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Welcome viewers. This is second lecture for lecture series of NPTEL on integral 

equation. Before going to discuss about today’s topic, I like to recapitulate quickly what 

we have discussed in the first lecture. We have started with the formation as well as 

formulation of integral equations, I have given 3 examples where initial value problems 

of ordinary differential equations, and boundary problem of ordinary differential 

equation is converted into integral equation. And then we have considered a physical 

problem whose description in terms of mathematical tools also leads to an integral 

equation which is known as Abel’s integral equation. You can recall, we have considered 

mainly two types of linear integral equation, once is Fredholm integral equations. 
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Fredholm integral equations are of two kinds. First kind of Fredholm integral equations 

is of the form, 0 equal to f x plus lambda integral a to b K (x, s) y(s) ds, and Fredholm 

integral equation of second kind is y(x) is equal to f x plus lambda integral a to b K (x, s) 



y(s) ds. This was first equation was of the first kind and second one is of the second kind, 

where range of integrations are 2 finite real numbers. Another type of the equations I 

have introduced yesterday, that is volterra type integral equations, if you have 0 equal to 

f x plus lambda times, integral a to x K (x, s) y s ds. This is a volterra integral equation of 

the first kind and volterra integral equation of the second kind is given by y(x) equal to f 

x plus lambda integral a to x K (x, s) y s ds.  

So, last two are volterra integral equations and first of two are Fredholm integral 

equation and also we have discussed about the singular integral equations, and in One 

example we have considered where a given function was shown that it is a solution of 

the singular integral equation. Now, before proceeding further I just like to mention two 

main text books for this lecture series. 
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First one is a first course in Integral Equations by A M Wazwaz. This is a book from 

world scientific this is first, and another book that is Linear Integral Equations linear 

integral equations theory and techniques by R P Kanwal publisher this there are also 

several other books, but for preliminary level personally I like this two book very much 

and most of the lectures, and ideas without within the series is based upon these two 

books. 
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Now, today we start with the concept of Solution of Integral Equation solution of integral 

equation. Suppose we are considering either a Fredholm equation of the form y(x) equal 

to f x plus lambda integral a to b K (x, s) y s ds or we are talking about volterra integral 

equation y(x) equal to f x plus lambda integral a to x, K (x, s) y(s) ds. Of course, we may 

consider second first kind of equations in this case both the equations I have written for 

the second time also instead of second kind in as first kind of equations as well as 

singular integral equations. 

Now, if we able to find out a function phi x such that when this phi x substituted into 

either these 2 equations, either of these 2 equations, and if it happens that right hand side 

after integration will be equal to the left hand side, then we say phi x is a solution of this 

integral equation. 

So, that means, if we just consider this first example once we substitute it on to the right 

hand side then it will be f x plus lambda times integral a to b, K (x, s), then we are 

actually looking for unknown function y(x) and phi x is a possible candidate for the 

solution of the targeted problem. So, therefore replacing y by phi, if these expression 

after substitution and integration is comes out to be phi x, then we can say phi x is a 

solution of this integral equation. Now, this is just formal definition. First we consider 

few examples which will be actually verification of functions phi x, those are going to be 

solutions for the given integral equations. 
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So, we consider example 1. This first example we are interested to check whether this 

function phi x equal to x is going to be a solution of the integral equation y x, is equal to 

2 x by 3, plus integral 0 to 1 x s y s ds. If you look at this integral equation then you can 

understand this is a Fredholm integral equation of second kind, and here if you compared 

with the standard form then immediately you can verify f x is equal to 2 x by 3, lambda 

this is equal to 1 and kernel of the integral equation x (x, s), that is x into s. 

Now, we have to verify whether this function phi x equal to x is a solution of this integral 

equation or not. So, that means, we have to substitute y(s) equal to s, because phi x is 

equal to x into this integral and we have to verify what will be the outcome. So, after 

substitution we will get 2 x by 3 plus integral 0 to 1, x s this is this part is the kernel and 

for y(s) if we substitute this phi. So, another is ds. So, this is equal to 2 x by 3 plus x and 

s cube by 3 with limit 0 to 1, and after substituting this limit you can verify this is 

coming out to be x. So, that is exactly equal to phi x and hence y(x) equal to x is a 

solution to this problem. Again just recall this is a Fredholm integral equation of second 

kind. 

Now, we consider a volterra integral the equation, example 2. Here we are interested to 

verify whether phi x equal to 1 minus x is a solution to this integral equation 0 to x, e to 

the power x minus s y s ds equal to x. If you have a close look at this equation, then you 

can see y(x) does not appear explicitly into the equation outside of the integral sign, and 



here range of integration is 0 to x. So, therefore, this is a volterra integral equation of 

first kind. This given equation is a volterra integral equation of the first kind. If you 

compare this equation with a standard form then you can find f x equal to minus x, 

lambda equal to 1 and kernel K (x, s), this is equal to e to the power x minus s this is 

actually kernel for the given problem. 

If we substitute this function phi into the integral then you can verify integral 0 to x, e to 

the power x minus s, 1 minus s, ds and this will be equal to e to the power x, if you 

integrate this integral then it will be minus e to the power minus s, this is coming out to 

be well, e to the power minus s will be multiplied with 1 and then you have another 

integral that is s into the power minus s. 

So, using the formula of integral by parts you can find this is equal to plus s e to the 

power minus s plus e to the power minus s, and limit from 0 to x. If you substitute this 

limit and after simplification, you can find this is exactly equal to x and hence phi x 

equal to x is a solution of this integral equation. 
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Next we consider another example. This example is little bit interesting in the sense in 

terms of the kernel involved with the problem. We have to verify whether phi x equal to 

cosine 2 x, this is a solution of the integral equation given by y(x) equal to cos x plus 3 

integral 0 to phi K (x, s) y s  ds, where this particular kernel is given by K (x, s), this is 

equal to given by sin s cosine x when s less than x and sin x cosine s, if x less than x. So, 



this is actually the given kernel and again here range of integration is finite that is 0 to pi. 

So, this is a Fredholm integral equation of second kind. 

Now, we try to verify whether this function satisfies this equation or not. Before 

proceeding further just try to understand on this real line our range of integration is 0 to 

pi and here this kernel is defined in this way, it is equal to sin s cosine x whenever s less 

than x and this is equal to sin x cosine s whenever x is less than s. So, in order to 

incorporate this function under the integral sign and part from the integration we 

introduce the point x in between 0 and pi, and we divide this integral 0 to pi into 2 

integrals 1 ranging from 0 to x another one ranging from x to pi and this calculation is 

little bit tedious, but still we can try to verify this. 

So, we start with this integral cos x plus 3 integral 0 to pi, cosine sorry K (x, s) y(s) is 

cosine 2 s ds this is equal to cosine x plus 3 1 integral is 0 to x K(x, s) cosine 2 s ds, plus 

second integral x to pi cosine k s cosine 2 s ds.  

Now, we can use the definition of cosine k x here s is ranging from 0 to x in the first 

integral and in the second integral range of integration is x to pi. So, after substitution of 

this expression we will be having cosine x plus 3 integral 0 to x, whenever x is greater 

than s; that means, s less than x. So, this will be cosine x sin s cosine 2 s ds plus integral 

x to pi, sin x cosine s cosine 2 s ds this one. 
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In order to solve this problem we have to use this formula that is sin s cosine 2 s, this is 

equal to half of sin 3 s minus sin s, this is actually coming under this first integral 

integrant is sin s cosine 2 s and for the second integrant you can find cosine s cosine 2 s. 

So, using the formula optigonometry, you can write cosine s cosine 2 s, this is equal to 

half of cosine 3 s plus cosine s. 

So, after substituting this 2 results into the integral, it becomes cosine x plus 3 by 2, we 

can take cosine x outside the integral then it will be 0 to x sin 3 s minus sin s ds plus sin 

x multiplied with the integral from x to pi then cosine 3 s plus cosine s ds, this... 

So, this will be called to after integration cosine x plus 3 by 2 cosine x into, minus cosine 

3 s by 3 plus cosine s this limit will be 0 to x plus 3 by 2, sin x multiplied with sin 3 s 

divided by 3 plus sin s this limit will be from x to pi. After substituting this limit at this 

upper limit it will be minus cosine 3 x by 3 cosine x at the lower limit this is minus 1 

third, this is plus 1 third. Similarly here at the upper limit both the quantity exactly equal 

to 0, because sin 3 pi is 0 sin pi equal to 0 and at the lower limit and after substitution the 

limit, and after simplification you can find this result is coming out to be cosine x plus 3 

by 2 multiplied with minus 2 third cosine x plus 2 third cosine 2 x, and this is equal to 

cosine 2 x. 

So, now you can see that we have started from this integral equation that is on the right 

hand side of the integral equation. We have used the definition of the kernel which is 

defined into 2 parts, 1 part is valid for s less than x and other part that is valid for s 

greater than x. We have substituted these 2 expressions into the integral sign and then 

you have used this formula for trigonometric functions, and after integration and 

simplification we can find this is equal to cosine 2 x. So, this cosine 2 x is exactly equal 

to y(x) and hence the function phi x equal to cosine 2 x is the solution of this integral 

equation. 

Now, we just why just like to make some remark. First of all, all those examples which 

we are considered, their solutions are comes out as a closed type functions are either x or 

1 minus x cosine 2 x. So, all the solutions appears in the closed form. So, the question is 

whether in all cases we will be having solution in the closed form or not. Answer is it 

depends completely upon the problem in some cases, if you are fortunate then you will 

be having the solutions into the closed form. That means, solutions can be expressed in 



terms of either polynomials or trigonometric functions, logarithmic functions, 

exponential functions or a combination of all these functions, and in some cases we will 

be having solutions which are functions of x, but we are unable to find out any particular 

closed form of the function which can represent the solution. 

And another important point I like to remark here in case of ordinary differential 

equation, most of the time we are concerned with the existence and uniqueness of the 

solution. In the first lecture, you have observed that integral equation have been 

constructed from the ordinary differential equations those are either initial value problem 

or boundary value problem. For all those differential equations the concept of existence 

and uniqueness of the solutions are very much important. 

But here we let the question of existence and uniqueness of solution of the integral 

equation for the further studies, now I give 2 illustrative example in one case, I am not 

deriving the solution at this moment, but where you can verify the given series is a 

solution of the integral equation, but that cannot be put into the closed form. 
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Example is we consider this integral equation y(x) is equal to 1 plus, integral 0 to x x 

square y s ds this is a volterra integral equation of the second kind. For these problem 

you can verify that y(x) equal to 1 plus x cube plus x to the power 6 by 4 plus x to the 

power 9 by 2 8 plus dot dot; these series is a solution of this integral equation and for 

these series we are unable to find out any closed form of functions such that y(x) will be 



equal to that closed function apart from this series of presentation, but you can verify this 

is a solution of these integral equation. 

And next we consider a non-linear integral equation given by y(x) equal to 2 x by 3 plus 

integral 0 to 1 x y square s ds. This is an non-linear integral equation, interestingly you 

can verify these equation possesses 2 solutions; one is y(x) equal to x and another y(x) is 

equal to 2 x. 

So, for this non-linear integral equations the question of existence uniqueness is more 

difficult, and this is a nice example from where you can verify that this non-linear 

integral equation, possesses 2 solutions - one is x and another is 2 x, so that means 

solutions of this equation is not unique. 
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Next before proceeding further I like to remind you one important formula for the 

calculus that is known as Leibnitz Rule. This Leibnitz Rule is required for forthcoming 

discussions on integral equation. As well as today, within this lecture, I will give you 

some preliminary idea that how you can find out solution of an integral equation by 

differentiating the integral equation. 

Of course, you have to keep in mind this is not the only possible way to solve this 

equations, but in some cases it will be possible to differentiate the integral equation to 

obtain some ordinary differential equations associated with the given problem, and you 



can easily solve that ordinary differential equation and ultimately we will able to verify 

solution of the differential equation obtain from the integral equation also satisfies the 

given integral equation. And hence this is 1 way by which you can find out solution of 

some integral equations. There are several other methods to solve Fredholm integral 

equation as well as volterra integral equation and singular integral equation those 

discussions will come in next lectures. 

Now, this Leibnitz rule is related with the differentiation of this function, that is integral 

a psi to b psi f (psi, t) d t. And were considered here a rectangular domain d this is 

collection of the point (psi, t), such that alpha less than equal to psi less than equal to 

beta and t 0 less than equal to t, less than equal to the t 1. 

This is the domain and we assume that f (psi, t) and del del psi of f (psi, t); these are 

continuous functions these are continuous functions and a psi comma b psi they are 

differentiable differentiable over the open interval alpha comma beta. If these conditions 

are satisfied then we can differentiate this function which is actually result of integration 

which is a function of psi with respect to psi, formula is given by d t psi of integral a psi 

to b psi f (psi, t) d t, this is equal to… 

First of all we have to integrate the partial derivative of f with respect to psi, that is del 

del psi f (psi, t) d t plus f (psi, b psi), that means b psi substituted in place of t multiplied 

with d (b psi, d psi) minus f (psi, a psi) multiplied with derivative of a psi with respect to 

psi. This is the Leibnitz rule. 

You can find proof of this result in any standard book on calculus, and will be using this 

result to convert volterra integral equations to ordinary differential equation. And we are 

intended to verify that solution of those ordinary differential equations actually solution 

of the given integral equation. 
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For these purpose first we consider 1 example that given integral equation is y(x) is equal 

to x minus 1 plus integral 0 to x, x minus s y s ds. Our attention is to convert this 

equation into an ordinary differential equation which will, which is going to be initial 

problem and by solving the obtain ordinary differential equation we can verify solution 

of ordinary differential equation is a solution of these integral equation. So, as we are 

going to solve ordinary differential equation, of course we need the initial conditions. 

From here if you take x equal to 0, then you can find y 0, this is equal to minus 1, these x 

identically equal to 0 and substituting here this integral from 0 to 0 . So, this is also equal 

to 0, and therefore y(0) is equal to minus 1. Now, differentiating the given equation with 

respect to x this will be dy by dx, x minus 1 will results in 1 and in order to differentiate 

these quantity with respect to x, we have to use the Leibnitz rule. 

So, according to the Leibnitz rule, this will be integral 0 to x del del x of x minus s y(s) 

ds is the first part then plus x minus s y(s); these expression we have to evaluate at s is 

equal to x with dt x of x plus another term is 0, because derivative of 0 is going to be 0. 

Of course, if you substitute x is equal to s here, then you can find this is also identical 

equal to 0. And del del x of minus s this is 1. So, ultimately we can find dy dx equal to 1 

plus, integral 0 to x, y(s) ds, this is the first derivative. And again from here if you 

substitute x equal to 0 here, then you can find immediately y dot 0 this is equal to 1. 



Now, again if you differentiate this result that is dy dx is equal to 1 plus integral 0 to x, 

y(s) ds then you can find d 2 y dx 2, this is equal to y x, in order to get this y(x) again we 

have to apply Leibnitz rule to obtain derivative of this right hand side is equal to y x. So, 

therefore, the given integral equation is now converted into an ordinary differential 

equation that is the d 2 y, dx 2 minus y, this is equal to 0 with initial conditions that is y 

0, this is equal to minus 1 and y dot 0 this is equal to 1. 

And quickly if we just solve this equation, then you know the general solution of this 

equation is given by y(x) is equal to c 1 e to the power x plus c 2 e to the power minus x, 

using first initial condition that is y(0) equal to minus 1. We find minus 1 equal to c 1 

plus c 2 and using the second initial condition that is y dot 0 equal to 1, you can find 1 

equal to c 1 minus c 2. If you solve these 2 constants, then you can find c 1 equal to 0 

and c 2 this is equal to minus 1. 
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And hence solution of the given second order ordinary differential equations which is an 

initial value problem is y(x) is equal to minus e to the power minus x, and you can verify 

yourself these y(x) equal to minus e to the power minus x is a solution of these given 

integral equation, I left this problem for your practice problem. 

Next we consider another example. Next example is y x, this is equal to 1 plus x plus x 

square by 2 plus integral 0 to x 1 plus 2 into x minus s y(s) ds. In these case once you 

proceed you can see that resulting equation will be a second order ordinary differential 



equation, but it will be not a straight forward equation like d 2 y dx equal to y final 

differential equation will also include first order derivative dot. So, in order to obtain the 

desired differential equation starting from this integral equation again we had to take 

help of the Leibnitz rule. 

First of all you can verify that y(0) this is equal to 1, this y(0) is equal to 1, because these 

2 terms are identical equal to 0, then x equal to 0 this integral is 0. So, therefore y(0) 

equal to 1, then dy dx this is equal to 1 plus x plus integral 0 to x del del x of 1 plus 2 x 

minus 2 s y(s) ds, this is coming from the first term of the Leibnitz formula. Then for the 

second term once you substitute here s equal to x. So, this term will be equal to 0. So, 

ultimately we are left with only 1 term that is y(x) and after differentiation these term 

will produce 2. So, ultimately it results in 1 plus x plus integral 0 to x, 2 will come out 

here y(s) ds plus y x. And you should be very much careful for finding out initial 

condition for the first derivative; you have to use the initial condition that is y(0) here. 

So, y dot 0 this is equal to 1 plus y 0. So, this is equal to 2. And if you differentiate this 

result dy dx equal to 1 plus x plus 2 integral 0 to x, y(s) ds plus y(x) once again with 

respect to x, then you will be having this result that is the d 2 y dx 2 this is equal to 1 

plus these integral after using Leibnitz rule as above, you find this will be equal to 2 y(x) 

and derivative of y is dy d x. So, from here you will be having the second order 

differential equation that is the d 2 y dx 2 minus dy dx minus 2 y, this is equal to 1 this is 

our target differential equation, along with 2 initial conditions that is y(0) this is equal to 

1 and y dot 0 this is equal 2. 

So, this is actually the second order ordinary differential equation which is an initial 

problem associated with the integral equation this one or you can say corresponding to 

this integral equation this, and once you solve this equation using this initial condition 

then unique solution of this equation is a solution of the given integral equation. I am not 

going to find out this result whether I can give you some practice problem at this 

moment for this topic, in all these cases you can try to solve the integral equation by 

converting the given integral equation into ordinary differential equation. And finding 

out the solution of the ordinary differential equation obtained from the given integral 

equation, you can verify those solutions are actually satisfying the given integral 

equation. 
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So, first problem is y(x) is equal to sin x plus integral 0 to x sin of, x minus s, y(s) ds, 

second problem y(x) equal to x plus, 2 sin x minus 1, minus integral 0 to x, x minus s 

y(s) ds. Third problem y(x) equal to e to the power x plus integral 0 to x y(s) ds, and 

fourth one y(x) is equal to 1 by 1 plus x square plus integral 0 to x, sin of, x minus s, y(s) 

ds. So, all this equation can be converted to ordinary differential equation with 

prescribed initial conditions that conditions can be obtained from these equations, and its 

derivative, and once you able to find the solution of those corresponding differential 

equations that will actually satisfy these integral equations. 

And of course, you take a note here that all these equations are actually volterra integral 

equations, range of integral is 0 to x in all these exercises, and also if we just have a look 

at the last 2 examples that I considered here, those are also volterra integral equation. So, 

these volterra integral equations sometimes can be converted into ordinary differential 

equations and by solving those ordinary differential equations, you can find the solutions 

of the integral equations. 

Next we consider one important lemma that is very much important for our conversion 

of initial value problem, and boundary value problem to integral equation when we will 

be considering in a general format. 
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In the first lecture, we have considered some preliminary examples, but now we have to 

formalize all those results for general form of the ordinary differential question. This 

lemma is known as generalized replacement lemma generalized replacement lemma. 

This lemma says that integral a to x integral a to s n minus 1 integral a to s n minus 2; in 

this way a 2 s 2 a 2 s 1 g s ds d s 1 ds 2 up to ds n. This is equal to 1 by factorial n minus 

1, integral a to x x minus s whole to the power n minus 1 g(s) d x. 

This is actually the formula; that means, a collection of n integrals can be converted into 

a single integral, and you can recall a miniature version of this formula we have used in 

the first lecture were a double integral is converted into a single integral. And where I 

have mentioned that it can be done easily by interchanging the order of integration, but 

this is actually generalization of that particular result; and of course, you can verify those 

result is coming directly from here in case of n equal to 2. 

So, in order to prove this result, we take G x equal to 1 by factorial n minus 1, integral a 

to x x minus s to the power n minus 1 g(s) ds. At a later stage it will be required that the 

value of G a, you can take note of it, that G a is identically equal to 0. If we apply 

Leibnitz rule on this G x equal to 1 by factorial in minus 1 integral a to x, this expression, 

then you can find G dot x, this is equal to, 1 by factorial in n minus 1, partial derivative 

of x minus, s to the power n minus 1 with respect to x will results in n minus 1 x minus s, 



to the power n minus 2, g s ds plus we will be having x minus s to the power n minus 1 

by factorial n minus 1 g s. 

This expression we have to evaluate at s equal to x with dx dx and another term will be 

equal to 0, because lower limit of the integral is a constant; and of course, this is also 

equal to 0. And this is equal to 0 leads us to the result 1 by factorial n minus 2  integral a 

to x, x minus s to the power n minus 2 g(s) d x. This is the G dot x. 
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Similarly if you calculate G dot a from here this is equal to 0 and G double dot x, this 

will be equal to 1 by factorial n minus 3 integral a to x x minus s to the power n minus 3, 

g s ds. Proceeding in this way you can find general formula for G k x this will be 1 by 

factorial n minus 1 minus k integral a to x x minus s to the power n minus 1 minus k g s 

ds. And of course, these G k a is equal to 0. So using this result, if we proceed up to n 

minus 1 at step then finally, we will be having G n minus 1 x, this is equal to integral a to 

x, g s ds.  

Now, from here if we try to recover G x by integration you will be arriving at the desired 

result, that is the generalized replacement lemma. And of course, here from the previous 

step you can recall that g n minus 2, a this is also equal to 0. 



(Refer Slide Time: 52:06) 

 

So, if we apply this result we can find that d dx of G n minus 2, x this is equal to integral 

a to x, g s ds, if we integrate both sides from a to x, then will be having G n minus 2, this 

step is very important, s 1 from limit a to x, as your range of integration is a to x. So, we 

are replacing this independent variable x by s 1, and once it is x is replaced by s 1 within 

this differential equation. So, on the right hand side x will be replaced by s 1 and 

therefore, it will be a s 1 g s ds and integral a to x with respect to the ds 1. 

Now, substituting s 1 equal to x this will be G, n minus 2, x at lower limit this is 0 and 

this is equal to integral a to x, integral a to s 1 g s ds d s 1. If you proceed in a similar 

way at the next step, you will be having G, n minus 3, x is equal to in this case you have 

to integrate this expression, and before integration you have to replace this x by s 2 and 

range of integration will be a to x. So, we will be having a to x integral a to s 2 integral a 

to s 1 g(s) d s ds 1 ds 2. 

So, if you proceed in this way after n minus 1 step, starting from here, you'll be arriving 

at the generalized replacement formula. This lecture I stop here and before ending I just 

quickly recapitulate what we have done today. First of all we have considered the 

solution of the integral equation then with illustrate examples, we have seen that phi x 

equal to x is a solution of this Fredholm integral equation, here phi x equal to 1 minus s 

is a solution of the volterra integral equation. 



This is another example were kernel is not a single function whether it is defined over 

the 2 interval, in 1 case is less than x, and in other case is greater than x and then we have 

verified this is the solution. And here is 1 example, where solution cannot be obtain into 

the closed form and this is a non-linear integral equation, where we have 2 solutions, that 

we solutions of this problem is not unique. 

And this is Leibnitz rule it will be required for our further discussions, this is the 

application of Leibnitz rule, using this rule we can convert these integral equation to an 

ordinary differential equation with prescribed initial conditions. And these initial 

conditions once imposed on the general solution of the differential equation gives you 

the solution of the differential equation, and of course you can verify these solution y(x) 

the equal to minus e to the power minus x is a solution of the given integral equation that 

is this one. 

And then these are some exercises for you, and finally we approved the generalized 

replacement lemma, these lemma will be required for the next lecture where we can see, 

how general differential equation, which is either initial value problem or boundary value 

problem can be converted into integral equation. And integral equation corresponding to 

initial value problem will be volterra integral equation, and integral equation 

corresponding to the boundary value problem will be the Fredholm integral equations. 

So, thank you for your attention. 


