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 Welcome viewers once again to the lecture series on integral equation under the NPTEL 

courses. 
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In the last lecture we were discussing about the Greens function for linear boundary 

value problems, just for a quick recapitulation, you can recall we were dealt with (( )) 

type boundary value problems, which are defined by d dx of px dy dx plus qx plus 

lambda rx yx. This is equal to 0 for homogenous boundary value problem and this is 

equal to gx for non-homogenous boundary value problem with the separated boundary 

conditions m 1 ya plus m 2 y dot a. This is equal to 0 m 3 yb plus m 4 y dot b, this is 

equal to 0. This is called separated boundary conditions where a less than equal to x less 

than equal to b; p dash x q x and r x, these are all continuous over the interval a to b, 

lambda is a parameter. 



With these assumptions we arrived at the position, that solution of this equation can be 

written as y x, that is equal to minus integral a to b G of x, s gs ds, but this capital G x, s 

is the base function. And this particular greens function we defined, as well as, derived, 

as this is equal to y 2 s y 1 x divided by alpha for a less than equal to s less than x less 

than equal to b. And y 1 x y 2 x divided by alpha, where a less than equal to x less than s 

less than equal to b, where this y 1 x and y 2 x, these two functions were the solution of 

the corresponding homogenous equation L of y, that is equivalent to, in short if we can 

write, that is, p y dashed whole dashed plus q plus lambda r y, this is equal to 0. This was 

two linear independent solution of this equation. 
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And not only they are just linearly independent solution of this equation, there was 

another restriction based upon which we have constructed the Greens function. Those 

restrictions was, that y 1 satisfies the boundary conditions on the right hand, that is, m 3 

y 1 b plus y 1 dot b, this is equal to 0 and y 2 x, that satisfies the boundary conditions on 

the left. That means, m 1 y 2 a plus m 2 y 2 dot a, this is equal to 0. So, based upon this 

we have constructed our Greens function. 

Now, in this particular formation 1 1 t, that means, 1 by alpha still remains undefined, 

that now we are going to define along with some discussion on properties of this Green’s 

functions. So, now, let us look at the properties of Green’s functions. 



First of all you can easily verify, that g (x, s) is symmetric, is a symmetric function of 

two variables x and s, that is, G (x, s) is equal to G (x, s). So, that means, interchanging 

the role of x and s you can easily verify, that this condition is satisfied. Secondly, the 

important properties is, that G (x, s) this actually satisfies the boundary conditions; this 

satisfies the boundary conditions. And of course, you can verify, that d g (x, s) satisfies 

this type of m 1 y 2 a plus m 2 y 2 dot a, this is equal to 0. 

Now, without any loss of generality if we simply assume the boundary conditions into 

this particular format, say y a, this is equal to 0 equal to y b. The simplest boundary 

condition corresponding to m 1 y a plus m 2 y dot a equal to 0 and m 3 y b plus m 4 y dot 

b equal to 0. So, that means, choosing m 2 and m 4 equal to 0 we can arrive at this type 

of boundary conditions. Now, with this a, that is, y 1 satisfies boundary conditions on the 

right implies y 1 p, this is equal to 0 and y 2 x satisfies the boundary conditions on the 

left, means y 2 a, this is equal to 0. 

Now, look at the definition for the Green’s function. Green’s function is G (x, s), that is 

equal to here, y 2 s y 1 x divided by alpha. This is defined for a less than equal to s less 

than x less than equal to b and y 1 x y 2 x divided by alpha, where a less than equal to x 

less than s less than equal to b. 
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Now, look at this definition. In the first part x can be equated to b, so therefore, when 

you are substituting x equal to b in the Green’s function, then G of (b, s), that means, you 



are substituting x equal to b and from this definition x equal to b is allowed for the, when 

G (x, s) equal to y 2 s y 1 x by alpha. So, this is, this will come out as y 1 b y 2 s divided 

by alpha. And already we have mentioned, that y 1 b equal to 0, so therefore, this is 

equal to 0. 

Similarly, we can easily verify, that G a s, that is equal to y 2 a y 1 s divided by alpha, 

this is equal to 0. So, this, that means, the Green’s function satisfies the boundary 

conditions on the left hand point and as well as the right hand point. And similarly, using 

the property, that m 3 y 1 b plus m 4 y 1 dot b, you can verify, that they also satisfy the 

boundary condition, when boundary condition given in general point at this G (x, s). This 

continues on this square domain (a, b) cross (a, b) and its partial derivative, this partial 

derivative has been jumped discontinuity along the line x equal to s and this is given by 

that partial derivative of G (x, s) has a jump discontinuity, and it is defined as del del x of 

G (x, s) and x equal to s plus. So, that means, we have to use the definition x greater than 

s minus del del x of g (x, s) at x is equal to s minus. That means, we have to use x less 

than s, that is equal to minus 1 by p s and from here we can easily find out what will be 

the value of alpha? What expectation of alpha in terms of s? 
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Now, before proceeding further I just want to make a remark here, that initially we 

started our discussion on this type of ordinary differential equation subjected to boundary 

conditions, that is, d 2 y d x 2 plus A 1 x dy dx plus A 2 xy equal to capital G x, 



purposefully I am writing here capital G x and with the condition, say ya equal to 0 equal 

to yb. 

Now, after that we have discussed everything on (( )) boundary value problem. So, the 

question is whatever theory, that we have discussed on (( )) boundary value problem, that 

can be applied for this type of differential equation or not. So, we can put question in 

other way round, that whether this equation can be converted into the (( )) boundary 

value problem format or not, such that operator will become a self at joint operator? 

Answer is yes, this can be done because that d 2 y d x 2, this equation can be multiplied 

by the function px and which results in px d 2 y d x 2 plus px A 1 x dy dx plus px A 2 

xy, that is equal to px into capital Gx. 

This one now if we define px, this is equal to e to power integral A 1 x dx, then we can 

easily verify, that d dx of px, this is going to be A 1 x e to power integral A 1 x dx. So, 

that means, actually this is equal to px times A 1 x. So, if we define px in this particular 

way for the first two term of the last expression, that px d 2 y dx 2 plus p x times A 1 x 

dy dx, these can be combined into to write d dx of px into dy dx. So, that means, these 

equation becomes d dx of px dy dx plus qxy, this is equal to gx, where qx is px times A 2 

x and small gx, this is equal to px times capital Gx. And just note, that here we have 

made some rearrangement of the tar mode of, you can use the transformation px equal to 

this one and in this process we have not disturbed anything on y. 

So, that means, the boundary condition y a equal to 0 equal to y b, that remains 

unaltered. That means, this problem can be written as a (( )) boundary value problem. 

Now, next is, that we are going to consider some particular problem, that how this type 

of boundary value problem can be solved in term of Green’s function. 
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So, first of all we consider this example, that is, d 2 y d x 2 minus y, this is equal to fx 

with the condition y0 equal to 0 equal to y1. Of course, this is a simplified version of the 

(( )) boundary value problems and at this moment we have no lambda here, px is 1. So, 

of course, this is an equation of the form (( )) boundary value problem. 

Now, first of all we have to consider the corresponding homogenous equation, that is, d 2 

y d x 2 minus y, this is equal to 0. This is the homogenous ordinary differential equation 

associated with the given non-homogenous problem, two linearly independent solution 

of this particular problem are actually cos hyperbolic x and sine hyperbolic x. 

Now, you can recall, in order to construct the Green’s function for this problem we have 

to choose y 1 x and y 2 x in such a way, that y 1 x will satisfy the boundary condition on 

the right hand and y 2 x will satisfying the boundary condition on the left hand such that 

y 1 and y 2, these two functions of x should be linearly independent. Now, clearly, for all 

real values of x cosine hyperbolic x is always positive. So, that means, this cosine 

hyperbolic x does not (( )) either x is equal to 0 or at x equal to 1, but sine hyperbolic x, 

this is equal to 0 for x equal to 0. So, that means, the sin hyperbolic x, this is the solution 

of the homogenous problem and satisfying the boundary condition on the left. So, based 

upon this fact we can denote this sine hyperbolic x as y 2 x. 

Now, we have to find out a linearly independent function, which will be satisfying the 

left hand boundary conditions as none of them are satisfying the boundary condition and 



equation is a linear equation. So, we can try to find out y 1 x into the format, that is linear 

combination of these two functions, that is, c 1 cosine hyperbolic x and c 2 sine 

hyperbolic x and using the condition, that c 1 cosine hyperbolic x plus c 2 sine 

hyperbolic x will be 0 at x equal to 1. You can find out c 1 c 2 and ultimately will be 

having these results, that is, y 1 x, this is equal to sine hyperbolic 1 minus x. This can be 

easily obtained because if you claim y 1 1 equal to 0, that means, y 1 1 equal to 0. 

So, this implies, c 1 cosine hyperbolic 1 plus c 2 sine hyperbolic 1, this is equal to 0 and 

from here you can find out c 1 by sine hyperbolic 1 equal to c 2 by minus cosine 

hyperbolic 1 and taking this constant of proportion equal to 1, you can derive this 

quantity c 1 and c 2. And after substituting you can find y 1 x equal to sine hyperbolic 1 

minus x. And of course, by the method of (( )) you can verify these two solutions, that is, 

sine hyperbolic x and sine hyperbolic 1 minus x, they are actually two linearly 

independent solution of the homogenous equation. 
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So, now, with this definition or this particular choice for y 1 x and y 2 x we can write the 

Green’s function, G (x, s), that is equal to 1 by alpha sine hyperbolic 1 minus x times 

sine hyperbolic s. This is 0 less than equal to s less than x less than equal to 1 and this is 

equal to 1 by alpha sine hyperbolic x sine hyperbolic 1 minus s with 0 less than equal to 

x less than s less than equal to 1. So, this is the format. 



Now, here if you applied the jump discontinuity of the derivative along the line s equal to 

x, then we can find del del x of G (x, s) at x equal to s plus minus del del x of G (x, s) at 

x equal to s minus, this is equal to minus 1 by 1 because here px, this is equal to 1. So, 

ps, this will be equal to 1. So, this is nothing, but minus 1 by 1 and this x equal to s plus, 

that means, x greater than s. 

So, therefore, from this definition of Green’s function we can find this will be actually 

del del x of 1 by alpha sine hyperbolic 1 minus x sine hyperbolic s. Now, we can 

substitute x equal to s here because this is actually in order to choice the proper G (x, s) 

and then minus integral, sorry, del del x of 1 by alpha sine hyperbolic x times sine 

hyperbolic 1 minus s at x equal to s. This is equal to minus 1 and this gives minus 1 by 

alpha cos hyperbolic 1 minus s sine hyperbolic s minus 1 by alpha cos hyperbolic s sine 

hyperbolic 1 minus s. This is equal to minus 1 and this implies sine hyperbolic 1 divided 

by alpha equal to 1 in (( )) alpha equal to sine hyperbolic 1. 
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So, therefore, finally, for the given problem G (x, s), that is equal to sine hyperbolic 1 

minus x sine hyperbolic s divided by sine hyperbolic 1 and sine hyperbolic x sine 

hyperbolic 1 minus s divided by sine hyperbolic 1. This is for 0 less than equal to s less 

than x less than equal to 1 and 0 less than equal to x less than s less than equal to 1 and 

therefore, solution to the given problem y x is equal to minus integral 0 to 1 G (x, s) than 

fs ds and that is equal to, you can find, that minus integral 0 to x sine hyperbolic 1 minus 



x sine hyperbolic s divided by sine hyperbolic 1 fs ds minus integral x to 1 sine 

hyperbolic x sine hyperbolic 1 minus s divided by sine hyperbolic 1 fs ds. So, this is the 

solution to the given problem in terms of Green’s function and if we know the particular 

form of fs, then we can find out the complete solution of the given problem. 

And at this moment it comes to your mind, that this course is on integral equation, but I 

am here discussing a solution of the (( )) boundary value problem, which is differential 

equation, but the point I like to make it clear here, that if we convert the given 

differential equation into the associated (( )) integral equation of first or second time, that 

will come out after the derivation, and actually affix is non-zero. So, it will be non-

homogenous (( )) integral equation of the second time. Then, you can verify, for that 

problem this is going to be the solution of the integral equation. 
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Now, we consider one more example where fx is given such that you can verify the 

solution obtained by this method is actually satisfying the given equation. Here we 

consider the problem, that is, d 2 y d x 2 plus y, this is equal to 1 plus x with the 

condition y 0 equal to 0 equal to y pi by 2. So, now, this corresponding homogenous 

equation d 2 y d x 2 plus y equal to 0, it has two linearly independent solution, one is 

sine x, other is cos x. And clearly, this cos x satisfies the boundary condition, at x is 

equal to pi by 2 sine x satisfies the boundary condition at x equal to 0. So, that means, 



sine x satisfies the boundary condition on the left hand, cos x satisfies the boundary 

condition on the right hand. 
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So, therefore, we can denote them as cos x as y 1 x and sine x y 2 x and therefore, this 

Green’s function G (x, s), this will be sine s cosine x divided by alpha. This is for s less 

than x and cosine s sine x divided by alpha. This is for x less than s and again, using the 

jump discontinuity of the Green’s function, that is the derivative of the Green’s function 

we can find del del x of G (x, s) for x greater than s. 

So, that means, here we have to apply on sine s cosine x, then substituting x equal to s 

minus del del x of minus del del x of cosine s sine x divided by alpha with x equal to s, 

that is equal to minus 1 because p is equal to 1 here. So, this gives minus sine square s 

divided by alpha minus cosine square s divided by alpha. This is equal to minus 1 

implying alpha equal to 1 and therefore, this Green’s function G (x, s), this is equal to 

simply sine s cosine x and cosine s sine x. This is valued for 0 less than equal to s less 

than x less than equal to 1 and this is 0 less than equal to x less than s less than equal to 

1. So, these are the definitions. 
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And therefore, the solution to the given problem, that is, yx is equal to minus integral 0 

to pi by 2 G (x, s), this will be 1 plus s ds. So, first of all we divided into two intervals, 

that is, 0 to x G (x, s) 1 plus s ds minus x 2 pi by 2 G of (x, s) times 1 plus s ds and here 

this will be minus integral 0 to x. First integral s is less than x, so (( )) s is less than x. So, 

this is sine s cosine x. So, therefore, this will be sine s cosine x 1 plus s ds minus integral 

x 2 pi by 2 cosine s sine x 1 plus s ds. And using the formula for integration by parts, 

cosine x can be taken out of the integral and then we have to use (( )) formula 

considering 1 plus s as the first function u and sine s as the second function v. 

So, we will be having this minus 1 plus s cosine s because integral of sine s minus cosine 

s, then (( )) will involve minus sine combined with this 1 plus 1 derivative of 1 plus s is 

1, so plus cosine s. And after integration this will be plus sine s limit 0 to x and for the 

second integral minus sine x can be out of the integral sign, then it will be 1 plus s sine s 

plus cosine s limit x 2 pi by 2 and this is equal to minus cosine x at the upper limit minus 

1 plus x cosine x plus sine x. At the lower limit cosine 0 is 0, so this will be plus 1 and no 

contribution from the sine x term. Then, minus sine x, this will be 1 plus pi by 2 into 1 

sine x is 1. There is no contribution from cosine at y by 2 is 0 and then minus 1 plus x 

sine x minus cosine x. 

Now, you just check, that these two terms can be combined together, this one and this 

one, they actually produce the term 1 plus x and then these two terms cancels with each 



other, that is, this one and this one. So, then we are left with minus sine x minus cosine x 

and minus pi by 2 sine x. So, this is actually solution of the non-homogenous boundary 

value problem, that is, d 2 y d x 2 plus y equal to 1 plus x subjected to the boundary 

condition, that is, y 0 equal to 0 as well as y pi by 2, that is also equal to 0. 

Next, we are going to consider some properties of Eigen values and Eigen functions 

associated with the (( )) boundary value problem from where we can define, that set of 

orthogonal function and the infinite collection of set of orthogonal functions will gives us 

opportunity to expand any given function, which of course, satisfies certain 

differentiability and continuity condition such that infinite series will converge 

uniformly, then those functions can be expressed as an infinite series of this orthogonal 

functions, that means, those functions can be generated with the help of the collection of 

familiar orthogonal functions. 
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Now, first of all we consider some particular property of these problems. So, throughout 

the rest of the part of the discussion we will be considering this equation, that is, d dx of 

px dy dx plus qx plus lambda rx, this y equal to 0 with the boundary conditions, that is, 

separated boundary conditions m 1 ya plus m 2 y dot a, this is equal to 0 and m 3 yb plus 

m 4 y dot b, this is equal to 0 where this p dot x qx and rx they are continuous. And we 

are assuming, that p x is non-zero for all values x within the range, that is, x belongs this 

close interval a, b. 



Now, first of all we are going to prove a result, that let yx and zx are solutions of the (( )) 

boundary value problem corresponding to lambda and mu respectively with lambda not 

equal to mu. Further, further this condition, that is, px and wronskian of yx zx, this is 

from a to b is equal to 0, then integral a to b rx yx zx dx. This is equal to 0. 

And here, just for your quick reference, wronskian of yx and zx is nothing, but 

determinant yx zx y dashed x z dashed x. So, that means, for lambda y is solution for mu, 

z x is the solution in these conditions, that is, p x multiple by wronskian of y z from a to 

b. This is equal to 0, then this condition is satisfied a to b rx times yx zx dx equal to 0. 

And whenever this condition is satisfied, that means, integral a to b rx into yx into zx 

equal to 0. Then, we say, that y and z, they are orthogonal functions to each other with 

respect to the weight function rx depending upon the associated (( )) boundary value 

problem. If rx equal to 1, then condition for orthogonality will come down to simply 

integral a to b yx zx dx, this is equal to 0. 
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So, first of all we prove this result, y x is the solution of (( )) problem for lambda. So, 

that means, d dx of px dy dx plus qx plus lambda rx, this times yx, this is equal to 0, call 

it one. And d dx of px dz dx plus qx plus mu rx multiplied by yx, this is equal to 0, call it 

two. Now, if we multiply second equation by zx and first by yx and then subtract, this 

implies we will be having that, sorry, multiplying 2 by yx and 1 by zx, then we can find, 

that yx multiplied with d dx of px dz dx plus qx plus mu rx this into yx zx minus zx 



multiplied with d dx of px dy dx minus qx plus lambda rx times yx zx, this will be equal 

to 0. Here, in equation two this will be actually zx. 

Now, you can see, that qx yx zx and qx yx zx cancels from, cancels with each other. So, 

then rest of the expression we can combine as yx with d dx of px dz dx, then minus zx 

times d dx of px dy dx, this expression plus mu minus lambda rx yx zx. And now, you 

can recall from the previous discussion, that this part, that is, yx d dx of px dz dx minus 

zx d dx of px dy dx, this is nothing, but the derivative of px multiplied with yx z dashed 

x minus zx y dashed x, this is equal to lambda minus mu rx yx zx. And this expression yz 

dot minus zy dot is nothing, but the wronskian of y and z. 
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And therefore, we can write, that d of px W yx zx, this is equal to lambda minus mu rx 

yx zx dx. And then, integrating from a to b we can find px W yx zx, this limit a to b, that 

is equal to lambda minus mu integral a to b rx yx zx dx. And since this is given to be 0 

and with the condition lambda not equal to mu, this implies, that integral a to b rx yx zx 

dx, this is actually equal to 0. 

So, that means, for two (( )) boundary value problem, one with parameter lambda and 

other with parameter mu with same P, q, r, if you are able to find out two corresponding 

solution of the equations, which are denoted by yx and zx such that px wronskian yx zx 

evaluated at b minus the same expression evaluated at a, is equal to 0. Then, these two 

functions y and z are orthogonal to each other with respect to the weight function r. 



Next, we are going to prove, that for a particular (( )) boundary value problem we are 

able to find out two non-trivial solutions, that means, Eigen values and Eigen functions 

and if two Eigen functions are corresponding to two distinct Eigen values, then those 

Eigen functions are actually orthogonal functions. So, in order to prove this, first of all 

we are going to prove this result, that let y m x and y n x be two Eigen functions, be two 

Eigen functions of the (( )) boundary value problem. In short, we can write p y dot whole 

dot plus q plus lambda r y equal to 0, where x belongs to (a, b) with the boundary 

conditions m 1 y a plus m 2 y dot a equal to 0 equal to m 3 y b plus m 4 y dot b. 
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Corresponding to two distinct Eigen values, two distinct Eigen values lambda m and 

lambda n respectively, then px wronskian of y m x y n x a to b, this is equal to 0. This is 

one of the important results that we can prove. So, if we look at this expression, that is, 

px wronskian y m x y n x a to b, this is equal to p of b y m b y n dot b minus y n b y m 

dot b minus pa multiplied with y m a y n dot a minus y n a y m dot a, this is equal to 0. 

We have to prove this. 

Now, recall, that whenever we have mentioned, that the boundary condition, then we 

have mentioned m 1 and m 2 are not simultaneously equal to 0. Now, y m and y n, they 

are solution of (( )) boundary value problem because they are Eigen functions. So, that 

means, y m satisfies the left hand boundary condition, that is, m 1 y m a plus m 2 y m 

dashed a, this is equal to 0 and m 1 y n a plus m 2 y n dot a, this is equal to 0. 



Now, without any loss of generality we can assume, that m 1, this is not equal to 0 

because initially we have mentioned, that m 1 and m 2 are simultaneously equal to 0. So, 

therefore, we are assuming m 1 not equal to 0. If m 1 not equal to 0, then from the first 

relation we can write, we can write m 2, this is equal to minus m 1 y m a divided by y m 

dashed a. So, that means, then we can substitute m 2 in this expression. That means, 

eliminating m 2 between these two relations we can find m 1 times y m a y n dot a minus 

y n a y m dot a, this is equal to 0. Now, already we have assumed m 1 not equal to 0. So, 

therefore, we must have y m a y n dot a minus y n a y m dot a, this is equal to 0. Now, of 

course, with assumption m 2 not equal to 0 you can arrive at the same result, as well as, 

if m 1 and m 2 both of them are not equal to 0, then in that case also you can arrive at the 

same result. Here, for simplicity I have proceeded with this assumption, that is, m 1 not 

equal to 0, so this is equal to 0. 
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Similarly, from the second condition, now you can easily guess, that from the second 

condition we will be able to derive, that y m b times y n dot b minus y n b times y m dot 

b this is equal to 0. So, combining these two results, that is, y m y n dot a minus y n a y 

m dot a equal to 0. And then, y m b y n dot b minus y n b y m dot b, this is equal to 0. 

You can derive, that p x wronskian of y m x y n x from a to b, this is equal to 0. 

So, that means, from this result we can conclude, that for (( )) boundary value problem, if 

y m x and y n x are two Eigen functions corresponding to distinct Eigen values, lambda 



m and lambda n, then they are orthogonal to each other because in the last result we have 

established, if y z at two solutions such that p x w of y x comma z x from a to b, this is 

equal to 0. Then, integral a to b rx into yx into zx, that is equal to 0. 

So, combining these two results we can say, that lambda m comma y m x is an Eigen 

pair; lambda n y n x, this is another Eigen pair associated with the homogenous (( )) 

boundary value problem L y equal to 0 with the separated boundary conditions, and 

lambda m not equal to lambda n. Then, integral a to b rx y m x y n x dx, this is equal to 

0. So, this is the result. 

So, that means, two distinct Eigen functions corresponding to different Eigen values 

lambda m and lambda n, they are orthogonal to each other. So, that means, today we 

have established this result. In the next lecture we will be proving, that under certain 

conditions satisfied by rx, that means, if rx maintains the same sign toward the interval a 

to b, then all the Eigen values are real and then we will define the important class of 

functions associated with the orthogonal function, that is familiar of ortho-normal 

functions. And from there we can find either Fourier series expansion when this 

orthogonal functions are trignometric functions or in general, expansion of a function in 

terms of infinite dimensional orthogonal functions such that every function can be 

expressed as a linear combination of those functions. And we will be discussing how the 

coefficients of those series, in terms of the orthogonal functions, can be derived using all 

these properties of the Eigen functions associated with a (( )) boundary value problem. 

Thank you for your attention. 


