value of the kernel 

k x, s it is modulus within the interval a, b cross a, b that is within a square therefore, we 

can interchange this summation and integral sign. Because, in the last lecture we have 

already proved the uniform convergence of this infinite series and therefore, this is equal 

to f x plus integral a to b sigma n running’s from 1 to infinity lambda to the power n k n 

x, s this entire expression multiplied with f s d s. 

Now, taking one lambda outside the integral sign we can write, this is equal to f x plus 

lambda integral a to b sigma n running’s from 1 to infinity lambda to the power n minus 

1 k n x, s this f s d s. And now, changing the range of variation for in we can get this is 

equal to f x plus lambda integral a to b sigma n running’s from 0 to infinity then it will 

be lambda to the power n k n plus 1 x, s this f s d s, so therefore, this infinite series that is 



sigma n running’s from 0 to infinity lambda to the power n k n plus 1 x, s, this is actually 

resolvent kernel. 
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And this resolvent kernel it is denoted by R x s lambda and that is equal to sigma n 

running’s from 0 to infinity lambda to the power n k n plus 1 x, s, so that is actually 

equal to k 1 x, s plus lambda k 2 x, s plus lambda square k 3 x, s plus dot dot up to 

infinity. And therefore, with this resolvent kernel R x, s semi colon lambda we can write 

solution of the Fredholm integral equation is y x equal to f x plus lambda integral a to b 

R x s lambda f s d s this is actually solution to the given problem; and this series that is k 

1 x s plus lambda k 2 x s plus lambda square k 3 x s plus dot dot up to infinity this series 

actually call the Neumann series. And this is the solution of this Fredholm integral 

equation, of the second kind which is a non homogeneous equation in terms of the 

resolvent kernel. 
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Now, we consider one interesting example, this example you can find in many books for 

example, the book by Karneval as well as Hildebrand in different books you can find this 

very famous example, and these example will address again in some later lectures in 

order to compare the different methods by for the solution of Fredholm integral equation. 

Now, here we are considering the problem that is y x is equal to 1 plus lambda integral 0 

to 1 1 minus 3 x s y s d s we have to solve this problem. So, therefore, our kernel k x, s 

this is equal to 1 minus 3 x s. Now, first we calculate few initial iterates that is k 2 x, s k 

3 x, s and so on, and then using the Neumann series we can calculate that resolvent 

kernel and then in terms of resolvent kernel we write down the solution for the given 

problem. So, here this k x, s is nothing but, your k 1 x, s next we have to calculate this k 

2 x, s, by definition this is integral 0 to 1 k x, xi multiplied with k 1 xi, s d xi, so with this 

definition that is k x s equal to 1 minus 3 x s and k 1 x s equal to 1 minus 3 x s. 
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We can write this is equal to integral 0 to 1 1 minus 3 x xi this multiplied with 1 minus 3 

xi s d xi, so this is equal to integral 0 to 1 1 minus 3 x plus s, this multiplied with xi plus 

9 x s xi square d xi this one, and after integration we can find this will be equal to 1 

minus 3 by 2 x plus s plus 3 x s this will be the result, so this is actually our second 

iterated kernel k 2 x, s. Using this definition for k 2 x, s not definition this is actually we 

have derived k 2 x, s, so this expression we can calculate k 3 x, s. 

So, k 3 x, s by definition integral 0 to 1 k x, xi then k 2 xi, s d xi this is equal to integral 0 

to 1 1 minus 3 x xi this multiplied with 1 minus 3 by 2 xi plus s plus 3 xi s d xi and after 

with respect to xi you can arrive at this result, this will be equal to 1 by 4 1 minus 3 x s. 

So, these result is very much important, because from here you can observe this k 3 x, s 

is nothing but, 1 by 4 k 1 x, s, so what, we have assumed k 1 x, s and that is actually your 

given kernel k x, s. 
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So, with these result that is k 3 x, s is equal to 1 4 multiplied with k 1 x, s you can 

calculate k 4 x, s, now k 4 x, s is equal to integral 0 to 1 k x, xi then k 3 xi, s d xi, so this 

is equal to integral 0 to 1 k x, xi times 1 4 k 1 xi, s d xi, so that is equal to 1 by 4 integral 

0 to 1 k x, xi k 1 xi, s d xi, so this is equal to 1 by 4 k 2 x, s because, 0 to 1 k x xi k 1 xi is 

d xi is nothing but, k 2 x, s. 

So, similarly, if you calculate k 5 x s this will be equal to integral 0 to 1 k x, xi k 4 xi, s d 

xi, now k 4 x, s is equal to 1 4 k 2 x, s, so using this result you can write this is equal to 1 

by 4 integral 0 to 1 k x, xi k 3 xi, s d xi this result you can obtain, this will be equal to 

sorry it will be 2, this one, so this is nothing but, 1 by 4 k 3 x, s this will be the result for 

k 5. Now, already we have obtained that k 3 x, s is equal to 1 4 k 1 x, s, so this is equal to 

1 by 4 whole square k 1 x, s, so with these few results, we can claim that in general will 

be having this recursive formula. 
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That is k n plus 1 x, s this is equal to 1 by 4 k n minus 1 x, s this result is valid for n 

greater than equal to 2, so this is actually one important step that we have obtained. So, 

from here, we can write R x s lambda that means, with this recursive relation and with 

some few initial itter iterates of the kernel, we can calculate the dissolvent kernel R x, s 

lambda for the given problem. 

So, this is equal to k 1 x, s plus lambda k 2 x, s plus lambda square k 3 x, s plus lambda q 

k 4 x, s plus lambda to the power 4 k 5 x, s plus lambda to the power 6, it will be lambda 

to the power 5 not 6, lambda to the power 5 k 6 x, s plus dot dot up to infinity. 

And now, we can use this result for eternity kernels and some initial results to get this 

will be equal to k 1 x, s as usual there is no change, no change for k 2 x, s then lambda 

square it will be 1 by 4 k 1 x, s plus lambda q it will be 1 by 4 k 2 x, s and then lambda to 

the power 4 1 by 4 k 3 x, s plus lambda to the power 5 1 by 4 k 4 x, s plus dot dot up to 

infinity. 

Then using the result in last two terms, that is k 3 x, s is equal to 1 by 4 k 1 x, s and k 4 x, 

s equal to 1 by 4 x 2 x, s we can write, this is equal to k 1 x, s plus lambda k 2 x, s plus 

lambda square by 4 k 1 x, s plus lambda q by 4 k 2 x, s plus lambda to the power 4 by 4 

square k 1 x, s plus lambda to the power 5 by 4 square k 2 x, s plus dot dot up to infinity, 

so we have one set of term where k 1 x, s is there and other set of terms involving k 2 x, 

s. 
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So, these expression is equal to 1 plus lambda square by 4 plus lambda to the power 4 by 

4 square plus dot dot, this multiplied with k 1 x, s and for the rest of the term, if you take 

common lambda and k 2 x, s then this will be multiplied with 1 plus lambda square by 4 

plus lambda to the power 4 by 4 square plus dot dot. So, ultimately we are having this 

expression that is 1 plus lambda square by 4 plus lambda to the power 4 by 4 square plus 

dot dot up to infinity these multiplied with k 1 x, s plus lambda k 2 x, s this pre 

multiplied infinite series you can easily observe this an geometric series, and this 

geometric series with first term 1 and common ratio lambda square by 4. 

So, this will be equal to k 1 x, s plus lambda k 2 x, s these divided by 1 minus lambda 

square by 4 and criteria for convergence is given by modulus lambda less than 2 and 

after substituting the expression for k 1 x s and k 2 x s, you can find this is 1 minus 3 x s 

plus lambda into 1 minus 3 by 2 x plus s plus 3 x s this whole divided by 1 minus lambda 

square by 4. So, that means, this is equal to 1 plus lambda minus 3 by 2 lambda times x 

plus s minus 3 x s multiplied with 1 minus lambda divided by 1 minus lambda square by 

4, so this is actually the sum for the Neumann series, and also this is the expression for 

the resolvent kernel. 
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So, with these resolvent kernel, if you substitute into the expression that is y x is equal to 

f x plus lambda integral 0 to 1 R of x s lambda f s d s then you will be having solution to 

the given Fredholm integral equation. And now, before going to the next part, I am 

giving some exercise for your practice, you can solve this problems first one, y x is equal 

to 1 plus lambda integral 0 to pi sin of x plus s y s d s, second problem y x is equal to f x 

plus lambda integral 0 to 1 e to the power x minus s y s d s. 

Number 3, y x this is equal to sin x minus x by 4 plus 1 by 4 integral 0 to pi by 2 x s y s d 

s and number 4, y x this is equal to 3 by 2 e to the power x minus half x e to the power x 

minus half plus half integral 0 to 1 s y s d s, so all these problems you can solve by the 

method of dissolvent kernels. 

Now, before going to the next topic I discuss briefly, an interesting result that is involved 

with the resolvent kernel, and where we can show that resolvent kernel is actually satisfy 

an integral equation of Fredholm type. But, that will be in terms of two variables x and s, 

where f x can be replaced by the given kernel and deduction is very straight forward. 
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We start with a definition, that is r x s lambda this is equal to k 1 x, s plus lambda k 2 x, s 

plus lambda square k 3 x, s plus dot dot up to infinity; and we can write this is equal to 

since, k 1 x, s you know this is equal to actually k x s, then we can write this is plus 

summation in running’s from 1 to infinity lambda to the power n k n plus 1 x s. So, that 

means, this is the rest of the part is written under the summation notation, and now if you 

take one lambda outside the summation notation, this will be k x plus s plus lambda 

sigma n equal to 1 to infinity lambda to the power n minus 1 k n plus 1 x, s. 

Now, when you are substituting n equal to 1, so first index of lambda is going to be 0, so 

changing this limit of the sum, we can write this is k x, s plus lambda sigma n equal to 0 

to infinity then it will be lambda to the power n k n plus 1 will be converted into k n plus 

2 x, s. And now, here for k n plus 2 x, s we can write the formula for iterated kernel, so 

that means, this will be equal to k x, s plus lambda sigma n equal to 0 to infinity lambda 

to the power n integral a to b k of x, xi then k n plus 1 xi, s d xi here, we are just writing 

the formula for iterated kernel of k n plus 2 x, s is equal to integral a to b k x, xi k n plus 

1 xi, s d xi. 

Now, already we have proved the uniform convergence of these part, so therefore, we 

can interchange the summation and integral sign, so after interchanging you will have k 

x, s plus lambda then integral a to b k of x, xi then sigma n running’s from 0 to infinity 

lambda to the power n k n plus 1 xi, s this d xi. Now, this n running’s from 0 to infinity 



lambda to the power n k n plus 1 xi, s is nothing but, our resolvent kernel written in 

terms of xi and s. So, therefore, we can write this is equal to k x, s plus lambda integral a 

to b k of x, xi then R of xi, s lambda d xi, so if you look at the final expression, so that 

means, we have obtained R x, s colon lambda is equal to k x, s plus lambda integral a to 

b k x, xi r xi s lambda d xi. 

So, that means, the solution of the Fredholm integral equation given equation was y x 

equal to f x plus lambda integral a to b k x, s f s d s this was the solution of the Fredholm 

integral equation. 

Now, here this y is replaced by R x s lambda and f is replaced by k x, s, so therefore, you 

can see this dissolvent kernel satisfies a similar type of integral equation, this is one 

important observation. Now, we are going to consider an algebraic method where you 

can see, we have to solve a system of linear equations, and by solving that system of 

linear equations by some technique. 

We can find out the solution of the Fredholm integral equation which is a non 

homogeneous Fredholm integral equation and with degenerate kernel, so that means, 

kernel is separable. And in that case, we can see the solvability condition depends upon 

the solution or uniqueness of the solution for the system of linear equation, so first of all 

we described this method and then we will consider a simple example. 
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So, we are considering equation of the form y x equal to f x plus lambda integral a to b k 

of x, s y s d s this is the given equation, kernel is separable, so that means, k x, s this is 

equal to sigma r running’s from 1 to n p r x q r s, this is a separable equation. And if we 

substitute these expression k x, s into this integral, under this integral sign then you will 

be having y x this is equal to f x plus lambda integral a to b sigma r running’s from 1 to n 

p r x q r s, this expression multiplied with y s d s as the kernel is separable. 

So, we can take this p r x outside the integral sign and therefore, will be having this 

expression f x plus lambda sigma r running’s from 1 to n p r x integral a to b y s q r s d s, 

now this kernel is separable, so that means, p r x q r s they are known, whenever r 

ranging from 1 to n, but y is unknown quantity. 

So, if we introduce the notation that is y r this stands for integral a to b y s q r s d s where 

r equal to 1, 2, 3 dot dot up to n, then these expression y x equal to f x plus lambda sigma 

r running’s from 1 to n p r x integral a to b y s q r is d s comes out to be y x, this is equal 

to f x plus lambda sigma r running’s from 1 to n y r times p r x. 

So, now you can see by some how we are able to calculate this scalar quantities y r, 

where r ranging from 1 to n, then immediately will be having solution to this problem, 

because y x equal to f x plus lambda times sigma r running’s from 1 to n y r p r x. In 

order to find this solution, we can do one thing q r s where r ranging from 1 to n this is 

known, we can multiply both sight of this equation by q m where m is taking any value 

within the range 1 to n. 
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So, therefore, we can write y x q m x this is equal to f x q m x plus lambda sigma r 

running’s from 1 to n y r p r x q m x, this is the result we are getting by multiplying q m; 

where 1 less than equal to m less than equal to n. And then integrating from the range a 

to b, we can find a to b y x q m x d x this is equal to integral a to b f x q m x d x plus 

lambda sigma r running’s from 1 to n y r integral a to b p r x q m x d x, this one. 

Now, we need two notations for integral a to b f x q m x d x and integral a to b p r q m x 

d x, if we denote by b m that is the integral a to b f x q m x d x this is the definition for b 

n, and this integral a to b p r x q m x d x this is defined by alpha m r this one, then this 

result that is integral a to b y x multiplied with q m x d x equal to integral a to b f x q m x 

d x plus lambda integral summation r running’s from 1 to n y r integral a to b pr x q m x 

d x, can be written as y m is equal to b m plus lambda sigma r running’s from 1 to n 

alpha m r y r. Now, when you multiplied the expression y x equal to f x plus lambda 

summation r running’s from 1 to n y r p r x by q m x, then we have mentioned that m is 

ranging from 1 to n. 

So, that means, we can find these type of n equations which have given by y m equal to d 

m plus lambda times summation r running’s from 1 to n alpha m r y r, where m equal to 

1, 2, 3 up to n and therefore, we are having a system of equations which can be written as 

y 1 y 2 up to y n, that is into a matrix form this is equal to b 1, b 2 up to b n plus lambda 

multiplied by alpha 1 1, alpha 1 2, up to alpha 1 n, then alpha 2 1, alpha 2 2, up to alpha 



2 n proceeding this way, last row will be alpha n 1, alpha n 2, up to alpha n n; this 

multiplied with y 1, y 2 up to y n, now this matrix equation is nothing but, a system of 

linear equation. 
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If we introduce the notations that is capital Y is equal to y 1 y 2 up to y n this one, then 

capital B equal to this column matrix b 1, b 2 up to b n, and capital A which is an n cross 

n matrix, this stands for alpha 1 1, alpha 1 2 up to alpha 1 n, in this way alpha 2 1, alpha 

2 2, up to alpha 2 n finally, alpha n 1, alpha n 2 up to alpha n n this is a n cross n matrix. 

And therefore, the matrix equation can be written as Y equal to B plus lambda A Y, now 

this Y is simply rewritten as I n times Y that is identity matrix, so that means, from here 

we are having a system of equation I n minus lambda, where a is an n cross n matrix, this 

matrix multiplied with Y this is equal to capital B. 

So, if this matrix I n minus lambda A n cross n is invertible, then we will be having 

unique solution, so that means, whenever determinant of I n minus lambda A n cross n 

this is not equal to 0, then we will be having unique solution. And if this is equal to 0, 

that means, if determinant I n minus lambda A n cross n equal to 0, then we will be 

having either infinite number of solution or no solution, that we will be discussing the 

next lecture. 

But, the point is that if we are able to find out some hallows of lambda, such that this 

determinant is non 0, so therefore, we can find unique solution for this system of linear 



equations, and once we are able to find out unique solutions y 1, y 2, y 3 up to y n, these 

has the unique solutions, so then the expression y x equal to f x plus lambda sigma r 

running’s from 1 to n y r p r x this is uniquely determined and this is nothing but, the 

solution of the given Fredholm integral equation (Refer Slide Time: 46:31). 
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So, now, we consider one example, here we consider the example, we can solve by this 

method, this is a very simple example, that is y x is equal to x e to the power x minus x 

plus integral 0 to 1 x   y s d x, so just for your understanding this f x is equal to as usual x 

e to the power x minus x. Now, kernel K x, s this is equal to x, so therefore, this will be 

equal to as per our notation p 1 x q 1 s where p 1 x this is equal to x and q 1 s this is 

equal to 1, so now, if we just solve this equation by the method. 
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We have just discussed, this becomes y x is equal to x e to the power x minus x then we 

can take x outside the integral sign, so this is integral 0 to 1 y s d s; now just see, this 

integral 0 to 1 y s d s can be think about this is nothing but, integral 0 to 1 y s q 1 is d s, 

because q 1 is here 1. So, with our notation that we have introduced this is equal to x e to 

the power x minus x plus x y 1, so that means, this x y 1 is actually continuation from the 

expression lambda sigma r running’s from 1 to n y r p r x. 

So, in that stage we have multiplied both side by q m x and then we have integrated, here 

we have only one q that is q 1 x, so q 1 x is going to be 1, so that means, we have to 

integrate this result y x equal to x e to the power x minus x plus x y 1 both sides with 

respect to x. 

So, we are multiplying this expression both sides with respect to x from 0 to 1, means we 

are actually multiplying this equation by q 1 x and then integrating from 0 to 1, so 

therefore, we are having integral 0 to 1 y x d x this is equal to integral 0 to 1 x e to the 

power x minus x d x plus y 1 is a constant here then integral 0 to 1 x d x. So, 0 to 1 y x d 

x is our y 1, so this y 1 is equal to after integration it will be x e to the power x minus x 

limit from 0 to 1, then minus x square by 2 limit 0 to 1 plus y 1 x square by 2 limit 0 to 1. 

So, from here we will be having y 1 this is equal to e minus e, this two things are coming 

from the upper limit, then minus x e to the power x at x equal to 0 is 0 and then from 

here, we will be having this is equal to minus e plus 1 sorry, this will be actually the 



result of integration will be x e to the power x minus e to the power x (Refer Slide Time: 

50:49). So, therefore, e minus e plus 1 then from here you will be having minus half plus 

half y 1, so this e cancels with e this is half, this will goes on the right hand side, so 

ultimately you will be having y 1 is equal to 1. 

So, with y 1 equal to 1 if you substitute on the first line, then we can find y x that is y x 

equal to x e to the power x minus x plus x into 1, so this is equal to x e to the power x, so 

by calculating this y 1 we have obtained y x equal to x e to the power x as a solution. 

So, that means, what we have discussed today, that in Fredholm integral equation which 

are of non homogeneous type, non homogeneous Fredholm integral equation with 

separable kernel that can be converted into a system of linear equations. And here we 

have considered a simple example, where we have obtained a unique solution and for a 

specific hallow of lambda, now in case of this separable kernel this integral equation can 

be converted into a problem of finding solution for a system of linear equation. 

And depending upon uniqueness of the solution of the system of linear equation, which 

is actually in turns depending up on the magnitude of lambda this there may be unique 

solution, may be no solution, may be infinite number of solution will be having 

corresponding conclusion for the solution of the Fredholm integral equation. 

And in next few lectures, we will try to relate these idea with the concept of resolvent 

kernel, where this resolvent kernel can be obtained in a unique fashion or not and those 

theories are actually Fredholm theory for solving integral equation which are known as 

actually Fredholm integral equation. 

And where we will be discussing, three particular theorems of Fredholm and after 

discussing some other problems of these type where the integral equation of Fredholm 

integral type with separable kernel can be converted into linear system of linear equation; 

and by solving those equation will be discussing the rest of the theory for Fredholm 

integral equation, that is Fredholm theorem one, Fredholm theorem two, Fredholm 

theorem three and there is actually one one correspondence between existence, if unique 

solution and non existence of the solutions. 

So, today I can stop at this point in the next lecture we will be considering few more 

example of these type, and with help of a particular example, we can try to understand 



how this type of situation comes into the picture that these may have unique solution, 

may not have unique solution, and in case of this problem does not possess unique 

solution, what will be the to our solution for the Fredholm integral equation, so thank 

you for your attention. 


